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ActionScript 3

= Adobe Flash/AIR app development language

= EcmaScript based - "JavaScript with classes and types”
= varx; // implicitly a variant - JS style
= var x:int; // xis an int!

= var x:*; // explicitly a variant

= ActionScript Bytecode (ABC) reminiscent of JVM bytecode
= Verified
= Stack oriented

= Object oriented
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ActionScript 3

= JIT compiler + interpreter + garbage collector + basic support library in
around 1.5M uncompressed, 600k compressed for x86

= Open Source Tamarin Project http://www.mozilla.org/projects/tamarin

= Straightforward AS3 compiler

= Effectively non-optimizing
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ActionScript 3 Performance

= Performance for AS => AS3 compiler + Tamarin JIT

= Roughly 1.2% of native optimized C (Scimark2 numeric benchmark)

= Performance for C => C/LLVM based frontend (Alchemy) + Tamarin JIT

= Roughly 30% of native optimized C (Scimark2 numeric benchmark)

= Performance for Java => javac + JRE 6

= Roughly 60% of native optimized C (Scimark2 numeric benchmark)
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ActionScript 3 Performance

= C code running on the Tamarin JIT is >20x faster than AS3!
= Why is C code so fast on Tamarin?

= Why is AS3 code so slow on Tamarin?

= Alchemy generated code
= Avoids some known performance pitfalls in Tamarin
= AS3 has a variant type - boxing and unboxing is expensive - Alchemy avoids this

= AS3 often does many object allocations, taxing the GC - Alchemy uses a single “ram”
object with fast access opcodes

= Tamarin's parameter passing can be inefficient - Alchemy uses a virtual stack
= Alchemy uses almost no dynamic property access, calling, etc.

= Takes advantage of LLVM's aggressive optimization capabilities
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ActionScript3 + LLVM?

= Could AS3 take advantage of LLVM'’s optimizations?

= Some optimizations are not applicable

Memory/pointer specific

= Some are

Loop transforms
Data flow
Arithmetic

DCE

Inlining! - but not for a large class of call types in AS3...

= LLVM doesn’t understand AS3 or ABC!
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ActionScript3 + LLVM?

= Alchemy in reverse
= Instead of C=> LLVM BC => (AS3 =>) ABC...
= (AS3=>) ABC => LLVM BC => ABC

= Generate an SSA representation of ABC

= Open source tool "GlobalOptimizer” written by Adobe/Tamarin developer Edwin Smith
already does this!

= And does ABC specific type analysis, SCCP, DCE, etc.
= ConvertSSA rep to / from LLVM

= Generated bitcode does NOT have to be “real”: we never generate platform assembly

= opt!

= Reconstruct ABC from SSA rep
= GlobalOptimizer
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ActionScript3 + LLVM?

Invent types for non-simple AS3 values

= Strings, objects, variants become LLVM opaque type

Generate an LLVM function for each AS3 function in a given ABC

Convert most ABC opcodes to Calllnst calls to placeholder functions
= i.e, ABC opcode newobject =>
= %1 = call avm2val avm?2_newobject(...)

= On placeholder functions, set memory side effect characteristics to allow LLVM some
freedom

Convert ABC flow control to appropriate LLVM instructions
= jumpLl=>
= brlabel %L1
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ActionScript3 + LLVM?

= Convert arithmetic to appropriate LLVM instructions
= i.e, ABC opcode add_i =>
= %3 = call i32 @avm2unbox_i32( avm2val %1 )
= %4 = call i32 @avm2unbox_i32( avm2val %2 )
= %5 =2addi32 %3, %4
= %6 = call avm2val @avm2box_i32 (i32 %5)
= Can use type info gleaned by GlobalOptimizer

= Convert statically known calls (i.e., callstatic) to Calllnsts
= callstatic CopyMatrix =>

= call avm2val @CopyMatrix(avm2val %1, avm2val %2, avm2val %3)

= Eliminate redundant boxing/unboxing
= box(unbox(x)) => x

= unbox(box(x)) => x
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ActionScript3 + LLVM?

= Simple AS3 function

function CopyMatrix(B:Array, A:Array):void

{
= A_length;

A[0]-length;
remainder:uint = N & 3; // N mod 4;
1:uint=0; iI<M; i++)

tArray = B[i];
ALT]:

; J<remainder; j++)

Bi[J] = Ai[J];

Bili+1] = AiLi+1]:
Bili+2] = AilLi+2]:
Bili+3] = AiLi+3]:
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ActionScript3 + LLVM?

= As ABC

function CopyMatrix(Array,Array):void /* disp_id=45 method_id=0 */
{

//'local_count=10 max_scope=1 max_stack=5 code_len=210
getlocalO
pushscope
pushnull
coerce
setlocal
pushnull
coerce
setlocal

pushbyte
convert_u
setlocal
getlocal2
getproperty
convert_u
setlocal3
getlocal2
pushbyte
getproperty
getproperty
convert_u
setlocal
getlocal
pushbyte
bitand
convert_u
setlocal
pushbyte
convert_u
setlocal
jump
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ActionScript3 + LLVM?

= AsBC

; ModulelD = *"SparseCompRow"

avm2val @avm2_getproperty(...) readonly
void @avm2_setproperty(...)
avm2val @avm2_coerce(...) readnone

avm2val @GO_m6_CopyMatrix(avm2val, avm2val, avm2val) {

= avm2val (...)* @avm2_getproperty( avm2val , avm2ref bitcast (i32 24 avm2ref) ) ; <avm2val> [#uses=1]
= i32 0, O ; <i32> [#uses=1]
= avm2val @avm2box_i32( 132 )} ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_pushbyte( 132 0 ) ; <avm2val> [#uses=0]
= avm2val (...)* @avm2_getproperty( avm2val , avm2val , avm2ref bitcast (i32 5 avm2ref) ) ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_getproperty( avm2val , avm2ref bitcast (i32 58 avm2ref) ) ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_convert_u( avm2val D ; <avm2val> [#uses=3]
= i32 3, 0 ; <i132> [#uses=2]
= avm2val @avm2box_i32( 132 )} ; <avm2val> [#uses=6]
= double @avm2unbox_double( avm2val D ; <double> [#uses=1]
= double @avm2unbox_double( avm2val D ; <double> [#uses=1]
= avm2val (...)* @avm2_pushbyte( 132 3 ) ; <avm2val> [#uses=0]
= 132 @avm2unbox_i32( avm2val )} ; <i32> [#uses=1]
= 132 @avm2unbox_i32( avm2val D ; <i32> [#uses=0]
= 132 , ; <i132> [#Huses=1]
= avm2val @avm2box_i32( 132 ) ; <avm2val> [#uses=1]
= avm2val (...)* @avm2_bitand( avm2val , avm2val )} ; <avm2val> [#uses=0]
= avm2val (...)* @avm2_convert_u( avm2val )} ; <avm2val> [#uses=3]
= 132 @avm2unbox_i132( avm2val ) ; <i32> [#uses=1]
= avm2val (...)* @avm2_pushuint( 132 0 ) ; <avm2val> [#uses=4]
= 132 @avm2unbox_i132( avm2val ) <i32> [#uses=1]

= 132 @avm2unbox_i132( avm2val D <i32> [#uses=1]
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= Mixed
= Some meaningful positive results

= Some substantial performance reductions
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Results - higher numbers are better

Untyped Sunspider Benchmarks

M Mone
M Global Optimizer

Global Optimizer + LLVM
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Results - higher numbers are better

Typed Sunspider Benchmarks

H Mone
M Glabal Optimizer

Global Optimizer + LLVM
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Where's my 20x speed increase? (or at least 2x!)

= Overhead avoided by Alchemy still dominates even well-optimized ABC

= Allocations
= Up to nearly 50% of execution time (typed variant of Sunspider math-cordic)
= Typed md5 - almost 30%
= Typed nsieve-bits - over 30%
= Typed FFT - over 30%

= AS3 Array access
= Up to 75% of execution time (typed variant of Sunspider access-nsieve)
= Typed fannkuch - almost 60%

= Dynamic property lookup

= Up to nearly 45% of execution time (typed variant of Sunspider access-nbody)
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Where's my 20x speed increase? (or at least 2x!)

= Value boxing
= Typed fft- over 45%

Typed cordic - over 40%

Typed s3d-morph - over 40%
Typed md5 - over 30%
Typed shal - almost 30%

= VM's type inference is simple

= Some optimizations change control flow such that a given value's type can no longer be
deduced and becomes an expensive variant type

= Parameter passing in VM still expensive

= Mitigated in some cases by inlining
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= Still promising!

Al

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 18 Adobe



Futures

= Improve VM type deduction
= Continue refining GC

= Use LLVM to reduce some of the noted bottlenecks
= Enable accurate GC to reduce mark load / enable object movement

= Static escape analysis to reduce allocations

= Use LLVM analysis passes to enable AS3 specific optimizations

= Type strengthening

|dentify single-type Array usage

|dentify Arrays with bounded sizes

|dentify “prototype” OO uses that can convert to “real” classes (reducing dynamic lookups)

|dentify explicit object deletion opportunities

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 19 Adobe



Futures

= Extend tools to allow ahead of time, aggressively statically optimized
compilation of AS3

= Instead of generating calls to placeholder functions, call real functions in VM core

= Could link against bitcode version of VM core, allowing AS3 to optimize against / inline
pieces of existing C++ implementation

= Native versions of Flash/AIR libraries like Flex?
= Install time native codegen for AIR apps?

= Solution for platforms that don't allow JITs?
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