Future Works in LLVM

Register Allocation

Talk Overview

|. Introduction

2. Upcoming Changes

3. PBQP

Register Allocation in LLVM

[PHI Elimination] [Two-Address] [Liveness]

[Coalescing] [Allocator] [Rewriter]

Register Allocation in LLVM

[PHI Elimination]

Lower PHI-instructions to copies

PHI Lowering

BB2:

$x2 = .

N/

%x3 = phi [%x1, BBl], [%$x2, BB2]

!

PHI Lowering

! !

$x1 = . $x2 = .

N/

PHI Lowering

Register Allocation in LLVM

[PHI Elimination]

Lower PHI-instructions to copies

Register Allocation in LLVM

[Two-Address]

Lower Three-Address Instructions

Two-Address Instructions

Two-Address Instructions

Two-Address Instructions

4

Register Allocation in LLVM

[Two-Address]

Lower three-address instructions

Register Allocation in LLVM

[Liveness]

Construct live intervals

Live Intervals

Live Intervals

Live Intervals

Register Allocation in LLVM

[Liveness]

Construct Live Intervals

Register Allocation in LLVM

[Coalescing]

Aggressively eliminate copies

Coalescing

Coalescing

Register Allocation in LLVM

[Coalescing]

Aggressively eliminate copies

Register Allocation in LLVM

[Allocator]

Compute register assignment

Register Allocation in LLVM

[Rewriter]

Apply register assignment

Register Allocation in LLVM

[PHI Elimination] [Two-Address] [Liveness]

[Coalescing] [Allocator] [Rewriter]

Improvements

* New and better optimizations
* New allocators

¢ (Cleaner infrastructure

|. Optimizations

Rematerialization

Rematerialization

vrl <expr>
// stuff
. = vrl
// more stuff

. = vrl

Rematerialization

vrl <expr>
// stuff
. = vrl
// more stuff

. = vrl

Rematerialization

[M] = <expr>
// stuff
. = [M]
// more stuff
. = [M]

Rematerialization

vrl <expr>
// stuff
. = vrl
// more stuff

. = vrl

Rematerialization

// stuff
. = <expr>
// more stuff

. = <expr>

Splitting

Splitting

Splitting

Splitting

C

C I

Splitting

C

Clnur =

Splitting

Spills introduced

€«
in to other loops

Splitting

2. New Allocators

New Allocators

New Allocators

® “Linear Scan’ is not, in fact, linear

New Allocators

® “Linear Scan’ is not, in fact, linear

® VWe want something faster

New Allocators

® “Linear Scan” is not, in fact, linear
® VWe want something faster

® Priority coloring?

New Allocators

“Linear Scan” is not, in fact, linear
We want something faster
Priority coloring?

Linear Scan?

New Allocators

“Linear Scan” is not, in fact, linear
We want something faster
Priority coloring?

Linear Scan!?

Need to tidy the infrastructure

3. Cleaner Infrastructure

Currently...

Currently...

S
Analysis

Currently...

L|vene§s Allocator
Analysis

Currently...

Virtual
Register Map

S
] Allocator
Analysis

Currently...

Virtual
Register Map

S
] Allocator
Analysis

Currently...

Virtual
Register Map

S
] Allocator
Analysis

Currently...

Virtual
Register Map

S
] Allocator
Analysis

Currently...

Virtual
Register Map

Liveness Allocator Rewriter
Analysis

Rewrite In Place

Rewrite In Place

Liveness
Analysis

Rewrite In Place

[Live Intervals]

Liveness
Analysis

Rewrite In Place

[Live Intervals]

Livene§s Allocator
Analysis

Rewrite In Place

[Live Intervals]

L|vene§s Allocator
Analysis

Modify code in-place

Rewrite In Place

Live intervals
kept up-to-date

[Live Intervals]

Livene§s Allocator
Analysis

Modify code in-place

Rewrite In Place

Live intervals
kept up-to-date

Live intervals
Live Intervals = = ==3 remain valid

post-alloc

Livene§s Allocator
Analysis

Modify code in-place

Improvements

* New and better optimizations
* New allocators

¢ (Cleaner infrastructure

Upcoming Changes

Upcoming Changes

® live index renumbering
® |Improved splitting

® Better def/kill tracking for values

Live Indexes

Live Indexes

$x2 = %$x1
add %$x3, %x2

Live Indexes

$x2 = %$x1
add %$x3, %x2

Live Indexes

$x2 = %$x1
$xX3 = ...
add %$x3, %$x2

Live Indexes

$x2 = %$x1
$xX3 = ...
add %$x3, %$x2

Live Indexes

$x2 = %$x1
$xX3 = ...
add %$x3, %x2

Live Indexes

$x2 = %$x1
$xX3 = ...
add %$x3, %x2

P1 < P, < P3 < Pyg< Ps< Pg

Live Indexes

$x2 = %$x1
$xX3 = ...
add %$x3, %x2

P1 < P, < P3 < Pyg< Ps< Pg

Live Indexes

P3 < P7 < Psg < Ps

Live Indexes

* unsighed => Livelndex

* Index Renumbering

Improved Splitting

Improved Splitting

* Break multi-value intervals into component
values.

Improved Splitting

* Break multi-value intervals into component
values.

* Each value gets a 2nd chance at allocation.

Improved Splitting

* Break multi-value intervals into component
values.

* Each value gets a 2nd chance at allocation.

e .. but not a 3rd.

Improved Splitting

* Break multi-value intervals into component
values.

* Each value gets a 2nd chance at allocation.
e ..but not a 3rd.

* | 3% reduction in static memory references
on test case (a pathological SSE kernel).

Better Def/Kill Tracking

Better Def/Kill Tracking

For Values

* Defined by a PHI - Track the def block.

Better Def/Kill Tracking

For Values

* Defined by a PHI - Track the def block.

* Killed by a PHI - Track the appropriate predecessor.

Future Work

Better value def/kill tracking
Livelndex renumbering
Improved splitting
Rewrite-in-place

New allocators

PBQP

PBQP

Partitioned Boolean Quadratic Problems

® Discrete optimization problems
® NP-complete

® Subclass solvable in linear time

Irregular Architectures

Multiple register classes.
Register aliasing.

Register pairing.

PBQP Example

PBQP Example

PBQP Example

7

0

2
O

PBQP Example

PBQP Example

PBQP Example

Solution [3,2,1]:

PBQP Example

Solution [3,2,1]:

PBQP Example

Solution [3,2,1]:

PBQP Example

Solution [3,2,1]:

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9 = 15

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9 = 15

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9 = 15

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9 = 15

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9
Edge Costs: 2+6+9

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9
Edge Costs: 2+6+9

PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9
Edge Costs: 2+6+9

Total:

Solution [1,2,3]: 19

PBQP Example

For Register Allocation:

Nodes represent virtual registers.

Options reflect storage locations.

Option costs:

Typically zero cost for registers,
spill cost estimate for stack slot.

Edge costs:

Depends on the constraint.

Example |

Interference on a Regular Architecture

O——©

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

O—©

00 0
00 0

Example |

Interference on a Regular Architecture

000

00
00

Example |

Interference on a Regular Architecture

000

00
00

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example |

Interference on a Regular Architecture

Example 2

Interference on an lrregular Architecture

Sp AL AH BL CL

sc 0 0O O OO
2x 0 o = 0 O
Bx 0 0 0 = O

Example 3

Coalescing

Example 4

Register Pairing (R, Ri+)

Sp sO0 sl s2 s3

0 0O 0
OOO o0

0
0
0

The PBQP Allocator

regalloc -> pbgp
solution = solve pbqp
solution -> allocation

The PBQP Allocator

regalloc -> pbgp

The PBQP Allocator

regalloc -> pbgp
solution = solve pbqp
solution -> allocation

The PBQP Allocator

regalloc -> pbgp
solution = solve pbqp
solution -> allocation

llvm/lib/CodeGen/RegAllocPBQP. cpp

How does it work?

Solver uses a graph reduction
algorithm.

Reduce problem to the
empty graph with reduction
rules, then reconstruct it.

PBQP

HNON

* |[deal for Irregularity

* Very Simple

* Reasonable quality

HNON

CONS

* |[deal for Irregularity

* Very Simple

* Reasonable quality

¢ Slooooooow

HNON

* |[deal for Irregularity
* Very Simple

* Reasonable quality

* Perfect opportunity

for a coffee

Improved Optimizations.

New Allocators.

Cleaner Architecture.

PBQP.

the end.

