Al

Optimizing
ActionScript
Bytecode using
LLVM

10/2/2009

Scott Petersen

Adobe Systems, Inc.

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential.

ActionScript 3

= Adobe Flash/AIR app development language

= EcmaScript based - "JavaScript with classes and types”
= varx; // implicitly a variant - JS style
= var x:int; // xis an int!

= var x:*; // explicitly a variant

= ActionScript Bytecode (ABC) reminiscent of JVM bytecode
= Verified
= Stack oriented

= Object oriented

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. P Adobe

ActionScript 3

= JIT compiler + interpreter + garbage collector + basic support library in
around 1.5M uncompressed, 600k compressed for x86

= Open Source Tamarin Project http://www.mozilla.org/projects/tamarin

= Straightforward AS3 compiler

= Effectively non-optimizing

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 3 Adobe

http://www.mozilla.org/projects/tamarin�

ActionScript 3 Performance

= Performance for AS => AS3 compiler + Tamarin JIT

= Roughly 1.2% of native optimized C (Scimark2 numeric benchmark)

= Performance for C => C/LLVM based frontend (Alchemy) + Tamarin JIT

= Roughly 30% of native optimized C (Scimark2 numeric benchmark)

= Performance for Java => javac + JRE 6

= Roughly 60% of native optimized C (Scimark2 numeric benchmark)

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 4 Adobe

ActionScript 3 Performance

= C code running on the Tamarin JIT is >20x faster than AS3!
= Why is C code so fast on Tamarin?

= Why is AS3 code so slow on Tamarin?

= Alchemy generated code
= Avoids some known performance pitfalls in Tamarin
= AS3 has a variant type - boxing and unboxing is expensive - Alchemy avoids this

= AS3 often does many object allocations, taxing the GC - Alchemy uses a single “ram”
object with fast access opcodes

= Tamarin's parameter passing can be inefficient - Alchemy uses a virtual stack
= Alchemy uses almost no dynamic property access, calling, etc.

= Takes advantage of LLVM's aggressive optimization capabilities

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential.) Adobe

ActionScript3 + LLVM?

= Could AS3 take advantage of LLVM'’s optimizations?

= Some optimizations are not applicable

Memory/pointer specific

= Some are

Loop transforms
Data flow
Arithmetic

DCE

Inlining! - but not for a large class of call types in AS3...

= LLVM doesn’t understand AS3 or ABC!

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 6

Adobe

ActionScript3 + LLVM?

= Alchemy in reverse
= Instead of C=> LLVM BC => (AS3 =>) ABC...
= (AS3=>) ABC => LLVM BC => ABC

= Generate an SSA representation of ABC

= Open source tool "GlobalOptimizer” written by Adobe/Tamarin developer Edwin Smith
already does this!

= And does ABC specific type analysis, SCCP, DCE, etc.
= ConvertSSA rep to / from LLVM

= Generated bitcode does NOT have to be “real”: we never generate platform assembly

= opt!

= Reconstruct ABC from SSA rep
= GlobalOptimizer

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 7 Adobe

ActionScript3 + LLVM?

Invent types for non-simple AS3 values

= Strings, objects, variants become LLVM opaque type

Generate an LLVM function for each AS3 function in a given ABC

Convert most ABC opcodes to Calllnst calls to placeholder functions
= i.e, ABC opcode newobject =>
= %1 = call avm2val avm?2_newobject(...)

= On placeholder functions, set memory side effect characteristics to allow LLVM some
freedom

Convert ABC flow control to appropriate LLVM instructions
= jumpLl=>
= brlabel %L1

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 8 Adobe

ActionScript3 + LLVM?

= Convert arithmetic to appropriate LLVM instructions
= i.e, ABC opcode add_i =>
= %3 = call i32 @avm2unbox_i32(avm2val %1)
= %4 = call i32 @avm2unbox_i32(avm2val %2)
= %5 =2addi32 %3, %4
= %6 = call avm2val @avm2box_i32 (i32 %5)
= Can use type info gleaned by GlobalOptimizer

= Convert statically known calls (i.e., callstatic) to Calllnsts
= callstatic CopyMatrix =>

= call avm2val @CopyMatrix(avm2val %1, avm2val %2, avm2val %3)

= Eliminate redundant boxing/unboxing
= box(unbox(x)) => x

= unbox(box(x)) => x

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 9

Adobe

ActionScript3 + LLVM?

= Simple AS3 function

function CopyMatrix(B:Array, A:Array):void

{
= A_length;

A[0]-length;
remainder:uint = N & 3; // N mod 4;
1:uint=0; iI<M; i++)

tArray = B[i];
ALT]:

; J<remainder; j++)

Bi[J] = Ai[J];

Bili+1] = AiLi+1]:
Bili+2] = AilLi+2]:
Bili+3] = AiLi+3]:

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 10 Adobe

ActionScript3 + LLVM?

= As ABC

function CopyMatrix(Array,Array):void /* disp_id=45 method_id=0 */
{

//'local_count=10 max_scope=1 max_stack=5 code_len=210
getlocalO
pushscope
pushnull
coerce
setlocal
pushnull
coerce
setlocal

pushbyte
convert_u
setlocal
getlocal2
getproperty
convert_u
setlocal3
getlocal2
pushbyte
getproperty
getproperty
convert_u
setlocal
getlocal
pushbyte
bitand
convert_u
setlocal
pushbyte
convert_u
setlocal
jump

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential.

ActionScript3 + LLVM?

= AsBC

; ModulelD = *"SparseCompRow"

avm2val @avm2_getproperty(...) readonly
void @avm2_setproperty(...)
avm2val @avm2_coerce(...) readnone

avm2val @GO_m6_CopyMatrix(avm2val, avm2val, avm2val) {

= avm2val (...)* @avm2_getproperty(avm2val , avm2ref bitcast (i32 24 avm2ref)) ; <avm2val> [#uses=1]
= i32 0, O ; <i32> [#uses=1]
= avm2val @avm2box_i32(132)} ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_pushbyte(132 0) ; <avm2val> [#uses=0]
= avm2val (...)* @avm2_getproperty(avm2val , avm2val , avm2ref bitcast (i32 5 avm2ref)) ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_getproperty(avm2val , avm2ref bitcast (i32 58 avm2ref)) ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_convert_u(avm2val D ; <avm2val> [#uses=3]
= i32 3, 0 ; <i132> [#uses=2]
= avm2val @avm2box_i32(132)} ; <avm2val> [#uses=6]
= double @avm2unbox_double(avm2val D ; <double> [#uses=1]
= double @avm2unbox_double(avm2val D ; <double> [#uses=1]
= avm2val (...)* @avm2_pushbyte(132 3) ; <avm2val> [#uses=0]
= 132 @avm2unbox_i32(avm2val)} ; <i32> [#uses=1]
= 132 @avm2unbox_i32(avm2val D ; <i32> [#uses=0]
= 132 , ; <i132> [#Huses=1]
= avm2val @avm2box_i32(132) ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_bitand(avm2val , avm2val)} ; <avm2val> [#uses=0]
= avm2val (...)* @avm2_convert_u(avm2val)} ; <avm2val> [#uses=3]
= 132 @avm2unbox_i132(avm2val) ; <i32> [#uses=1]
= avm2val (...)* @avm2_pushuint(132 0) ; <avm2val> [#uses=4]
= 132 @avm2unbox_i132(avm2val) <i32> [#uses=1]

= 132 @avm2unbox_i132(avm2val D <i32> [#uses=1]

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential.

= Mixed
= Some meaningful positive results

= Some substantial performance reductions

Al

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 13 Adobe

Results - higher numbers are better

Untyped Sunspider Benchmarks

M Mone
M Global Optimizer

Global Optimizer + LLVM

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential.

Results - higher numbers are better

Typed Sunspider Benchmarks

H Mone
M Glabal Optimizer

Global Optimizer + LLVM

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential.

Where's my 20x speed increase? (or at least 2x!)

= Overhead avoided by Alchemy still dominates even well-optimized ABC

= Allocations
= Up to nearly 50% of execution time (typed variant of Sunspider math-cordic)
= Typed md5 - almost 30%
= Typed nsieve-bits - over 30%
= Typed FFT - over 30%

= AS3 Array access
= Up to 75% of execution time (typed variant of Sunspider access-nsieve)
= Typed fannkuch - almost 60%

= Dynamic property lookup

= Up to nearly 45% of execution time (typed variant of Sunspider access-nbody)

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 16

Adobe

Where's my 20x speed increase? (or at least 2x!)

= Value boxing
= Typed fft- over 45%

Typed cordic - over 40%

Typed s3d-morph - over 40%
Typed md5 - over 30%
Typed shal - almost 30%

= VM's type inference is simple

= Some optimizations change control flow such that a given value's type can no longer be
deduced and becomes an expensive variant type

= Parameter passing in VM still expensive

= Mitigated in some cases by inlining

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 17 Adobe

= Still promising!

Al

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 18 Adobe

Futures

= Improve VM type deduction
= Continue refining GC

= Use LLVM to reduce some of the noted bottlenecks
= Enable accurate GC to reduce mark load / enable object movement

= Static escape analysis to reduce allocations

= Use LLVM analysis passes to enable AS3 specific optimizations

= Type strengthening

|dentify single-type Array usage

|dentify Arrays with bounded sizes

|dentify “prototype” OO uses that can convert to “real” classes (reducing dynamic lookups)

|dentify explicit object deletion opportunities

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 19 Adobe

Futures

= Extend tools to allow ahead of time, aggressively statically optimized
compilation of AS3

= Instead of generating calls to placeholder functions, call real functions in VM core

= Could link against bitcode version of VM core, allowing AS3 to optimize against / inline
pieces of existing C++ implementation

= Native versions of Flash/AIR libraries like Flex?
= Install time native codegen for AIR apps?

= Solution for platforms that don't allow JITs?

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 20 Adobe

Adobe

	Optimizing ActionScript Bytecode using LLVM
	ActionScript 3
	ActionScript 3
	ActionScript 3 Performance
	ActionScript 3 Performance
	ActionScript3 + LLVM?
	ActionScript3 + LLVM?
	ActionScript3 + LLVM?
	ActionScript3 + LLVM?
	ActionScript3 + LLVM?
	ActionScript3 + LLVM?
	ActionScript3 + LLVM?
	Results
	Results – higher numbers are better
	Results – higher numbers are better
	Where’s my 20x speed increase? (or at least 2x!)
	Where’s my 20x speed increase? (or at least 2x!)
	Where’s my 20x speed increase? (or at least 2x!)
	Futures
	Futures
	Slide Number 21

