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Abstract: The mean effective gain (MEG) is one of the most important parameters for the characterisation of
antennas in wireless channels. An analysis of some fundamental properties of the MEG is provided and
corresponding physical interpretations are given. Three points are analysed in detail: (i) closed-form
expressions for MEG in a mixed environment with both stochastic and deterministic components are
provided, showing that the MEG can be written as a sum of gains for the deterministic and stochastic
components, (ii) it is shown that under some assumptions, the propagation channel and the antenna are
equivalent in the sense that the impact of the channel cross-polarisation ratio (XPR) and the antenna effective
cross-polar discrimination on the MEG are symmetrical, (iii) based on the fact that MEG depends on random
variables, such as the XPR and antenna rotations because of user’s movements, the average, the minimum
and maximum MEG of antennas are defined, respectively. Finally, the maximum effective gain of antennas is
derived and shown that it is bounded by 4phrad, where hrad is the radiation efficiency of the antenna.
1 Introduction
Mobile terminals are vital elements of wireless networks and
have a significant impact on the overall system performance.
The efficiency of the mobile terminal including the antenna
has a strong impact on the link quality in both the
downlink and uplink channels. In particular, the antenna
gain directly enters the link budget, and thus (co-)
determines the coverage and/or data rate that can be
achieved. In wireless communication systems with a ‘single-
path’ between the receiver and the transmitter, or generally,
in systems with a strong line-of-sight (LOS) component,
such as point-to-point links, the impact of the antennas on
the link quality is fully quantified by the Friis equation [1].
This equation accounts for antenna directivity, radiation
efficiency and polarisation mismatch in the LOS direction.
On the other hand, in wireless systems where none-line-of-
sight (NLOS) communications are predominant, that is, in
multipath channels with no dominant component, a full
characterisation of the impact on the link budget is
obtained by the partial antenna gain patterns for orthogonal
polarisations combined with the directional and polarisation
properties of the propagation channel. However, such a full
I
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functional characterisation of antenna and channel is too
complicated for most practical purposes. It is thus desirable
to use a single parameter that describes antenna, channel
and their interaction.

The mean effective gain (MEG), which is a single
parameter describing the impact of the antenna on the link
budget, has emerged as the way of characterising the
communication performance of handsets including the
antennas in real propagation environments. Currently,
mainly due to practical reasons, the total radiated power
(TRP) isotropically radiated by the mobile terminal is used
in the link budget calculations, together with an
attenuation factor accounting for the losses in the user’s
body. Even if the TRP is an excellent parameter for the
evaluation of the power radiated in free space, it is not a
proper measure for the characterisation of the
communication link quality. TRP does not account for the
full interaction between the antennas and the channels, for
example, the joint effects of polarisation and directivity
mismatch. MEG, on the other hand, is the average
received power that in the Rayleigh fading environment
completely defines the first-order statistics of the signal
ET Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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envelope of the small-scale fading. Moreover, MEG is a
measure of how a deterministic device, the antenna,
performs in the stochastic channel. Finally, MEG is the
natural extension of the communication link quality
concept introduced by Wheeler for single-path channels,
[2], to the more general case of multipath channels.
Wheeler defined the communication link quality as the
ratio of the received power to the transmitted power and
made use of the Friis equation.

The concept of MEG was introduced by Taga [3], who
defined it as the average power received by the antenna
under test in the propagation channel of interest to the
sum of the average powers that would had been received in
that same environment by two isotropic antennas, vertically
and horizontally polarised, respectively. A more general
definition and practical definition of MEG is defined
relative a realistic reference antenna such as a half-
wavelength dipole. In his paper, Taga gave a closed-form
equation for the uncorrelated scattering case based on the
Jakes’ signal autocorrelation model given in [4]. Work since
then has concentrated on evaluating the MEG of antennas
in different Rayleigh fading environments, different
antenna designs as well as different commercial handsets
have been evaluated using channel models describing the
spatial and polarisation response of the channel to the
transmitted electromagnetic waves. In many occasions, the
variability of the MEG because of the user’s body, mainly
the head and/or hand, has also been evaluated from
measurements of handsets. Some examples can be found
in [5–21]. A summary of research results and further
references can be found in [22], [23].

Despite the large number of investigations of the MEG,
there are still several important topics that have not been
addressed yet; the current paper aims to close those gaps.

1. First of all, we investigate the MEG in Rician fading
channels, that is, channels that contain an LOS component
as well as random fields (all previous papers considered
Rayleigh-fading random fields only). Rician channels are
gaining more and more importance, for example, in
communication between personal digital assistant (PDA) like
devices to wireless local area network access points (WiFi),
picocell base stations (3GPP) or relays (Wimax). We provide
closed-form equations for the MEG in such channels that
clearly show the influence of the different field components.

2. Next, we provide a physical interpretation of the factors
influencing the MEG and analyse how it can be improved.
As discussed above, the MEG accounts for the influence of
both the antenna (as given by the polarised antenna
patterns) and the channel (described by the directional
spreading and depolarisation in the channel). We show
that the MEG is determined by how well the polarisation
characteristics of the antenna and the channel are matched
to each other, and similarly for the directional
characteristics; as a matter of fact, channel and antennas
Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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show duality in their impact on the MEG. This gives an
understanding of how a low MEG is generated, and how it
can be improved.

3. While the MEG has always been treated in the literature
as a single, fixed, number, this is only valid for a certain, fixed
orientation of the antenna with respect to the direction of the
multipath components in the propagation channel. In many
practical situations, the orientation of the handset (and thus
the antenna) cannot be reliably predicted. Moreover,
channel properties such as the cross-polarisation ratio (XPR)
and the angular spread are stochastic variables by nature.
Thus, the MEG becomes a function of the angular spread,
the XPR, the orientation angle relative to the incoming
wave field and so on. We investigate the properties of this
function, including its mean, minimum and maximum. The
results enable a more realistic link budget that includes
margins and outage probabilities. Finally, we provide
closed-form expressions for the optimal link gain, which
could be achieved by proper knowledge of the channel
assuming that losses because of matching are minimised.

The remainder of the paper is organised as follows.
Section 2 provides the derivation of the generalised MEG
that incorporates the LOS component of the received
field. Here, we also analyse some special or limiting cases
of the new MEG equation. Section 3 investigates the
channel-antenna duality, and shows how the matching
between the channel and antenna characteristics influences
the MEG. In Section 4, we analyse the maximum and the
minimum MEG, more specifically, we address how the
MEG changes as a function of the antenna orientation, but
also as a function of other parameters. Finally, a summary
with conclusions is given in Section 5.

2 MEG in Ricean channels
For a receive antenna, the MEG is defined as the ratio of
signal power available at the antenna, that is, the power
spectral density (PSD) of an underlying wide-sense
stationary stochastic process, and the PSD of a reference
signal. The reference signal is usually measured by a
reference antenna with well-defined performance
characteristics. In the definition by Taga [3], the reference
is the mean power that would be measured by idealised
isotropic antennas, which is equivalent to the actual average
power of the incoming field. The field is assumed to be
random, more specifically, it is assumed to be the
superposition of a large number of multipath components
similar in amplitude but with different, uniformly
distributed random phases. The received power is
computed as the ensemble average of the signal power
induced at the antenna by this random field. The ensemble
is created by different superpositions of the multipath
components, as, for example, measured at different
locations within a small-scale fading area. Assuming the
underlying process to be ergodic, the ensemble average can
be replaced by a temporal or spatial average. It is
215
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furthermore assumed that the first-order statistics of the real
and imaginary parts of the fields are independent and
identically distributed zero-mean Gaussian variables; so
that the envelope of this random process is then distributed
according to the Rayleigh probability density. Under this
assumption, uncorrelated fading of orthogonally polarised
components follows. In Rayleigh channels, the MEG
completely characterises the fading statistics of the signal
envelope, since MEG is identical with the only parameter
of the Rayleigh distribution, which is the average power.

Even though the Rayleigh-fading case is the most
common in practice, the more general assumption of a
mixture of unpolarised stochastic and polarised
deterministic components is still of great interest [24, 25].
Therefore, we will investigate the MEG of an antenna in
different types of fields depending on whether the field is
purely stochastic or it also contains a deterministic
component.

2.1 Derivation of MEG in uncorrelated
random field with one deterministic
component

The MEG is the ratio of the average power received by the
antenna under test, Pr, to the average power received by a
reference antenna in the same environment, Pref [3]

Ge ¼
Pr

Pref

(1)

The average received power is given by the average of the
squared magnitude of the open circuit voltage at the
antenna port

Pr /
1

2
kVoc(t)V �oc(t)l (2)

where k�l indicates averaging over ensemble or space as
discussed above and (�)� denotes complex conjugate.

The time-dependent complex signal, Voc(t) is given by the
open-circuit voltage induced at the local port of the antenna
[4, 25]

Voc(t) ¼

ð
F r(V) � Ei(V)e�i(2p=l)u�er (V)tdV (3)

where F r(V)is the electric far field amplitude of the antenna
(bold face variables denote vector magnitudes), Ei(V) is the
electric field amplitude of the plane wave incident from the
direction encompassed by the solid angle V, that is, V

defines the angle of arrivals (AoA) that are given in
spherical co-ordinates, u denotes the absolute value of the
mobile velocity, er(V) is the projection of the mobile
velocity on the direction of observation and t denotes time.
The integral is calculated over the sphere of unit radius.
6 I
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In multipath environments, the incident field is usually
described by a random variable that emulates the stochastic
behaviour of the received signal. The incident field has, in
the general case, a direct or deterministic field component
besides the random field component. In the presence of
several strong specular reflections, several deterministic field
components might exist. The resulting first-order statistics
of the signal envelope are usually described by the Rice
distribution.

In order to describe the Ricean fading, we make a
generalisation of correlation properties of the received field
in [4]

kEiaE0�ibl ¼ E0aE�0bd(V�V0)d(V0 �V0)

þ kjEaj
2ld(V�V0)dab (4)

where Eia and Eib are the complex amplitudes of the random
incident electric field in a and b polarisations respectively,
dab denotes the Kronecker-delta function, and d(.) denotes
the Dirac-delta. It is important to note that a propagation
channel or incident field can be characterised independently
of the antenna [26], although, of course, the reception and
detection of the field is done by means of antennas with
specific characteristics.

Equation (4) states that: (1) the phases of the co-polarised
waves are independent in different direction of arrivals
(DoAs) V and V0 and (2) the phases of the cross-polarised
waves are also independent in different DoAs V and V0

but correlated in a fixed direction V0.

The autocorrelation function of this stochastic and, in
general, ergodic complex variable is then computed as

RVoc
(Dt) ¼

1

2
kVoc(t)V �oc(t þ Dt)lt (5)

Substituting (3) in (5) and making use of the conditions given
in (4), the autocorrelation becomes

RVoc
(Dt)

¼
1

2

ð
(jFru(V)j2kjEu(V)j2l

þ jFrf(V)j2kjEf(V)j2l)ei(2p=l)u�er (V)Dt dV

þ (jFru(V0)j2jE0u(V0)j2 þ jFrf(V0)j2jE0f(V0)j2

þ 2<{Fru(V0)F �rf(V0)

� E0u(V0)E�0f(V0)})e
i(2p=l)u�er (V0)Dt

(6)

where <(�) denotes the real part of the complex variable. The
power angular distribution is then obtained by averaging the
received power over the small-scale fading

kjEu(V)j2l/ 2Pupu(V)

kjEf(V)j2l/ 2Pfpf(V)
(7)
ET Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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where pu(V) and pf(V) denote the weighted power angular
spectrum (PAS) (also known as the weighted probability
density function of the AoA) of the stochastic components
in the u-polarisation and f-polarisations, respectively,
where u and f are the elevation and azimuth angle in a
spherical coordinate system, respectively. According to the
definition of probability density function, pu(V) and pf(V)
are normalised as

ð
pu(V) dV ¼

ð
pf(V) dV ¼ 1 (8)

The available powers of the stochastic components in the u-
polarisation and f-polarisation are denoted by Pu and Pf,
respectively. It should be noted that Pu and Pf are usually
referred to as the powers in the vertical and horizontal
polarisations, respectively. However, this is somewhat
misleading if the field is purely vertically or horizontally
polarised and the propagation occurs only in the horizontal
plane (or, more generally, in the same plane). In this case,
it is only correct to assume that the field is either
horizontally or vertically polarised.

Finally, we can proceed to calculate the received average
power and therefore the MEG. Taking into account that
the antenna pattern is proportional to the squared
magnitude of the electric field and (7)–(8), the
autocorrelation function of the signal received by an
antenna in a mixed stochastic and deterministic field can be
computed as

RVoc
(Dt)

¼

ð
(PuGu(V)pu(V)þ PfGf(V)pf(V))ei(2p=l)u�er (V)DtdV

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0uGu(V0)

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0fGf(V0)

q� �2

ei(2p=l)u�er (V0)Dt

(9)

In (9), P0u ¼ (1=2)jE0u(V0)j2 and P0f ¼ (1=2)jE0f(V0)j2

denote the powers of the deterministic field in û and
f̂ polarizations, respectively. We associate the vertical and
horizontal polarisations to the û and f̂ polarisations,
respectively. Hence, the received average power is obtained
from (9) using the relationship Pr ¼ RVoc

(0) ¼
kVoc(t)V �oc(t)lt=2

Pr ¼

ð
PuGu(V)pu(V)þ PfGf(V)pf(V)dV

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PuKuGu(V0)

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PfKfGf(V0)

q� �2

(10)

where Ku and Kf are the Ricean K-factors of the vertical and
horizontal polarisation components, respectively, defined as

Ku ¼
P0u

Pu

, Kf ¼
P0f

Pf

(11)
Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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The antenna gains are normalised with respect to the
radiation efficiency, hrad, as

ð
Gu(V)þ Gf(V) dV ¼ 4phrad (12)

where the radiation efficiency is defined as the ratio (TRP),
Prad, to the input power at the antenna port, Pin [27]

hrad ¼
Prad

Pin

(13)

and TRP is given by

Prad ¼ Pin

ð
Gu(V)þ Gf(V)

4p
dV (14)

The amount of polarisation power imbalance of the RF
electromagnetic field is given by the XPR, x. The XPR is
defined as the ratio of the average received power of the
vertically polarised component to the average power
received in the horizontal component. From (11), the XPR
in Ricean channels can be computed as

x ¼
P0u þ Pu

P0f þ Pf

¼ xunpol

1þ Ku

1þ Kf

(15)

where xunpol is the corresponding XPR of the stochastic
(unpolarised) components. The XPR in the LOS scenario
given by (15) is valid as long as Ku and Kf are finite.

In our case, the reference power is the total available power
that stems from the random field and the deterministic
components received by isotropic antennas, that is

Pref ¼ Pu þ P0u þ Pf þ P0f (16)

It is worthwhile to note that the isotropic antenna is an ideal
antenna that cannot be constructed in practice. Usually, a
calibrated dipole antenna is used as reference both for anechoic
chamber measurements, [28], as well as MEG mesurement.

By (1) and (10)–(16), we can after some algebraic
manipulations obtain an expression for the MEG in Ricean
channels:

Proposition 1: In a multipath environment characterised by
a mixed field with both uncorrelated random, unpolarised,
component and one deterministic, polarised, component,
the MEG of an antenna is given by

Ge ¼
1

1þ x

ð
xGu(V)pu(V)

1þ Ku

þ
Gf(V)pf(V)

1þ Kf

dV

þ
1

1þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xKuGu(V0)

1þ Ku

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KfGf(V0)

1þ Kf

s !2

¼ GNLOS
e þ GLOS

e (17)
217
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In (17), the MEG is basically the sum of the MEGs due to
the NLOS (unpolarised) component and the LOS
(polarised) component of the incident field. Note that even
though it is convenient to express the MEG as a sum of
gains of the NLOS and LOS components, it should not be
assumed that it actually is the sum of two independent
parameters. Indeed, the total available power acts as a
common reference. However, it is straightforward to show
that when Ku and Kf both are zero, the MEG is
completely defined by the stochastic, unpolarised NLOS
component; on the other hand, when Ku and Kf both tend
to infinity the MEG is completely defined by the
deterministic, polarised LOS component.

Moreover, just like in the Rayleigh-fading case, the MEG
is the same as the average received power. However, since the
Rician probability density is a function of two parameters,
besides the average power, the K-factor must be defined in
order to fully characterise the signal envelope statistics.

2.2 MEG of an antenna in correlated
deterministic field

As a sanity check, we look at the limit case when no scattered
field components are present, that is, Ku ! 1 and Kf! 1.
The MEG is given by

Ge ¼
1

1þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xGu(V0)

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gf(V0)

q� �2

(18)

where x ¼ P0u=P0f ¼ jEuj
2=jEfj

2 is the XPR of the LOS
component. Further, the MEG equation can be then
rewritten as

Ge ¼

jEuj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gu(V0)

p
þ jEfj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gf(V0)

q� �2

jEuj
2 þ jEfj

2

¼
(jEuj

2
þ jEfj

2)(Gu(V0)þ Gf(V0))

jEuj
2 þ jEfj

2
cos2 (p̂r, p̂t)

¼ G(V0) cos2 ( p̂r, p̂t ), (19)

where the unit vectors p̂r and p̂t are the polarisation vectors of
the receiving and transmitting antennas respectively.
Equation (19) states that MEG in an LOS scenario with
no random field component is basically the gain of the
receiving antenna (or, because of reciprocity,
the transmitting one) in the direction of the LOS, times
the polarisation matching efficiency. This equation can also
be directly obtained from the Friis equation [1].

3 Physical interpretation of the
MEG in Rayleigh fading
We now turn to the physical interpretation of the MEG in
a Rayleigh-fading environment, that is, in the absence of an
LOS component. We will focus on the polarisation
The Institution of Engineering and Technology 2009
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properties and show that the overall MEG depends on
the polarisation discrimination of both channel and
antenna. Here, it is worthwhile to remember that
‘intermixing’ of orthogonal polarisations can occur due to
two reasons: (i) the channel can change the polarisation
of an electromagnetic field, whereas LOS preserves
the polarisation, each reflection process leads to a
depolarisation of the waves and (ii) an antenna does not
perfectly distinguish between orthogonal polarisations.
We will show in the following that both the antenna and
channel polarisation discrimination have an impact on
the MEG, and that the two phenomena are duals of each
other.

In a Rayleigh-fading environment, MEG is [3]

Ge ¼

ð
x

xþ 1
Gu(V)pu(V)þ

1

xþ 1
Gf(V)pf(V)dV (20)

This result also follows from Section 2 with Ku ¼ Kf ¼ 0.
(The power of the total field as it would be measured by
two ideal isotropic antennas is given by Pref ¼ Pu þ Pf:)

Let us introduce the mean partial gains [14, 15], in the
u-polarisation, gu and the f-polarisation, gf, respectively

gu ¼

ð
Gu(V)pu(V) dV, gf ¼

ð
Gf(V)pf(V) dV (21)

Further, we introduce the effective cross-polar discrimination
(effective XPD) of the antenna, k

k ¼
gu
gf
¼

Ð
Gu(V)pu(V)dVÐ
Gf(V)pf(V)dV

(22)

and the total average gain gt, that is, the sum of partial gains
of the antenna

gt ¼ gu þ gf (23)

The interpretation of the mean partial gain is straightforward,
it quantifies the actual mean gain for each polarisation in a
multipath environment. Hence, the effective XPD is a
measure of the polarisation imbalance of the antenna
weighted by the channel in a multipath environment. It
should be observed that the effective XPD substantially
differs from the antenna XPD in the same way as MEG
differs from antenna gain. Antenna XPD is evaluated at
the maximum gain direction of the antenna as the ratio of
the partial gains in the E-and H-planes.

By combining (20)–(23), we straightforwardly arrive at the
following proposition.
IET Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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Proposition 2: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the MEG
of an antenna is a symmetric function of the antenna
effective XPD, k � 0, and the channel X, x � 0 and
directly proportional to the total average gain gt of the
antenna given by

Ge ¼ gt

xkþ 1

(xþ 1)(kþ 1)
(24)

The physical interpretation of this proposition is that in
multipath environments, MEG will evaluate any change in
channel XPR in the same way as it evaluates any change in
antenna effective XPD provided that the total average
channel gain is kept constant. In this sense, the antenna
and the channel are equivalent. Hence, (24) is a result of
the ‘antenna-channel duality’.

Proposition 3: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the MEG
of an antenna is upper bounded by the largest of the partial
gains of the antenna, that is

Ge � max {gu, gf} (25)

Equality Ge ¼ gf holds iff xþ k ¼ 0 or Ge ¼ gu
iff 1=xþ 1=k ¼ 0, where k � 0 is the antenna effective
XPD in the isotropic environment and x � 0 is the
channel XPR.

Rearranging (24) with k � 0 and x � 0, we see that

Ge ¼ gt

1

1þ 1=(1=(1=xþ 1=k)þ 1=(xþ k))
� gt

which straightforwardly results in (25).

The physical interpretation is that ‘perfect’ polarisation
matching in multipath environments is only possible for
purely polarised channels and antennas, that is, when both
are vertically polarised ((1=x)þ (1=k) ¼ 0) or horizontally
polarised (xþ k ¼ 0). In any other cases, there will be a
polarisation mismatch loss quantified by the term
0 � (xkþ 1)=(xþ 1)(kþ 1) � 1. A closer inspection of
this term reveals that it is an effective polarisation mismatch
loss coefficient similar to that found for the deterministic
case (19).

Proposition 4: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the MEG
of an antenna equals exactly half the total average gain of
the antenna, that is

Ge ¼
1

2
gt (26)

if either (i) k ¼ 1(gt ¼ 2gu ¼ 2gf) for all x � 0 or (ii) if
x ¼ 1 for all k � 0 and gt ¼ gu þ gf, where k is the
antenna effective XPD and x the channel XPR.
Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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Equation (26) follows from Proposition 2.

The physical interpretation here is that if the antenna has
completely balanced polarisations, the polarisation mismatch
loss in multipath environments is on average always 1/2 (of
the total average gain of the antenna) independently of the
polarisation power balance of the incoming waves, since the
antenna cannot sense the actual polarisation state. Similarly,
if the channel is power balanced in the two orthogonal
polarisations, the antenna has a power loss of 1/2 relative
to the power of two isotropic antennas sensing the channel.

The antenna gain pattern is by definition the product of
the radiation efficiency of the antenna, hrad, and the
antenna directivity pattern

Gu(V) ¼ hradDu(V), Gf(V) ¼ hradDf(V) (27)

In this case, the MEG can be expressed as the product of the
radiation efficiency and the mean effective directivity
(MED), De (see, e.g. [29] for further reference)

Ge ¼ hradDe (28)

The MED is introduced in order to further discern between
the different factors that might impact on the
communication link quality. In this case, the radiation
efficiency and the directivity properties of the antenna at two
orthogonal polarisations are separately assessed. In practice,
the radiation efficiency and the directivity of a radiating
system, like for instance a mobile terminal, are interrelated in
a very complex way. Obviously, for hundred percent efficient
antennas, the MED is identical with the MEG.

3.1 l/2-dipole in the isotropic
environment

The omnidirectional radiation pattern and high efficiency of
the half-wavelength dipole antenna have made it attractive as
a reference for studying the performance of handset antennas
[28]. This simple, yet versatile antenna has also been used in
numerous wireless communication devices, such as cellular
handsets. In contrast to the isotropic antenna, the half-
wavelength dipole antenna is a realistic antenna that can
actually be constructed.

We define the antenna power patterns for the vertical
polarisation, Gu(u, f), the horizontal polarisation, Gf(u, f)
and their sum, that is, the total gain G(u, f). It is further
assumed that the antenna is hundred percent efficient,
hrad ¼ 1. The polarisation sensitivity changes with tilting
of the antenna. Hence, the effective XPD of the two
orthogonal polarisations is a function of the antenna
inclination with respect to the vertical axis.

Usually, different models of the propagation channel are
used in order to statistically account for the impact of the
distribution of the AoA (or AoD if the uplink is
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considered) at the mobile antenna position. The simplest, yet
useful, model is the isotropic model (or 3D-uniform model).
The isotropic model describes, as the name indicates, a
scenario in which the AoAs (or angle of departure (AoDs))
are equally probable in all directions

pu(u, f) ¼ pf(u, f) ¼ 1=4p (29)

It is straightforward to show, from (21)–(24) and (29), that,
in this case, the MEG is then given by

Gei ¼ hrad

xkþ 1

(xþ 1)(kþ 1)
(30)

The physical meaning of (30) is again the ‘antenna-channel
duality’, which was stated in Proposition 2.

In general, the effective XPD, k is a function of the
antenna orientation in space, that is, a tilted antenna will
sense the vertical and horizontal polarisations differently
depending on the tilting angle with respect to the
coordinate system. For the hundred percent efficient l/2-
dipole in an isotropic environment, this dependence is
plotted in Fig. 1. As can be seen from this figure, the
effective XPD goes to infinity for a vertical dipole since no
sensing is possible in the horizontal polarisation. The
effective XPD further decreases monotonically with the tilt
angle and changes sign at 558 (since the effective XPD is
given in decibel in the plot). At this angle, the average
partial gains in the two orthogonal polarisation are equal,
that is, the effective XPD in decibel equals zero. The
MEG in this case, as plotted in Fig. 2, will be constant
and equal to 23 dBi for all XPRs, x, of the channel.
Another clear observation from Fig. 2 is that the MEG is
always less than or equal to 0 dBi in the isotropic
environment for all effective XPD and all XPR. Equality is
achieved only in the limit, when both the channel and the

Figure 1 Average partial gains and average XPD against
antenna tilt angle
0 I
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antenna are vertically polarised or when both are
horizontally polarised.

Proposition 3 takes the form Gei � hrad, where equality is
achieved if xþ k ¼ 0 or if 1=xþ 1=k ¼ 0, with the physical
interpretation given above.

Proposition 4 in this case means that if either the channel
or the antenna has completely balanced polarisations, the
polarisation mismatch loss in multipath environments is
always 1/2 independently of polarisation power balance of
the other parameter, since it cannot sense the actual
polarisation state. Therefore Gei ¼ hrad=2 if either k ¼ 1
for all x � 0 or if x ¼ 1 for all k � 0, where k is the
antenna effective XPD and x is the channel XPR.

4 MEG variability
MEG is, as discussed, a measure of antenna performance in
the channel fading, where the channel statistics and the
antenna orientation are assumed to be stationary. This
assumption means that the channel XPR, the AoA in both
orthogonal polarisations, as well as the orientation of the
antenna remain constant relative to the environment during
that period of time or positions in space along the mobile
path. However, in practice, this situation will seldom be
observed due to the fact that the orientation of the user
with respect to the incident field can change, in other
words, the user can turn. Furthermore, the XPR observed
in the channel can change as the mobile station moves over
distances of several metres. This is clearly of paramount
importance to a wireless network service provider since the
performance variability will impact network dimensioning
in terms of both coverage and capacity. We are therefore
interested in evaluating the anticipated variability span of
the MEG (Fig. 3).

Figure 2 MEG against antenna tilt angle for different
values of channel XPR
ET Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
doi: 10.1049/iet-map:20080041

n May 04,2010 at 06:55:35 UTC from IEEE Xplore.  Restrictions apply. 



IET
doi

www.ietdl.org
4.1 Average MEG

First, we evaluate the average (over the distribution of the
antenna orientation) MEG conditioned on the channel
XPR and the PAS of the AoA in both the u- and
f-polarisations. Hence, we are only interested in the
variations resulting from different antenna orientations in
space. Models that provide the probability of usage at
different tilt angles are, for example, given in [22].
However, in order to exemplify our point, we now assume
that the orientation (tilt and rotation) of the antenna is
uniformly distributed on the unit sphere, that is, all tilts
and rotations are equiprobable. Hence, the average MEG
conditioned on the channel XPR and the PAS of the AoA
is given by

EV0{Gejx, pu, pf}¼

ð
Ge(u

0,f0)

4p
dV0

¼
1

4p

ð ð
x

xþ1
Gu(u, u0,f,f0)pu(u,f)

�

þ
1

xþ1
Gf(u, u0,f,f0)pf(u,f)

�
dV dV0

¼
1

4p

ð
x

xþ1
gu(u0,f0)þ

1

xþ1
gf(u0,f0)dV0

¼ gta

xkaþ1

(xþ1)(kaþ1)
(31)

where

ka¼

Ð
gu(u

0,f0)dV0Ð
gf(u0,f0)dV0

(32)

and

gta¼
1

4p

ð
gu(u

0,f0)þgf(u0,f0)dV0 (33)

Figure 3 MEG as a function of XPR and XPD
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If the channel is isotropic, then

kGel¼
1

4p

ð ð
x

xþ1
Gu(u, u0,f,f0)

þ
1

xþ1
Gf(u, u0,f,f0)dVdV0

¼
hrad

2
(34)

where we have used the following identity

1

4p

ð ð
Gu(u, u0,f,f0)dVdV0

¼
1

4p

ð ð
Gf(u, u0,f,f0)dVdV0 ¼

hrad

2
(35)

The above computations show the following proposition

Proposition 5: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the MEG
of an antenna equals exactly half the radiation efficiency,
when the AoAs are isotropically distributed and the
probability that the antenna would be oriented at some
angle relative to a reference coordinate system is also
uniform on the unit sphere.

We now turn to averaging over the channel XPR
distribution. It has been established by measurements that
the channel XPR often can be modelled as a lognormal
variable, [22], with probability density function

px(x) ¼
1

xsx

ffiffiffiffiffiffi
2p
p e�( ln (x)�mx)2=2s2

x (36)

Hence, the average MEG conditioned on the antenna
orientation and probability density functions of the AoA pu
and pf, is

Ex{GejV
0, pu, pf} ¼ kGel ¼

ð
px(x)Ge(u

0, f0)dx

¼

ð
px(x)

x

xþ 1
gu þ

1

xþ 1
gf

� �
dx

¼ gu þ (gf � gu)

ð
1

xþ 1
px(x)dx

¼ gu þ (gf � gu)
X1
n¼1

(�1)nþ1e�2nmxmn
x

(37)

where mn
x ¼ enmxþn2s2

x=2 is the nth moment of x. The
computation of the integral

Ð
(1=(xþ 1))px(x)dx is given

in the appendix.
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4.2 Minimum, maximum, infimum and
supremum MEG

In this section, we define the maximum and minimum (over
different orientations in space) of the MEG of an antenna. If
the antenna is tilted at an angle u0 from the z-axis (vertical)
and then rotated an angle f0 from the x-axis, the shape of
the antenna gain pattern will remain the same; however,
the shape of the partial gains will change since the
polarisation state of the antenna will change as the antenna
is tilted, [30]. The MEG of the rotated antenna in an
uncorrelated field is a function of the rotation angles u0 and f0

Ge(u
0, f0) ¼

ð
x

xþ 1
Gu(u, u0, f, f0)pu(u, f)

�

þ
1

xþ 1
Gf(u, u0, f, f0)pf(u, f)

�
dV (38)

The maximum MEG, GeM, is calculated as

GeM ¼
xguM þ gfM

xþ 1
(39)

where the maximum partial gains guM andgfM are defined as

guM ¼

ð
Gu(u, uM, f, fM)pu(u, f)dV

gfM ¼

ð
Gf(u, uM, f, fM)pf(u, f)dV

(40)

where

[ uM fM ] ¼ argu0,f0 max Ge(u
0, f0) (41)

In other words, uM and fM are the angles that maximise the
MEG of the rotated antennas, as given by (38).

The minimum MEG, Gem is defined in a similar way as

Gem ¼
xgum þ gfm

xþ 1
(42)

where the minimum partial gains gum andgfm are defined as

gum ¼

ð
Gu(u, um, f, fm)pu(u, f)dV

gfm ¼

ð
Gf(u, um, f, fm)pf(u, f)dV

(43)

where

[ um fm ] ¼ argu0,f0 min Ge(u
0, f0) (44)

Hence, the rotation angles um and fm minimise the MEG of
the rotated antenna given by (38).
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The minimum, the maximum and average MEG against
the channel XPR are shown in Fig. 4. The depicted plots
apply to the half-wavelength dipole with AoAs distributed
according to the 3D-uniform probability density
distribution (29). Clearly, when the XPR equals 0 dB,
MEG equals 23 dBi for all the dipole orientations. Hence,
the variability of the link is minimised.

Another interesting result is obtained by defining the
infimum and supremum MEG. Namely, for directive
antennas, these two magnitudes can serve as a ‘quick and
dirty’ estimate of the variability of MEG which is
independent from the PAS but still takes the channel XPR
into account.

We will show that this supremum MEG bounds the
maximum MEG from above.

Consider the MEG equation

Ge ¼

ð
x

xþ 1
Gu(V)pu(V)þ

1

xþ 1
Gf(V)pf(V)dV

Now, since Gu(V), pu(V), Gf(V) and pf(V) are all non-
negative over the sphere of unit radius, it is valid to write

ð
x

xþ 1
Gu(V)pu(V)þ

1

xþ 1
Gf(V)pf(V)dV

� sup Gu(V)
x

xþ 1

ð
pu(V)dV

þ sup Gf(V)
1

xþ 1

ð
pf(V)dV

¼
x

xþ 1
sup Gu(V)þ

1

xþ 1
sup Gf(V) (45)

By using similar arguments for the infimum of the partial
gain and for the minimum and the supremum of MEG

Figure 4 Average, minimum and maximum MEG as a
function of XPD
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given in Proposition 3, the following inequality is valid

min { inf Gu(V), inf Gf(V)}

� Ge inf

¼
x

xþ 1
inf Gu(V)þ

1

xþ 1
inf Gf(V)

� Ge

�
x

xþ 1
sup Gu(V)þ

1

xþ 1
sup Gf(V)

¼ Ge sup � max { sup Gu(V), sup Gf(V)} (46)

We now establish the following ‘MEG inequalities’

Proposition 6: The MEG of an antenna satisfies the
following inequalities

(I) min { inf Gu(V), inf Gf(V)}

� min {gu, gf}

� Ge

� max {gu, gf}

� max { sup Gu(V), sup Gf(V)} (47)

(II) min { inf Gu(V), inf Gf(V)}

� Gem � Ge � GeM

� max { sup Gu(V), sup Gf(V)} (48)

The inequality (I) follows from inf Gu(V) � gu �

sup Gu(V) and inf Gf(V) � gf � sup Gf(V). The
inequality (II) follows from Gem � min {gum, gfm} �
min { inf Gu(V), inf Gf(V)} and GeM � max {guM, gfM} �
max { sup Gu(V), sup Gf(V)}.

The physical interpretation is straightforward: the MEG
of the antenna is always bounded by the infimum (the
smallest) of the partial antenna gains and the supremum
(the largest) of the partial antenna gains, that is, when the
AoA of a single plane wave coincides with the direction of
the smallest and the largest partial antenna gain,
respectively. Equality is achieved in the LOS scenario with
only one deterministic wave impinging at the antenna.

4.3 Maximum effective gain

In the previous sections, we were interested in analysing the
MEG of an antenna in a given propagation environment.
The total power received by the antenna was compared
with the total available power averaged over the small-scale
fading. In this sense, we were in fact estimating the mean
effective performance (gain) of the antenna. However, from
the communication point of view, it is also relevant to
evaluate the maximum link quality, or more precisely, the
optimum total power received by the antenna in a random
field. We will show below that the maximum effective gain
Microw. Antennas Propag., 2009, Vol. 3, Iss. 2, pp. 214–227
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is achieved when channel knowledge is available and the
antenna can be adapted to the incident field (e.g.
beamforming), that is, the maximum is obtained when the
antenna far-field equals the conjugate of the complex
amplitudes of the incident waves. This means that both the
polarisation, the DoAs of incoming waves and the mobile
speed must be known to the receiver in order to maximise
the link gain, that is, the received power. The gain defined
now refers to an instantaneous effective gain from which an
average or ‘mean maximum effective gain’ (MMEG) can
still be inferred.

Proposition 7: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the
maximum effective gain of an antenna is a symmetric
function of the antenna effective XPD, k � 0 and the
instantaneous channel XPR in the isotropic environment,
xi � 0 and directly proportional to the radiation efficiency
hrad of the antenna and is independent from the PAS of
the incoming waves, that is

Go ¼ 4phrad

(
ffiffiffiffiffiffiffi
xik
p

þ 1)2

(xi þ 1)(kþ 1)
(49)

Proposition 7 is derived in Appendix 2.

It should be observed that (49) is an instantaneous effective
gain in a multipath environment and therefore a stochastic
parameter that depends on the short-term fading statistics
(small-scale fading) through the instantaneous channel
XPR xi. On the other hand, the MEG (24) depends on
the long-term statistics (large-scale fading or shadowing)
through the channel XPR x.

Proposition 8: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the
maximum effective gain of an antenna is upper bounded by
the area of the unit sphere times the radiation efficiency
hrad, that is

Go � 4phrad (50)

Equality is achieved iff xi ¼ k, where k � 0 is the antenna
effective XPD in the isotropic environment and xi � 0 is
the channel XPR.

Proposition 8 clearly follows by means of the first and
second derivative tests of the maximum effective gain (49)
relative to the antenna effective XPD k � 0 for fixed
channel XPR x � 0:

The physical interpretation is that in the ‘maximum
effective regime’ (that is beamforming), ‘perfect’
polarisation matching in multipath environments is
achieved if and only if the effective XPD of the antenna
equals the XPR of the channel, and not only for purely
vertically or horizontally polarised channels and antennas as
in the case of MEG. In all other cases, there will be a
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polarisation mismatch loss quantified by the term
(
ffiffiffiffiffiffiffi
xik
p

þ 1)2=(xi þ 1)(kþ 1). Furthermore, in this case, the
maximum effective gain equals the integral of the total gain
over the unit sphere

max {Go} ¼ 4phrad ¼

ð
Gu(V)þ Gf(V)dV (51)

Proposition 9: In a multipath environment characterised by
uncorrelated random electromagnetic fields only, the
maximum MEG of an antenna is bounded by

16phrad

ffiffiffiffiffiffi
xk
p

(xþ 1)(kþ 1)
� Geo

� 8phrad

xkþ 1

(xþ 1)(kþ 1)
(52)

where k � 0 is the instantaneous channel XPR in the
isotropic environment, xi � 0 and directly proportional to
the radiation efficiency hrad of the antenna and is
independent from the PAS of the incoming waves.
Equality is achieved iff x ¼ k ¼ 1.

Proposition 9 is derived in Appendix 3.

5 Summary
In this paper, fundamental properties of the MEG of
antennas were presented. The MEG is a measure of the
interplay of the antenna with the propagation channel.
Therefore the results of this paper are of value when
assessing the in-network performance of wireless handsets.
New closed-form formulae for the MEG in mixed fields,
that is, fields with both stochastic and the deterministic
components, are provided with corresponding physical
interpretation. We showed that the MEG in uncorrelated
random fields with deterministic components can be
expressed as the sum of two terms, each denoting the
contribution of each component to the MEG. We then
showed that the MEG computed by Taga, that is, MEG
in uncorrelated fields, is a special case of the mixed fields
case. In the uncorrelated case, MEG is a symmetric
function in the channel XPR (XPR, x) and the antenna
effective XPD (effective XPD, k), which is an expression of
the channel/antenna duality or equivalence under these
conditions. We showed further that the MEG in
uncorrelated random fields is upper bounded by the largest
of the two average partial gains in u- and f-polarisations.
We also showed that when either the channel or the
antenna is power-balanced in polarisation, that is, x ¼ 1 or
k ¼ 1, the MEG is always one-half of the radiation
efficiency. We defined and analysed the infimum,
minimum, average, maximum and supremum MEG with
the objective of characterise the span of variability of MEG
as a function of the antenna orientation in space and the
long-term statistics of the channel variability that affect the
XPR. We showed that in an environment characterised by
uncorrelated random fields the average over both the XPR
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and the antenna orientation equals the half of the radiation
efficiency of the antenna. We proved the MEG inequalities
that showed the lower and upper bounds of MEG, that is,
the span of variation of MEG. Finally, we showed that the
maximum effective gain is achieved with ‘beamforming’
and equals 4phrad, where hrad is the radiation efficiency of
the antenna, when k ¼ xi , where k is the instantaneous
XPR of the channel. We also provided bounds for the
average of the maximum effective gain and showed that the
bound is achieved.
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7 Appendix 1: computation
of an integral
By making use of the Mclaurin series expansion

1

1þ f (x)
¼
X1
n¼0

(�1)nf (x)n

where j f (x)j , 1, the integral is obtained as follows

ð
1

xþ 1
px(x)dx

¼
1

sx

ffiffiffiffiffiffi
2p
p

ð1

0

1

(xþ 1)x
e�( ln (x)�mx)2=2s2

x dx

¼
1

sx

ffiffiffiffiffiffi
2p
p

ð1

�1

e�t

1þ e�t
e�(t�mx)2=2s2

x dt

¼
1

sx

ffiffiffiffiffiffi
2p
p

X1
n¼0

(�1)n

ð1

�1

e�(nþ1)te�(t�mx)2=2s2
x dt
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¼
X1
n¼1

(�1)nþ1e�nmxþn2s2
x=2

¼
X1
n¼1

(�1)nþ1e�2nmxmn
x

where mn
x ¼ enmxþn2s2

x=2 is the nth moment of x.

Appendix 2: proof of proposition 7
Consider (3). Let us compute the signal power

jVoc(t)j2 ¼ j

ð
F r(V) � Ei(V)e�i(2p=l)u�er (V)t dVj2

By the triangle inequality

jVoc(t)j2 �

ð
jF r(V) � Ei(V)jdV

� �2

By the triangle inequality

jVoc(t)j2 �

ð
jFru(V)Eiu(V)jdVþ

ð
jFrf(V)Eif(V)jdV

� �2

By the Cauchy–Schwartz–Buniakowsky inequality and
observing that equality is achieved for Fru(V) ¼
cuE�iu(V)ei(2p=l)u�er (V)t and Frf(V) ¼ cfE�if(V)ei(2p=l)u�er (V)t

jVoc(t)j2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jFru(V)j2dV

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dV

s 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jFrf(V)j2dV

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEif(V)j2dV

s !2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Gu(V)dV

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dV

s 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Gf(V)dV

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEif(V)j2dV

s !2

¼
ffiffiffiffiffi
gu
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dV

s 
þ

ffiffiffiffiffiffi
gf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEif(V)j2dV

s !2

which gives us the maximum received signal jVoc(t)j2opt in the
‘beamforming’ sense since for each time t the far-field
amplitude must satisfy the following conditions

Fru(V, t)¼E�iu(V)ei(2p=l)u�er (V)t

Frf(V, t)¼E�if(V)ei(2p=l)u�er (V)t

Under this condition, the maximum effective gain is defined
relative to the instantaneous available power of the
6
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electromagnetic field

Go¼

ffiffiffiffiffi
gu
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
jEiu(V)j2dV

q
þ

ffiffiffiffiffiffi
gf
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
jEif(V)j2dV

q� �2

Ð
jEiu(V)j2dVþ

Ð
jEif(V)j2dV

¼
(
ffiffiffiffiffiffiffiffiffiffiffi
guPiu

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
gfPif

p
)2

PiuþPif

¼ 4phrad

(
ffiffiffiffiffiffiffi
xik
p

þ1)2

(xiþ1)(kþ1)

where Piu ¼ (1=2)
Ð
jEiu(V)j2 dV, Pif ¼ (1=2)

Ð
jEif(V)j2 dV

and xi ¼ Piu=Pif, where Eiu(V) and Eif(V) are the
instantaneous complex amplitudes of the random
electromagnetic field incident at the antenna and the
instantaneous XPR of the channel.

Appendix 3. proof of proposition 9
The upper bound on the maximum MEG can be derived
from

kjVoc(t)j2optl ¼ k ffiffiffiffiffi
gu
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dV

s 

þ
ffiffiffiffiffiffi
gf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEif(V)j2dV

s !2

l
¼ kgu ð jEiu(V)j2dVþ gf

ð
jEif(V)j2dV

þ 2
ffiffiffiffiffiffiffiffiffiffi
gugf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dVjEif(V)j2dV

s
l

By Cauchy’s mean theorem (arithmetic mean-geometric
mean inequality)

kjVoc(t)j2optl � kgu
ð
jEiu(V)j2dVþ gu

ð
jEiu(V)j2dV

þ gf

ð
jEif(V)j2dVþ gf

ð
jEif(V)j2dVl

By the Jensen’s inequality for convex functions

� 2 gu

ð
kjEiu(V)j2ldVþ gf

ð
kjEif(V)j2ldV

� �

¼ 4 guPu

ð
pu(V)dVþ gfPf

ð
pf(V)dV

� �

¼ 4(guPu þ gfPf)

and therefore the upper bound on the maximum effective
gain is given by
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Geo �
2(guPu þ gfPf)

Pu þ Pf

¼ 8phrad

xkþ 1

(xþ 1)(kþ 1)

Observe that for x ¼ k ¼ 1, Geo � max {Go}.

The lower bound on the maximum MEG can now be
derived from

kjVoc(t)j2optl ¼ k ffiffiffiffiffi
gu
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dV

s 

þ
ffiffiffiffiffiffi
gf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEif(V)j2dV

s !2

l
By the Jensen’s inequality

kjVoc(t)j2optl � 4
ffiffiffiffiffiffiffiffiffiffi
gugf

p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jEiu(V)j2dV

ð
jEif(V)j2dV

s
l
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By the Jensen’s inequality for concave functions

kjVoc(t)j2optl � 4
ffiffiffiffiffiffiffiffiffiffi
gugf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
kjEiu(V)j2l dV

ð
kjEif(V)j2l dV

s

¼ 8
ffiffiffiffiffiffiffiffiffiffi
gugf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pu

ð
pu(V) dVPf

ð
pf(V) dV

s

¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gugfPuPf

q

Hence

Geo �
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gugfPuPf

p
Pu þ Pf

¼ 16phrad

ffiffiffiffiffiffi
xk
p

(xþ 1)(kþ 1)

Observe that for x ¼ k ¼ 1, Geo � max {Go}.
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