

 Actually 181.504k Cores (but we like even numbers)

 What is High-Performance Computing?

 Challenges

 The Compiler’s Role

 LLVM: What Works

 LLVM: What’s Needed

 LLVM: Thinking Forward

 Fast, balanced, scalable machines

 Hundreds of thousands of cores

 Petabytes of memory

 Petaflops of processing power

 To push the envelope of science

 Handling barely-solvable, otherwise intractable leading-edge problems

 Customers that are willing to wrestle with us in the mud

 That are reasonably easy to use

 Scientists should be scientists (not computer scientists)

 Software is king

 Installed at Oak Ridge National Laboratory

 First petascale machine for open science

26
54

119

1642

25000

100000

1000000

1

10

100

1000

10000

100000

1000000

2005 2006 2007 2008 2011 2015 2018

Te
ra

fl
o

p
s

38,000x peak performance increase over 13 years

“Moore’s Law” predicts 512x speedup

 Weather prediction, climate modeling

 Astronomy (supernova modeling, dark matter)

 Biofuel production / enzyme behavior

 Protein folding

 Efficient combustion engines

 Fusion reactor design

 Materials science (superconductors, semiconductor physics,
supercapacitors)

 Keeping users productive

 Language support

 Programming tools

 Enormous codes

 Feedback

 Using flops efficiently

 Memory bandwidth

 Vectorization & parallelization

 Instruction selection

 Securing bid wins (rapid response)

 Keeping compiler developers sane

 Compiler debug hooks

 Ubiquitous IR dumps

 LLVM is a key technology

 Small compiler group

 Went through an extensive internal review to justify x86 project

 There were those who said we couldn’t do it

 LLVM made it possible! (6 months to working prototype)

 LLVM lets us

 Keep our frontends

 Keep our optimizer

 Fully support Cray machines (e.g. network interfaces)

 Rapidly respond to changing customer needs

 Optimizer (PDGCS)

 Sits directly in front of LLVM

 Scalar transformations, restructuring, vectorization, parallelization

Look at LLVM go!

http://www.nccs.gov/2009/08/17/fusion-gets-faster

 Fusion code for ITER development

 2x speedup over previous best (non-Cray compiler)

 I/O & filesystem enhacements (focus of the article)

 Compiler improvements

 Compiler contribution

 Vectorize more than others, particularly low trip count loops

 General memory bandwidth improvements
 Prefetching

 Reuse analysis (optimizer & LLVM)

 Instruction selection improvements (Opteron 10h / Barcelona)
 Relaxed alignment restrictions

 Non-temporal moves

http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster
http://www.nccs.gov/2009/08/17/fusion-gets-faster

 Great user community

 Well-designed modular architecture

 Rock-solid (very few bugs we didn’t introduce)

 Scalar evolution!

 bugpoint

 TableGen (though see the next slide)

 Documentation (though see the next slide)

 A roadmap (major release goals)

 Scalability (very good, but could be better)

 Untested code paths (e.g. schedulers)

 TableGen (esoteric, missing features / multiclass support)

 Documentation (keep it up to date!)

 API fluctuation (deprecation policy)

 More microarchitecure specialization (x86 is Intel-centric right now)

 Revision-specific instructions & features

 Memory system information

 Debug hooks

 Selection / schedule dags can be difficult to debug

 Something to filter enormous amounts of debug output

 Visualization tools

 AVX (LRBni?) implementation (including a rewrite of the SSE specification)

 Tons of debug features

 Circular buffers

 Before / after dumps

 Binary search hooks (disable transformations per-function,
transformations max)

 Asm annotation

 Enhanced bugpoint to work with compilers other than gcc (Fortran)

 Opteron enhancements (new instructions & features)

 Simple memory system models (simple!)

 Lots of bug fixes (need a solution for Fortran tests)

 Near-term architectural horizon is rich!

 GPUs

 Larrabee (http://www.ddj.com/architect/216402188)

 Accelerators (Cell, FPGA)

 Manycore

 To take advantage of this LLVM should

 Express predication (masks) in the IR

 Include more powerful vector operations in the IR
 Gather/scatter

 Mixed vector/scalar

 If you’re writing a parallelizer

 Provide robust messages,
especially negative messages

 Do analyses and transformations
on a high-level IR (PDG or similar)

 Drop dependence information
when necessary

 Provide a visualization of the
high-level IR

http://www.cray.com/About/Careers.aspx

