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[ Allocator ]

Compute register assignment
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[ Rewriter ]

Apply register assignment
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Improvements

* New and better optimizations
* New allocators

¢ (Cleaner infrastructure
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New Allocators

“Linear Scan” is not, in fact, linear
We want something faster
Priority coloring?

Linear Scan!?

Need to tidy the infrastructure
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Rewrite In Place

Live intervals
kept up-to-date

Live intervals
Live Intervals = = ==3  remain valid

post-alloc
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Analysis

Modify code in-place
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Upcoming Changes

® live index renumbering
® |Improved splitting

® Better def/kill tracking for values
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Live Indexes

P3 < P7 < Psg < Ps




Live Indexes

* unsighed => Livelndex

* Index Renumbering
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Improved Splitting

* Break multi-value intervals into component
values.

* Each value gets a 2nd chance at allocation.
e ..but not a 3rd.

* | 3% reduction in static memory references
on test case (a pathological SSE kernel).




Better Def/Kill Tracking




Better Def/Kill Tracking

For Values

* Defined by a PHI - Track the def block.




Better Def/Kill Tracking

For Values

* Defined by a PHI - Track the def block.

* Killed by a PHI - Track the appropriate predecessor.




Future Work

Better value def/kill tracking
Livelndex renumbering
Improved splitting
Rewrite-in-place

New allocators
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PBQP

Partitioned Boolean Quadratic Problems

® Discrete optimization problems
® NP-complete

® Subclass solvable in linear time




Irregular Architectures

Multiple register classes.
Register aliasing.

Register pairing.
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PBQP Example

Solution [3,2,1]:

Node Costs: 6+0+9
Edge Costs: 2+6+9

Total:

Solution [1,2,3]: 19




PBQP Example

For Register Allocation:

Nodes represent virtual registers.

Options reflect storage locations.

Option costs:

Typically zero cost for registers,
spill cost estimate for stack slot.

Edge costs:

Depends on the constraint.
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Example 2

Interference on an lrregular Architecture
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Coalescing




Example 4

Register Pairing (R, Ri+)
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The PBQP Allocator

regalloc -> pbgp
solution = solve pbqp
solution -> allocation

llvm/lib/CodeGen/RegAllocPBQP. cpp




How does it work?

Solver uses a graph reduction
algorithm.

Reduce problem to the
empty graph with reduction
rules, then reconstruct it.
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HNON

* |[deal for Irregularity
* Very Simple

* Reasonable quality

* Perfect opportunity

for a coffee







Improved Optimizations.

New Allocators.

Cleaner Architecture.

PBQP.




the end.




