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Abstract

We investigate the form of mathematical structuralism that ac-

knowledges the existence of structures and their distinctive struc-

tural elements. This form of structuralism has been subject to criti-

cisms recently, and our view is that the problems raised are resolved

by proper, mathematics-free theoretical foundations. Starting with

an axiomatic theory of abstract objects, we identify a mathematical

structure as an abstract object encoding the truths of a mathemat-

ical theory. From such foundations, we derive consequences that

address the main questions and issues that have arisen. Namely,

elements of different structures are different. A structure and its

elements ontologically depend on each other. There are no haec-

ceities and each element of a structure must be discernible within

the theory. These consequences are not developed piecemeal but

rather follow from our definitions of basic structuralist concepts.

∗This is a preprint of a paper published in Mind, 123/489 (2014): 39–78. We use

red font to make a small correction to footnote 14 and to revise the infix notation in

two formulas on page 36 (to make the formatting more consistent).
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1 Introduction

Mathematical structuralism is the view that pure mathematics is about

abstract structure or structures (see, e.g., Hellman 1989, Shapiro 1997).1

This philosophical view comes in a variety of forms. In this paper, we

investigate, and restrict our use of the term ‘structuralism’ to the form

that acknowledges that abstract structures exist, that the pure objects of

mathematics are in some sense elements of, or places in, those structures,

and that there is nothing more to the pure objects of mathematics than

can be described by the basic relations of their corresponding structure

(e.g., Dedekind 1888 [1963], Resnik 1981, 1997, Parsons 1990, and Shapiro

1997).2 We shall not suppose that structures are sets nor assume any

set theory; our goal is to give an analysis of mathematics that doesn’t

presuppose any mathematics. Our work is motivated by two insights.

First, as we discuss in Section 2.1, abstract objects are connected to the

properties that define them in a different way than ordinary objects are

connected to the properties they bear. Second, as we discuss in Section

3.1, theorems and truths about abstract relations are more important in

defining mathematical structures than mathematical entities.

Recently, the literature on structuralism has centered on a variety of

questions and problems. These issues arise, in part, because the philo-

sophical view has not been given proper, mathematics-free theoretical

foundations.3 We shall show how to view mathematical structures as

1In Hellman 1989, we find that ‘mathematics is concerned principally with the

investigation of structures . . . in complete abstraction from the nature of individual

objects making up those structures’ (vii), and in Shapiro 1997, we find that ‘[P]ure

mathematics is the study of structures, independently of whether they are exemplified

in the physical realm, or in any realm for that matter’ (75).
2Parsons (1990), for example, says ‘By the ‘structuralist view’ of mathematical

objects, I mean the view that reference to mathematical objects is always in the context

of some background structure, and that the objects have no more to them than can

be expressed in terms of the basic relations of the structure’ (303). By contrast,

eliminative forms of structuralism, such as modal structuralism (e.g., Putnam 1967,

Hellman 1989), avoid commitments to the existence of mathematical structures and

their special structural elements. See the discussion in Reck & Price 2000.
3Shapiro (1997) offers axioms (93–5), but these are not mathematics-free. Nor is it

clear exactly which primitive notions are required for his list of axioms. For example,

the Powerstructure axiom (94) asserts: Let S be a structure and s its collection of

places. Then there is a structure T and a binary relation R such that for each subset

s′ ⊆ s, there is a place x of T such that ∀z(z ∈ s′ ≡ Rxz). Here it is clear that the

notions of set theory have been used in the theory of structures, and so the resulting

theory is not mathematics-free. Moreover, it is not clear just which primitives are
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abstract objects and how to analyze elements and relations of such struc-

tures. We shall show why the elements of structures are incomplete and

prove that the essential properties of an element of a structure are just

those mathematical properties by which it is conceived.

We then examine the consequences of our view of structuralism on the

following issues:

1. Can there be identities between elements of different structures?

2. Do the elements of a mathematical structure ontologically depend

on the structure?

3. Do the elements of a structure have haecceities?

4. Is indiscernibility a problem for structuralism?

We begin with a brief review of an analysis of mathematics that can be

given in terms of an axiomatic theory of abstract objects. We then in-

terpret this theory as a foundation for structuralism and show how it

yields theorems that decide the above issues. Our answers to these issues

are compared with those from other recent defenses of structuralism. We

hope to show that one can give principled, rather than piecemeal, answers

to the issues that have been the subject of much debate.

2 Background

2.1 Axiomatic Theory of Abstract Objects

Our background theory is based on an insight into the nature of abstract

objects and predication, namely, that abstract objects are constituted by

the properties through which we conceive or theoretically define them

and therefore are connected to those properties in a way that is very

different from the way ordinary objects bear their properties. We shall say

that mathematical and other abstract objects encode these constitutive

properties, though they may exemplify (i.e., instantiate in the traditional

sense) or even necessarily exemplify, other properties independently of

their encoded properties. By contrast, ordinary objects only exemplify

their properties.

needed for this axiom—such notions seem to include structure, place, set, membership,

and relation. By contrast, in what follows, we shall not appeal to sets or membership;

structures and places will be identified with objects axiomatized antecedently.
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So, for example, ordinary triangular objects (e.g., the faces of some

physical pyramid, musical triangles, etc.) exemplify properties like having

sides with a particular length, having interior angles of particular magni-

tudes, being made of a particular substance, etc. By contrast, the math-

ematical object, The Euclidean Triangle, doesn’t exemplify any of these

properties—indeed, it exemplifies their negations. Instead, it encodes

only the theoretical properties implied by being triangular, such as being

trilateral, having interior angles summing to 180 degrees, etc. Whereas

every object x whatsoever (including ordinary triangular objects and The

Euclidean Triangle) is complete with respect to the properties it exem-

plifies (i.e., for every property F , either x exemplifies F or the negation

of F , given classical negation), The Euclidean Triangle encodes no other

properties than those implied by being triangular. Thus, although clas-

sical logic requires that the exemplification mode of predication exclude

objects that are incomplete, the encoding mode of predication allows us

to assert the existence of abstract objects that are incomplete with re-

spect to the properties they encode. Thus, we might use the encoding

mode of predication to assert the existence of abstract objects whose only

encoded properties are those they are theoretically-defined to have accord-

ing to some mathematical theory. This will become important later as it

calls to mind Benacerraf’s view that the elements of an abstract structure

‘have no properties other than those relating them to other ‘elements’ of

the same structure’ (1965, 70).

To say that an abstract object x encodes property F is, roughly, to

say that property F is one of the defining or constitutive properties of x.4

This idea leads directly to the two main theoretical innovations underly-

ing the axiomatic theory of abstract objects (‘object theory’). First, the

theory includes a special atomic formula, xF , to express primitive encod-

ing predications of the form object x encodes property F . (The theory

will retain the traditional mode of predication (Fx) that is used to assert

that object x—whether ordinary or abstract—exemplifies property F .)

Second, the theory includes a comprehension principle that asserts, for

any given formula ϕ that places a condition on properties, the existence

4The distinction between encoding and exemplifying a property has appeared in

the work of other philosophers, though under different names. Meinwald (1992, 378)

argues that it appears in Plato; Boolos (1987, 3) argues that it appears in Frege; Kripke

appeals to it in his Locke Lectures (1973 [2013], Lecture III, 74), and the philosophers

Castañeda (1974), Rapaport (1978), and van Inwagen (1983) have invoked something

like this distinction in their own work.
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of an abstract object that encodes exactly the properties satisfying ϕ.

These theoretical innovations may be developed in a syntactically

second-order, quantified S5 modal logic (with both first- and second-

order Barcan formulas) that has two kinds of atomic formulas Fnx1 . . . xn
(n ≥ 0) (‘x1, . . . , xn exemplify Fn’) and xF 1 (‘x encodes F 1’), a distin-

guished predicate ‘E!’ (‘being concrete’), λ-expressions [λy1 . . . ynϕ] (‘be-

ing y1, . . . , yn such that ϕ’, where ϕ has no encoding subformulas), and

rigid definite descriptions of the form ıxϕ (‘the x such that ϕ’, interpreted

rigidly). Without loss of clarity, we drop the superscript on Fn, since the

number of argument places make it clear what the superscript must be.

Thus, we shall write Fx, xF , Rxy, etc.5

In terms of this language and logic, an ordinary object (‘O!x’) is de-

fined as 3E!x (possibly concrete) and an abstract object (‘A!x’) as ¬3E!x

(not possibly concrete). Given this partition of the domain of individuals,

a general notion of identity for individuals is defined disjunctively:

x=y
def
= [O!x&O!y &2∀F (Fx ≡ Fy)] ∨ [A!x&A!y &2∀F (xF ≡ yF )]

Intuitively, this means that ordinary objects are identical if they exemplify

the same properties and abstract objects are identical if they encode the

same properties. Furthermore, identity is defined for properties (1-place

relations) and propositions (0-place relations) as follows:

F =G
def
= 2∀x(xF ≡ xG)

p=q
def
= [λy p]=[λy q]

Identity can be defined generally for n-place relations (n ≥ 2), but we

omit the definition here.

Using these definitions, α=α (α any variable) can be derived and the

rule of identity substitution is taken as axiomatic. Moreover, β-, η-, and

α-conversion are assumed as part of the logic of λ-expressions, and the

Russell axiom is formulated as a contingent logical axiom schema for defi-

nite descriptions.6 From this logical basis, one can derive the second-order

5The rest of this section may be skipped by those familiar with object theory

and its applications to mathematics. It is included here so that the present paper is

self-contained. For those encountering object theory for the first time and interested

in a gentler introduction, see the presentation in Zalta 2006. For a more complete

treatment, see Zalta 1983, 1988a.
6See Zalta 1988b for a full discussion. When the Russell axiom governs definite

descriptions that are interpreted rigidly, its instances become contingent logical truths.
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comprehension principle for relations from β-conversion, generalization

and the rule of necessitation:

Comprehension for Relations

∃Fn2∀x1 . . . ∀xn(Fnx1 . . . xn ≡ ϕ), where n ≥ 0 and ϕ has no encod-

ing subformulas

Finally, the logic of encoding is captured by the principle that 3xF →
2xF . That is, if x possibly encodes F , then x necessarily encodes F .

The theory of abstract objects may then be stated in terms of the

following two non-logical axioms:

No Encoding for Ordinary Objects

O!x→ 2¬∃F (xF )

Comprehension for Abstract Objects

∃x(A!x& ∀F (xF ≡ ϕ)), for any ϕ with no free xs

The following theorem schema follows immediately, given the identity

conditions for abstract objects and the abbreviation ∃!xϕ for asserting

that there is a unique x such that ϕ:

Comprehension! for Abstract Objects

∃!x(A!x& ∀F (xF ≡ ϕ)), for any ϕ with no free xs

This theorem ensures that definite descriptions of the form ıx(A!x&

∀F (xF ≡ ϕ)) are always well-defined, in the following sense:

Canonical Descriptions for Abstract Objects

∃y(y= ıx(A!x& ∀F (xF ≡ ϕ))), for any ϕ with no free xs

Such canonical definite descriptions are therefore governed by the follow-

ing theorem schema:

Abstraction for Abstract Objects

ıx(A!x& ∀F (xF ≡ ϕ))G ≡ ϕG
F

As a simple example, consider the following instance of the above, where

o denotes Obama and P denotes the property of being president:

ıx(A!x& ∀F (xF ≡ Fo))P ≡ Po

The presence of contingent logical axioms requires that we place a restriction on the

Rule of Necessitation; it may not be applied to any line of a proof that depends for its

justification on a contingent logical truth.
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This asserts: the abstract object x, which encodes exactly the properties

F that Obama exemplifies, encodes the property of being president if and

only if Obama exemplifies being president. From the simple exemplifica-

tion on the right-hand side of the biconditional (Obama exemplifies being

president), the left-hand side abstracts out an object (the complete indi-

vidual concept of Obama) and asserts that it encodes a property (being

president).

2.2 Analysis of Mathematics

This formal system has been used for the analysis of mathematical state-

ments in Zalta 1983, 1999, 2000, 2006, and Linsky & Zalta 1995, 2006.

Following Zalta 2006, we distinguish natural mathematics and theoretical

mathematics. Natural mathematics consists of the ordinary, pretheoretic

claims we make about mathematical objects, such as that the triangle

has 3 sides, the number of planets is eight, there are more individuals in

the class of insects than in the class of humans, lines a and b have the

same direction, figures a and b have the same shape, etc. By contrast,

theoretical mathematics is constituted by claims that occur in the context

of some explicit or implicit (formal or informal) mathematical theory, for

example, theorems. In what follows, we take the data from theoretical

mathematics to consist of claims including a prefixed ‘theory operator’

that identify the principles from which the claim can be proved, such as:

In ZF, the null set is an element of the unit set of the null set.

In Real Number Theory, 2 is less than or equal to π.

Object theory uses one technique for the analysis of natural mathematics

and a different technique for the analysis of theoretical mathematics. The

objects of the former are analyzed using the theory we have presented

thus far, while the objects of the latter require us to extend the theory

with the data mentioned above. Since the thesis of interest to us in

the present paper, that pure mathematics is about structures, can be

validated by the analysis of theoretical mathematics, we omit further

discussion of (the analysis of) natural mathematics and focus only on the

analysis of mathematical theories and structures. (Readers interested in

natural mathematical objects may look to Zalta 1999, Pelletier & Zalta

2000, and Anderson & Zalta 2004.)

The analysis of theoretical mathematical language in Zalta 2006 starts

with the idea that there is a subdomain of abstract objects that encode
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only properties F such that F is a propositional property of the form

[λy p]. We called such abstract objects situations:

Situation(x)
def
= A!x& ∀F (xF → ∃p(F =[λy p]))

In what follows, when F is the property [λy p], for some proposition p, we

shall say that F is constructed out of p. We may therefore define a sense

in which a proposition may be true in an abstract object x, where x is a

situation:

p is true in x (‘x |= p’)
def
= x[λy p]

In other words, p is true in x just in case x encodes the property F

constructed out of p. In what follows, we shall often read ‘x |= p’ as: in

(situation) x, p (is true).

If we now conceive of theories as situations, then we may use the

following principle to identify the theory T :

Identity of Theory T

(The theory) T = ıx(A!x& ∀F (xF ≡ ∃p(T |= p& F =[λy p])))

This principle asserts that the theory T is the abstract object that encodes

exactly the propositional properties F constructed out of propositions p

that are true in T . Note that although T appears on both sides of the

identity sign, this is a principle governing theories T and not a definition

of T . But it should be clear what we are doing here: we are abstracting

the theory T from a body of data of the form ‘In theory T , p’ in which T

isn’t yet parsed as such.

Next we use the above definitions to ground our analysis of mathe-

matical statements by extending object theory through the importation

of new claims. Let κ be a primitive term of theory T , and let the expres-

sion ‘κT ’ represent the term κ indexed to T , where we read κT as: the κ

of theory T . Then we adopt the following rule for importing new claims

into object theory:

Importation Rule

For each formula ϕ that is an axiom or theorem of T , add to object

theory the truth T |= ϕ∗, where ϕ∗ is the result of replacing every

well-defined singular term κ in ϕ by the indexed term κT .

So, for example, if zero (‘0’) is the primitive constant of Peano Number

Theory (PNT) and number (‘N ’) is a 1-place primitive predicate of PNT,
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then the axiom ‘Zero is a number’ of PNT would be imported into object

theory as: PNT |= N0PNT. This new sentence of object theory asserts: in

PNT, the 0 of PNT exemplifies being a number.

We are taking the view that a mathematical theory is constituted by

its theorems (where the theorems include the axioms). It is common

nowadays for logicians to identify a theory T with the set of its theorems.

The theorems of PNT, for example, define what that theory is. Thus,

the axioms and theorems are jointly constitutive of PNT, and from this,

we believe we are justified in thinking that the claim PNT |= N0PNT,

and other similarly imported truths, might be considered analytic truths,

though nothing much of any consequence for the present paper hangs on

whether or not the imported truths are in fact analytic. In what follows,

we shall say that when we apply the Importation Rule, the axioms and

theorems of a theory T become imported into object theory under the

scope of the theory operator.

Since all of the theorems of a theory T are imported, our procedure

validates the following Rule of Closure:

Rule of Closure

If p1, . . . , pn ` q, and T |=p1, . . . ,T |=pn, then T |=q

In other words, if q is derivable as a logical consequence from p1, . . . , pn,

and p1, . . . , pn are all true in T , then q is true in T . Such a rule confirms

that reasoning within the scope of the theory operator is classical.

Now that object theory has been extended with these new (analytic)

truths, we may use the following axiom to theoretically identify the de-

notation of any well-defined singular term κT of mathematical theory T :

Reduction Axiom for Individuals

κT = ıx(A!x& ∀F (xF ≡ T |=FκT ))

This asserts that the κ of theory T (κT ) is the abstract object that en-

codes exactly the properties F satisfying the condition: in theory T , κT
exemplifies F . It is important to note that this is not a definition of κT ,

but rather a principle that identifies κT in terms of data in which κT
is used. Here are two examples, where 0PNT denotes the zero of Peano

Number Theory (PNT) and ∅ZF denotes the null set of Zermelo-Fraenkel

set theory (ZF):

0PNT = ıx(A!x& ∀F (xF ≡ PNT |=F0PNT))

∅ZF = ıx(A!x& ∀F (xF ≡ ZF |=F∅ZF))
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An Equivalence Theorem for Individuals is an immediate conse-

quence of the Reduction Axiom for Individuals, namely, that κTF ≡
T |=FκT .

To give a simple example of this analysis, let < denote real number

theory. By mathematical practice, we know `< 2 < π, and assuming λ-

conversion is available in <, it also follows that `< [λx x < π]2. Thus, by

the Importation Rule, object theory is extended to include the following

truths: < |= 2< < π< and < |= [λx x < π<]2<. By the Reduction

Axiom for Individuals and the Equivalence Theorem for Individuals, the

following are both theorems of object theory: 2<F ≡ < |= F2< and

2<[λx x < π<]. Finally, since encoding is a mode of predication and can

be used to disambiguate ordinary claims of the form ‘x is F ’, the latter

theorem serves as the true reading of the unprefixed mathematical claim

‘2 is less than π’, when uttered in the context of <.

This analysis of the ordinary statements of mathematics can be ex-

tended so that the terms denoting relations in mathematical statements

become analyzed as well. To accomplish this, we have, in previous work,

formulated the theory of abstract objects in a type-theoretic environment

and then appealed to the third-order case (e.g., Zalta 2000). Thus, where i

is the type for individuals, and 〈t1, . . . , tn〉 is the type of relations among

entities with types t1, . . . , tn, respectively, we may reformulate the lan-

guage, definitions, and axioms of object theory in a typed language, and

then deploy the following typed principle:

Comprehension for Abstract Objects of Type t

∃xt(A〈t〉!x& ∀F 〈t〉(xF ≡ ϕ)), where ϕ has no free xts

Intuitively, the theory has now been redeveloped so that at each logical

type t, the domain has been divided into ordinary and abstract objects of

type t, and the latter encode properties that can be predicated of objects

of type t. So, for example, let R be a variable of type 〈i, i〉, F be a

variable of type 〈〈i, i〉〉, and A! denote the property of being abstract

(type: 〈〈i, i〉〉). Then we have the following third-order instance of typed

comprehension:

∃R(A!R & ∀F (RF ≡ ϕ)), where ϕ has no free Rs

This asserts the existence of an abstract relation among individuals that

encodes exactly the properties of relations among individuals that satisfy

ϕ.
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Now let Π be a primitive predicate of theory T , and let the expression

‘ΠT ’ represent the term Π indexed to T , where we read ΠT as: the Π

(relation) of theory T . Then, we extend our rule for importing new claims

into object theory as follows:

Importation Rule

For each axiom/theorem ϕ of T , add the truths of the form T |=ϕ∗,

where ϕ∗ is the result of replacing every well-defined singular term κ

and well-defined predicate Π in ϕ by κT and ΠT .

Again, this validates a Rule of Closure.

With object theory extended by new truths, we may theoretically

identify any relation Π of mathematical theory T by using the following:

Reduction Axiom for Relations

ΠT = ıR(A!R & ∀F (RF ≡ T |=FΠT ))

As an example, if we let << denote the less than ordering relation of <,

we may theoretically identify this relation as follows:

<< = ıR(A!R & ∀F (RF ≡ < |= F<<))

Again, an Equivalence Theorem for Relations, to the effect that

ΠTF ≡ T |=FΠT , is an immediate consequence of the Reduction Axiom

for Relations.

To continue and complete our example from before, from `< 2 < π

and λ-conversion, it follows that `< [λR 2Rπ]< (the λ-expression main-

tains the infix notation). Thus, by the Importation Rule, object the-

ory is extended to include the following truths: < |= 2< << π< and

< |= [λR 2<Rπ<]<<. By the Reduction Axiom for Relations and the

Equivalence Theorem for Relations, the following are both theorems of

object theory: <<F ≡ < |= F<< and << [λR 2<Rπ<]. The latter identi-

fies one of the properties of relations encoded by the less-than relation of

<. Indeed, if we define xyS (‘x and y encode the relation S’) to mean that

x[λz zSy] & y[λz xSz] & S[λR xRy], then a simple ordinary (relational)

statement of <, such as ‘2 is less than or equal to π’, may become ana-

lyzed as 2<π< <<. Thus, an ordinary relational statement of < tells us

not only encoding facts about the objects denoted by the singular terms

but also an encoding fact about the relation denoted by the predicate.

Such an analysis is easily extended to complex statements for arbitrary

mathematical theories (Zalta 2006, 2000). In addition, though function
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terms in mathematical theories could be eliminated before importation,

a more elegant treatment can be given.7

3 A Structure and Its Parts

We now show how to define a mathematical structure as a kind of abstract

object given the axiomatic theory of abstract objects outlined in the pre-

vious section. We then investigate elements and relations of structures,

show a precise sense in which elements are incomplete and characterize

the essential properties of elements.

3.1 The Concept of a Structure

Different authors have different intuitions about what a structure is.

Dedekind suggests that a structure is something which neglects the spe-

cial character of its elements (1888 [1963], 68), and Benacerraf (1965, 70)

similarly suggests that the elements of a structure have only mathemat-

ical properties and no others. By contrast, some structuralists (Shapiro

1997, 89) see a structure and the physical systems having that structure

as being either in a type-to-token or a universal-to-instance relationship.

Still other structuralists (Resnik 1981) see structures essentially as pat-

terns. These intuitions don’t offer a definition of the notion of structure,

but rather constitute desiderata or features that a theory of structure

must capture. We propose to identify, for each mathematical theory, an

7For example, the successor function s( ) of Peano Number Theory may be analyzed

as follows (where κ now ranges over indexed singular terms and S is the primitive

successor relation of PNT):

sPNT(κ) = ιy(PNT |= SPNTyκ)

In other words, the PNT-successor of κ is the object y which, according to Peano

Number Theory, succeedsPNT κ.

In what follows, we’ll make use of the following analyses of functional notation in

set theory:

The unit set of κ in ZF:

{κ}ZF = ιy(ZF |= ∀z(z ∈ZF y ≡ z=ZFκ))

The union of κ and κ′ in ZF:

κ ∪ZF κ′ = ιy(ZF |= ∀z(z ∈ZF y ≡ z ∈ZF κ ∨ z ∈ZF κ′))

These analyses go back to the Whitehead and Russell’s elimination of function terms

using relations and definite descriptions in Principia Mathematica, *30 · 01: where f

is the functional relation R, f(x) is defined as ιy(Rxy).
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abstract object that has these features and that can rightly be called the

structure for that theory.

We unfold our proposal by first showing how to unite the above in-

tuitions about structures. At the beginning of Section 2.1, we saw that

object theory is well-suited to defining structural elements whose only

properties are their mathematical properties. These elements will play a

role in our definition of a structure. Similarly, it is reasonable to analyze

the type-token distinction as follows: a type is an abstract object that

encodes just the properties that all of the tokens of that type exemplify

in common (thus, the type abstracts away from the properties that dis-

tinguish the tokens from each other). So, for example, The Euclidean

Triangle is a type that encodes only the properties that all triangular

objects exemplify. While not itself a universal, The Euclidean Triangle

encodes all the properties implied by the universal being triangular—

that is, the properties that are exemplified by all triangular objects.8 It

thereby constitutes an imprint or pattern which is preserved in (by being

exemplified by) all those objects that are triangular.

This way of uniting the various intuitions about what structures are

leads us to the following suggestion. Structures are abstract objects that

are incomplete with respect to the properties they encode; in particular,

they encode only those properties that make true all of the theorems of

the theory that define the structure. The theorems of a mathematical

theory are sentences that have the semantic property of being true in

virtue of the properties of a structure. But the theorems of a theory

are propositions, and as we’ve seen, a theory can itself be identified with

its objectified content. We’ve identified the theory T with the abstract

object that encodes the truths in T (as per the Identity of Theory

T principle). This leads us to collapse the distinction between theories

and structures and identify the structure with the theory! In this way,

a structure becomes precisely that abstract object that encodes only the

properties needed to make true all of the theorems of its defining theory.

Therefore, assuming that we’ve imported the theorems of the theory

T into object theory, we may define:

8We note, but do not prove here, that these kinds of facts position the theory to

avoid the reconstructed third-man objection for structuralism found in Hand 1993. As

we shall see, a structure will not exemplify itself, since it will not itself be a universal.

For a full discussion of how object theory solves the third-man problem, see Pelletier

& Zalta 2000.
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The structure T
def
= The theory T

As we shall see in Section 3.3, this definition identifies structures as incom-

plete objects and this helps to distinguish them from the objects found in

traditional Platonism. So, on our view, the objectified content of math-

ematical theory T just is the structure T and that is the sense in which

mathematics is about abstract structures.9 It is a theorem that the struc-

ture T is an abstract object.

While traditional understandings of structuralism focus on mathemat-

ical entities, our view is that a structure is composed of the truths that

organize its elements and relations. Mathematical entities are simply the

means to truths concerning abstract relations in the form of theorems.

They have a role to play to the extent they contribute to these truths.

So the heart of a mathematical structure lies not in the entities, but in

the properties and theorems it yields about abstract relations. Awodey

captures this understanding (2004, 59):

Rather it is characteristic of mathematical statements that the par-

ticular nature of the entities involved plays no role, but rather their

relations, operations, etc.—the ‘structures’ that they bear—are re-

lated, connected, and described in the statements and proofs of

theorems. . . . [M]athematical statements (theorems, proofs, etc.,

even definitions) are about connections, operations, relations, prop-

erties of connections, operations on relations, connections between

relations on properties, and so on.

When a mathematician establishes an isomorphism or an embedding be-

tween a known structure and one under study, it is important because it

helps us to understand the properties that hold—that is, the truths—in

the new structure.

Although a structure T is constituted by the truths in T , we should

note that the elements are not the truths themselves. In the next subsec-

tion we shall define the elements and relations of a structure and show

that they are abstracted from a body of mathematical truths simultane-

ously with the structure itself.

9Note that distinct axiomatizations of a mathematical theory will lead to the same

structure as long as they yield the same set of theorems. Moreover the various con-

structions or models used to interpret a theory do not result in different theories.

For example there is one theory of the reals with various possible set-theoretic con-

structions, such as Cauchy sequences, Dedekind cuts, etc. These don’t therefore yield

different structures!
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3.2 Elements and Relations of Structures

We suggest that the elements of a structure are not to be defined model-

theoretically. Model-theory typically assumes a mathematical theory of

sets, and if we rely on concepts from set theory to help us identify the

elements of a structure, we would have to add primitive mathematical no-

tions (e.g., set membership) to our ontology. Such a move would leave set

theory as an ‘ontological dangler’, since we wouldn’t have a mathematics-

free account of structures and their elements. So, using =T to denote the

identity relation that is explicit or implicit in every mathematical theory,

we define10

x is an element of (structure) T
def
= T |= ∀y(y 6=Tx→ ∃F (Fx & ¬Fy))

R is a relation of (structure) T
def
= T |= ∀S(S 6=T R → ∃F (FR & ¬FS))

In other words, the elements of the structure T are just those objects

which are distinguishable within T from every other object in T . Sim-

ilarly, the relations of the structure T are those relations that are dis-

cernible within T from every other relation in T .11 This defines the el-

ements and relations of a structure to be entities that encode only their

mathematical properties (where these include any relational properties

they may bear to other elements and relations of their structure). This,

we claim, captures Dedekind’s idea when he says ‘we entirely neglect the

special character of the elements, merely retaining their distinguishability

and taking into account only the relations to one another’ (Dedekind 1888

[1963], 68). Object theory presents us with a clearly defined method of

abstraction, and given our application of it, the elements and relations

10Note that we are in agreement with Ketland 2006 (311) and Leitgeb & Ladyman

2008 (390, 393–4) who allow for a primitive notion of identity. They take identity to

be an ‘integral’ component of a structure and accept primitive identity facts. We use

the identity symbol indexed to theory T to express these facts.
11This corrects an error in Zalta 2000 (232), where an object x of theory T was

defined more simply as: ∃F (T |= Fx). It is clear from the discussion in Zalta 2000

(233, 251–2) that object theory was being applied to the analysis of the well-defined

singular terms and predicates of a mathematical theory. But the definition of ‘object

of theory T ’ used in that paper wasn’t restrictive enough to ensure this. It will become

apparent, in Section 4.4 below on indiscernibles, how our understanding of the elements

and relations of a structure, as defined in the current text, plays a role in our response

to the issue of whether indiscernibility poses a problem for structuralism.
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of a structure are abstract objects.12 Unlike Dedekind, however, we’ve

defined the elements and relations of a structure without appealing to

any mathematical notions, and in particular, without appealing to any

model-theoretic or set-theoretic notions.

3.3 Elements Are Incomplete

A significant issue for any structuralist view is to explain the intuition

that elements of a structure are incomplete—in the sense that they have

only those properties they are required to have by their governing math-

ematical definitions or theories. From the point of view of object theory,

the elements and relations of a structure are incomplete with respect to

the properties they encode, but complete with respect to the properties

they exemplify. Let xt range over abstract entities of type t, and F 〈t〉

range over properties of entities of type t, and F̄ 〈t〉 denote the negation

of the property F 〈t〉, that is, [λyt ¬F 〈t〉y]. Then we may define

xt is incomplete
def
= ∃F 〈t〉(¬xF & ¬xF̄ )

So if there is a property such that neither it nor its negation are encoded

by an object, we say that object is incomplete. Clearly, the examples

of mathematical objects and relations that we’ve discussed—such as 2<,

∅ZF, <<, etc.—are incomplete in this sense. Consider the more general

case of an arbitrary element κT of the structure T . Given the Equivalence

Theorem for Individuals, that for any property F , κTF ≡ T |= FκT , it

should be clear that there is a property (e.g., E!) making κT incomplete.13

Notice that the structuralist slogan ‘Mathematical objects possess only

structural (relational) properties’ is ambiguous with respect to the theory

of abstract objects. The notion ‘possess’ can be represented by two differ-

ent forms of predication, exemplification and encoding. The slogan is false

when ‘possess’ is read as ‘exemplifies’, yet true when read as ‘encodes’.

This immediately undermines two classical objections that have been

put forward against structuralist accounts of mathematical objects. Re-

call that Dedekind understood numbers as having no special character

other than their relational properties. This is one of the most important

12See Reck 2003, for a thorough discussion of what Dedekind had in mind in devel-

oping his notion of a simply infinite system.
13To see this, note that real number theory < does not include the concept of being

concrete (E!). So, it is not the case that < |= E!2 nor is it the case that < |= Ē!2.

Thus, in object theory we have ¬2<E! & ¬2<Ē!, showing that 2< is not complete.
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ways in which Dedekind’s structuralism is distinguishable from traditional

Platonism, for the latter doesn’t explicitly endorse abstract objects that

are in any sense incomplete. Russell (1903) objected to Dedekind’s un-

derstanding of the numbers by saying:

[I]t is impossible that the ordinals should be, as Dedekind suggests,

nothing but the terms of such relations as constitute a progression.

If they are to be anything at all, they must be intrinsically some-

thing; they must differ from other entities as points from instants,

or colours from sounds. What Dedekind intended to indicate was

probably a definition by means of the principle of abstraction . . .

But a definition so made always indicates some class of entities

having . . . a genuine nature of their own. (249)

He goes on:

What Dedekind presents to us is not the numbers, but any progres-

sion: what he says is true of all progressions alike, and his demon-

strations nowhere—not even where he comes to cardinals—involve

any property distinguishing numbers from other progressions. . . .

Dedekind’s ordinals are not essentially either ordinals or cardinals,

but the members of any progression. (Russell 1903, 249–51)

From the point of view of object theory, Russell’s conclusion—that it

is impossible that the ordinals should be nothing but the terms of such

relations as constitute a progression—doesn’t follow, if understood as an

objection to the idea of special incomplete structural elements. Nor does

Benacerraf’s (1965) conclusion follow:

Therefore, numbers are not objects at all, because in giving the

properties (that is, necessary and sufficient) of numbers you merely

characterize an abstract structure—and the distinction lies in the

fact that the ‘elements’ of the structure have no properties other

than those relating them to other ‘elements’ of the same structure.

(70)

Clearly, 2<, as identified above, is an object despite its encoding only the

relational properties to other elements of the structure <. Benacerraf’s

argument fails for structural elements that both encode and exemplify

properties.
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Our notion of incompleteness undermines other alleged counterexam-

ples to the structuralist view that mathematical objects are incomplete.

For example, Shapiro (2006, 114) and Linnebo (2008, 64) both note that

a mathematical object can’t have only the mathematical properties de-

fined by its structure—since, for example, 3 has the property of being

the number of Shapiro’s children, being one’s favorite number, being ab-

stract, etc. From the point of view of object theory, however, these are

not counterexamples but rather exemplified properties. The examples are

consistent with there being objects that are incomplete with respect to

their encoded properties.14 Thus, full retreat from incompleteness isn’t

justified.

Finally, note that the notion of incompleteness defined above applies

also to mathematical relations. We take this to be a way to understand

indeterminacy in mathematics. Philosophers have remarked on the fact

that many of our mathematical concepts are simply indeterminate. For

example, given that the Continuum Hypothesis is independent of ZFC, it

is claimed that the notion of set and set membership is indeterminate (see,

e.g., Field 1994). On our view, this indeterminacy has a natural explana-

tion and analysis, since it is captured by the idea that ∈ZFC is incomplete

with respect to the mathematical properties of relations that it encodes.

3.4 Essential Properties of Elements

The question of the essential properties of the elements of a structure has

recently been the subject of some attention. After considering whether the

natural numbers have any non-structural necessary properties or whether

they have any non-structural mathematical properties, Shapiro notes (2006,

14Actually, in object theory one has to be somewhat careful in asserting what prop-

erties there are. It is straightforward to represent, in object theory, the claims that

the natural number 3 and the Peano Number 3 both exemplify being abstract, and

exemplify being one’s favorite number, but the theory suggests that the way in which

the natural number 3 is the number of Shapiro’s children is different from the way in

which the Peano Number 3 is the number of Shapiro’s children. In the former case,

the natural number 3 encodes the property of being a child of Shapiro (because the

natural number 3 is defined, following Frege, as the object that encodes all and only

those properties that have exactly three exemplification instances), whereas in the lat-

ter case, one has to define a 1-1 correspondence between the first three elements of

PNT and the objects exemplifying the property of being a child of Shapiro. See Zalta

1999 for a full discussion of how object theory reconstructs the natural numbers by

following Frege’s definitions in the Grundgesetze.
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115) that the official view of his 1997 book is that individual natural num-

bers do not have any non-structural essential properties. He then says:

Kastin and Hellman point out that, even so, numbers seem to have

some non-structural essential properties. For example, the number

2 has the property of being an abstract object, the property of

being non-spatio-temporal, and the property of not entering into

causal relations with physical objects. . . . Abstractness is certainly

not an accidental property of a number—or is it? (2006, 116)

He goes on to note that abstractness is not a mathematical property, and

then wonders whether the abstractness of 2 follows from its characteri-

zation as a place in the natural number structure plus some conceptual

and metaphysical truths (116–7). At one point, there is an extended

discussion (117–20) on whether abstractness is a contingent property of

structures and their objects.

On the present analysis, it is clear that Shapiro is driven to such con-

siderations about what are the essential and necessary properties of the

numbers, in part, because he doesn’t have the means of distinguishing the

essential properties of the numbers from their necessary properties. This

is precisely the treatment developed in detail in Zalta 2006. There it is

noted that in the context of object theory, one can easily distinguish the

necessary properties of abstract objects from their essential properties.

Zalta first notes, as have others, that the traditional definition of ‘F is

essential to x’ has an otiose clause, namely, the antecedent in the modal-

ized conditional: 2(E!x → Fx). Such a definition, on a traditional view

of mathematical objects as necessary existents, simply reduces the essen-

tial properties of mathematical objects to their necessary properties.15 If

we simply get rid of the otiose clause so as to retain a definition of the

necessary properties of an abstract object x, we may distinguish the nec-

essary from the essential properties of abstract objects (using x here as a

restricted variable), defining

x exemplifies F necessarily
def
= 2Fx

F is essential to x
def
= xF

15Zalta (2006) also notes that there are several notions of essential property that

apply to ordinary objects, and that these are to be defined differently from those that

apply to abstract objects. See his definitions of weakly essential, strongly essential,

and necessary properties of ordinary objects in 2006 (Section 3, 678–85).
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These definitions make it clear that encoded properties are more impor-

tant to the identity of the elements of a structure: such encoded properties

are the ones by which they are identified via the Reduction Axiom for In-

dividuals and by which they are individuated by the definition of identity

for abstract objects. These essential (encoded) properties are the ones by

which they are conceived within our mathematical theories. It is not the

necessarily exemplified properties but the encoded properties that make

abstract objects the objects that they are.

Thus, the examples of Kastin and Hellman that concerned Shapiro

in the passage quoted above are not compelling. The following proper-

ties are all necessary without being essential: being abstract, being non-

spatiotemporal, not entering into causal relations with physical objects,

not being a building, not being extended, etc. We need not carry on an

extended discussion of whether abstractness is an essential or contingent

property of the elements of structures. It is a false dichotomy. Abstract-

ness is provably non-essential (yet remains necessary), and this validates

one of Shapiro’s proferred solutions, when he says ‘To summarize, on the

resolution in question, we . . . claim that the purported non-mathematical

counterexamples, like abstractness, are not essential to the natural num-

bers’ (2006, 120). Moreover, we may retain and give precision to Shapiro’s

original thesis in 1997, namely, that by defining the properties essential

to the elements of a structure as those they encode, they have only their

mathematical, structural properties essentially. For a full and complete

discussion, including an explanation of why it is essential to {Socrates}
that it have Socrates as an element, without the property of being an

element of {Socrates} being essential to Socrates, see Zalta 2006.

Additional concerns from Hellman are also readily dispatched. Con-

sider the following passage in Hellman 2001 (193):

We say that Dedekind described the natural numbers, that Shapiro

referred to the number 7, that 9 enumerates the planets, etc. The

idea of objects with ‘only these properties’, specified in some ax-

ioms, seems incoherent. Perhaps what is intended is that the posi-

tions have only those essential properties required by the defining

axioms. But even this cannot be quite right: surely places are

non-concrete, for example, and necessarily so. But mathematical

axioms say nothing about such matters.

There is no incoherency of the kind Hellman suggests, given objects that
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have a dimension in which they are incomplete, and moreover, it is exactly

right to say numbers ‘have only those essential properties required by the

defining axioms’.

From our definition of the elements of a structure T (Section 3.2), it is

clear that the identity conditions for such elements are given by the right

disjunct of the definition of x= y in Section 2.1: the elements of struc-

tures may be identified whenever they encode the same properties. We

may legitimately reject Keränen’s (2001, 2006) stipulation that a struc-

turalist can’t appeal to properties denoted by λ-expressions containing

singular terms that themselves denote elements of systems or ‘places’ in

structures. He suggests (2001) that such constraints are needed so as to

allow the realist structuralist ‘to say both that (a) one can individuate

places without appealing to elements in any particular system, and yet

(b) in some sense places are individuated by the very relations their occu-

pants have to one another’ (317). But if we take the ‘places’ in structures

to be elements of a structure (as this is defined above), we see no reason

to accept those constraints. For clearly the realist structuralist, if she is

to be able to say, with Dedekind, Benacerraf, etc., that the elements of

a structure have no properties other than those relational properties that

they bear to other elements of the structure, should also be allowed to

say that the element 1 of Peano Number Theory ‘has’ such properties as

being the successorPNT of the element 0 of Peano Number Theory, that

is, that 1PNT encodes [λx SPNTx0PNT]. Thus 1PNT’s identity comprises

such relational properties.

Nevertheless, we are in full compliance with Keränen’s requirement

(2001, 312 and 2006, 147) that realist structuralism offer an account of

identity that fills in the blank of his ‘identity schema’ (IS). Since Keränen

admits that the axiom of Extensionality (2006, 152) constitutes a non-

trivial account of the identity of the objects in Zermelo-Fraenkel set the-

ory, he must admit that our definition of identity, which has as a theorem

that ∀x, y[(A!x & A!y & ∀F (xF ≡ yF )) → x= y], counts as a non-trivial

account of the identity of abstract objects, and hence, of the elements

of structures.16 And, as noted above, we aren’t smuggling in any illicit

model-theoretic facts about the places in structures (or elements of sys-

tems) when identifying them as we have done.

16This generalizes to the relations of structures as well. It is a theorem that

∀R,S(A!R& A!S → (∀F (RF ≡ SF )→ R=S)).
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4 Consequences of the View

We now show how to resolve the issues (1)–(4) noted in Section 1 as

consequences of the definitions from the previous section. We show, in

turn, that the elements of different structures are different objects, that

a structure and its elements ontologically depend on each other, that

haecceities of abstract and mathematical objects don’t exist, and that

the problem of indiscernibles has a natural solution.

4.1 Elements of Different Structures Are Different

In Resnik 1981, it is claimed that when we fix the occurrence of a pattern,

for the purposes of giving a semantics to the terms of a theory, ‘there

is, in general, no fact of the matter concerning whether the occurrence

supposedly fixed is or is not the same as some other occurrence’ (545).

Resnik’s ‘referential relativity’ here, and elsewhere (e.g., Resnik 1997, 90,

214), leads MacBride (2005) to say ‘According to Resnik, there is no fact

of the matter concerning whether the natural number 2 is identical to or

distinct from the real number 2 (since these numbers are introduced by

distinct theories)’ (570).

By contrast, Parsons (1990) believes ‘one should be cautious in mak-

ing such assertions as that identity statements involving objects of dif-

ferent structures are meaningless or indeterminate’ (334). And Shapiro’s

view has evolved on this issue, from one of cautious indeterminacy (1997)

to that of claiming ‘places from different structures are distinct’ (2006,

128). Historically, from the remarks Frege makes in 1893/1903 (Volume

II, §159ff), it is clear that he took the real number 2 to be distinct from

the natural number 2. He introduced different numerals for the natural

numbers and the reals, and defined both in terms of their applicability:

the natural numbers are defined so as to answer questions like ‘How many

F s are there?’, while the real numbers are defined for use in measurement.

Our approach is based on the idea that different conceptions of objects

(relations) yield different objects (relations).17 If different properties are

17We caution against a misunderstanding of our principle that if the conceptions

differ the objects differ. One might think this view implies that there must be distinct

sets of real numbers, for example, one arising from Dedekind’s conception of them

as cuts and one arising from Cantor’s conception of them as equivalence classes of

Cauchy sequences. But, in fact, no such conclusion is warranted. Any construction of

the real numbers must satisfy the usual set of axioms which uniquely determine their
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required to characterize the abstract objects x and y, or to characterize

the abstract relations F and G, then the abstract objects or relations so

characterized encode different properties and thus are different. To think

otherwise is to suppose that abstract objects and relations are somehow

out there, independent of our theories of them, waiting to be discovered.

This is another way in which our view differs from traditional Platonism.

With this in mind, object theory sustains the view Shapiro adopted

in 2006 (128–9) by way of the following, principled resolution of the issue

before us: if the structures are different, the properties encoded by the

elements and relations of the structure will be different, and thus the

elements and relations themselves will be different. The natural number

2 is not the same as the number 2 of Real Number Theory, and indeed,

the natural number 2 is distinct from the number 2 of Peano Number

Theory (for the reason, see footnote 14).

Moreover, our theory yields the conclusion that neither the natural

number 2 nor the number 2 of PNT are identical to the third element of

any ω-sequence of sets that can be defined in any sufficiently strong set

theory. The elements of ω-sequences have a set-theoretic structure, and

thus set-theoretic relational properties, not shared by the natural numbers

or the Peano numbers.

Notice how this offers a response to MacBride’s (2005) objection con-

cerning Shapiro’s (then forthcoming) 2006 position. MacBride notes that

Shapiro’s position has ‘two key assumptions: (i) the same object can-

not belong to different structures; (ii) mathematical objects of different

kinds belong to different structures’ (2005, 579). MacBride says in each

case that ‘nothing has been established to preclude’ either the possibility

that an object belongs to more than one structure or the possibility that

2natural is 2< (579). One gets the sense that MacBride believes that from

the perspective of mathematical practice, 2natural ought to be the same

as 2<. But MacBride’s reflections don’t get a purchase in the present

theory. Our view doesn’t assume (i) and (ii); rather, they are principled

consequences of the analysis. We have grounded reasons for denying that

2natural is 2<. One might think that these versions of 2 should be collapsed

because there ought to be one ‘true’ universe of mathematics. But we

think our view—which keeps the objects of the various theories separate—

properties and relations. Thus, there is only one domain of real numbers: Dedekind

cuts and equivalence classes of Cauchy sequences are different conceptions of how to

represent real numbers in set theory, not different conceptions of the real numbers.
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is closer to mathematical practice. Similarly, Awodey (2004, 56) holds:

As opposed to this one-universe, ‘global foundational’ view, the

‘categorical-structural’ one we advocate is based instead on the

idea of specifying, for a given theorem or theory only the required

or relevant degree of information or structure, the essential fea-

tures of a given situation, for the purpose at hand, without as-

suming some ultimate knowledge, specification, or determination

of the ‘objects’ involved. The laws, rules, and axioms involved in a

particular piece of reasoning, or a field of mathematics, may vary

from one to the next, or even from one mathematician or epoch to

another. The statement of the inferential machinery involved thus

becomes a (tacit) part of the mathematics . . . Thus according to

our view, there is neither a once-and-for-all universe of all mathe-

matical objects, nor a once-and-for-all system of all mathematical

inferences.

Consequently, we see no reason to accept MacBride’s suggestion (in the

same passage) that we have more motivation to multiply types of relations

(i.e., postulating natural successor, real successor, etc.) than to multiply

different kinds of objects. As far as we know, there is no mathematical

practice of defining a successor relation on the reals. Moreover, we would

argue that there is, in any case, a fluidity to this practice of embedding

and identifying structures that is part and parcel of mathematical prac-

tice. The fact that we can define, in object theory, a mapping that embeds

the natural numbers in the reals doesn’t imply that we have to identify

structures at the ontological level.

Finally, we should return to an earlier example in light of the fact our

theory is also based on the idea that different conceptions of relations

yield different relations. Object theory yields the theorem that ∈ZFC
and ∈ZFC+CH are distinct relations. As soon as the axioms for ZFC+CH

are formulated so as to decide the question of the Continuum Hypothe-

sis, the axioms capture a different conception of a membership relation.

Since ZFC and ZFC+CH embody different conceptions of membership,

the relations conceived, ∈ZFC and ∈ZFC+CH, are different. The latter un-

derwrites theorems and properties of sets derived from the truth of CH

while the former does not. Our work in Section 2 above leaves us with

a way of understanding the distinctness of these, and similar, relations
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in terms of the different properties of relations they encode.18 Such rela-

tions are not ‘out there waiting to be discovered’, but are the way that

our various theories of them describe them to be.

4.2 Ontological Interdependence

The issue of ontological dependence is sometimes thought to distinguish

structuralism from Platonism. Platonic mathematical objects allegedly

exist independently of each other and independently of any mathematical

structures, while on some structuralist conceptions, mathematical objects

are thought to depend ontologically on their structure or on each other.

An early version of the view might be found in Resnik (1982, 95), when he

claims ‘Mathematical objects . . . have their identities determined by their

relationships to other positions in the structure to which they belong’. But

this is not as explicit as Shapiro, who says ‘The structure is prior to the

mathematical objects it contains’ (1997, 78) and elsewhere says

The number 2 is no more and no less than the second position in

the natural number structure; and 6 is the sixth position. Neither

of them has any independence from the structure in which they

are positions, and as positions in this structure, neither number is

independent of the other. (2000, 258)

And more recently, Shapiro, having quoted the passage from 1997 just

cited, writes, ‘With these passages, I said (or meant to say) that a given

structure is ontologically or metaphysically prior to its places’ (2006, 142).

Linnebo (2008, 67–8) is even more explicit about the issue, since he dis-

tinguishes the thesis, that each mathematical object in a mathematical

structure depends on every other object in that structure, from the the-

sis that each mathematical object depends on the structure to which it

belongs. Linnebo goes on to argue that there are some cases where both

18Note that the infamous Julius Caesar problem (Frege 1884, §66, §68) doesn’t affect

the present theory: no context of the form ‘#F = x’ is left undefined for arbitrary

x, unlike in Frege’s theory. In object theory, x = y is generally defined, and the

substitution instances can be terms denoting any objects whatsoever. So the theory

provides clear truth conditions for the claim ‘The number of F s is Julius Caesar’

(i.e., #F = c), namely, either #F and c are both ordinary objects that necessarily

exemplify the same properties or they are both abstract objects that necessarily encode

the same properties. We claim, therefore, that the various dimensions of the Caesar

problem discussed in MacBride 2006b (metaphysical, epistemological, semantical) get

no traction on the above account.
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dependence claims hold, for example, in some group structures (2008,

74ff). However, he suggests that in the case of set theory, both depen-

dence claims fail in the upward direction, since the elements of a set S

do not ontologically depend either on S or on the entire structure of sets

(2008, 72ff). He agrees, however, that in the downward direction, a set

S does ontologically depend on its elements (2008, 72). Linnebo arrives

at his set-theoretic counterexamples to the dependence claims by way of

considerations from the standard conception of sets.

But the present theory yields a different conclusion: a structure and

its relations and elements ontologically depend upon one another, and

the elements of a given structure depend on each other in the sense

that they are all abstractions governed by the same principles. One can

see why the present theory yields these conclusions: the structure and

its relations/elements all exist as abstractions grounded in facts of the

form T |= p (or even more precisely, in facts of the form In theory T ,

ϕ(Π1, . . . ,Πn, κ1, . . . , κm), where the Πi are relation terms and κj are

singular terms occurring in ϕ). The very definition of the structure T

given above grounds the identity of T in such facts, and the same holds of

the Reduction Axioms for the denoting terms. If one wants a metaphor

that captures the idea, then think of how office-buildings and their offices

ontologically depend upon one another: the office-building doesn’t exist

as an office-building without the offices in it, and the offices don’t exist

without the office-building.

Our conclusions differ from Linnebo (2008, 72ff) for several reasons.

One is that Linnebo relies on Fine’s 1994 notions of essence and ontological

dependence; by contrast, our theory of essence derives from Zalta 2006.

A second is that the asymmetry in pure set theory that Linnebo argues

for (a set depends on its members but the members don’t depend on

the set) may get its purchase from his focus on what might be called

‘unit set theory’: Null Set, Extensionality, and Unit Set Axiom, that is,

∀x∃y∀z(z ∈ y ≡ z = x). If you restrict your attention to unit set theory,

no reference to large cardinals, for example, is made when individuating

unit sets. This might lead one to believe that no set depends on the

universe of sets. But, of course, it is worth pointing out here that the

individuation of any set, whether in unit set theory or full ZF, goes by

way of Extensionality, which quantifies over every set. Thus, there is some

reason to think that the individuation of both ∅ZF, {∅}ZF, or indeed, of

any object that encodes the property SetZF, is defined by the structure
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ZF.19

Note how the present position avoids the circularity objections con-

cerning ontological dependence raised in Hellman 2001 and considered in

MacBride 2006a. Hellman considers the (modal) structuralist view that

endorses (the very possibility of) an abstract structure in which the posi-

tions are ‘entirely determined by the successor function ϕ, and derivative

from it . . . ’ (194). He goes on to note that ‘if the relata are not already

given but depend for their very identity upon a given ordering, what con-

tent is there to talk of ‘the ordering’?’ (194). He concludes there is a

‘vicious circularity: in a nutshell, to understand the relata, we must be

given the relation, but to understand the relation, we must already have

access to the relata’ (194). But no such vicious circularity exists for the

present position, for the identities of the structure itself and its relational

and objectual elements are abstracted from, and thus grounded in, real

invariances that exist in the use of singular terms T (for theories) and

in the use of relational terms Π1, . . . ,Πn and singular terms κ1, . . . , κm
in facts of the form In theory T , ϕ(Π1, . . . ,Πn, κ1, . . . , κm). There is no

problem with circularity here.

4.3 No Haecceities

The issue of whether the elements of a structure have haecceities comes

up frequently in discussions of structuralism. For example, Shapiro writes

(2006, 137):

What reason is there to think that the realm of properties and

propositional functions is up to the task of individuating each and

every object? Unless, of course, there are haecceities, in which

case the identity of indiscernibles is trivially true, and not very

interesting.

Keränen replies (2006, 156) that Shapiro must accept haecceities.

Again, we shall not rehearse the arguments here. Instead, we develop

theoretical reasons for thinking that abstract objects (and thus, the ele-

ments of a structure) do not have haecceities. First, note the weaker fact

19In recent, as yet unpublished work, Linnebo and Horsten show that, at least in

the case of natural set theory (i.e., set theory specified by putting restrictions either

on Basic Law V or on Comprehension for Properties), it is possible to individuate sets

without quantifying over the whole domain, by building a model of identity statements

in stages.
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that the present theory does not guarantee that haecceities for abstract

objects exist. Identity (simpliciter) was defined (Section 2.1) in terms of

encoding formulas. Neither ‘[λxy x=y]’ nor ‘[λx x=a]’ are well-defined;

when the defined notation ‘=’ is eliminated, encoding formulas appear in

the definiens. So we can’t use these formulas inside λ-expressions to form

haecceities. Could one extend the theory by adding such expressions and

asserting that they denote relations? Actually, no, and metatheoretical

considerations show why this is so. For the remainder of the present para-

graph only, let us appeal to ZF set theory for the purposes of modeling

the theory of abstract objects. Models of the theory developed by Dana

Scott and by Peter Aczel have been reported in previous work (see Zalta

1983 and 1999, respectively). Intuitively, in these models, abstract objects

can be modeled by sets of properties, and Comprehension for Abstract

Objects is made true by the fact that the domain of abstract objects is

identified with the power set of the domain of properties. But then one

can’t, for each distinct set b of properties, formulate a distinct property

[λx x= b]; that is, there would be a violation of Cantor’s theorem if dis-

tinct sets of properties b and c could always be correlated with distinct

properties [λx x=b] and [λx x=c], for that would constitute a 1-1 corre-

lation from the power set of the set of properties with a subset of the set

of properties. This explains why the present theory disallows haecceities

for abstract objects.

It would serve well to describe a few deeper theoretical facts about

object theory as we prepare for our discussion of indiscernibles in Sec-

tion 4.4. Recall that the left disjunct of the definition of = is free of en-

coding formulas. Indeed, the following λ-expression, [λxy ∀F (Fx ≡ Fy)],

is perfectly well-defined and, by Comprehension, denotes a relation. It

is an interesting fact about [λxy ∀F (Fx ≡ Fy)] that, as an equivalence

relation, it is well-behaved only with respect to ordinary objects. Not

only is it provably reflexive, symmetrical, and transitive on the ordinary

objects, but it is also provable that whenever there are ordinary objects

d, e such that d 6=e, then [λx x=E d] 6=[λx x=E e].

This becomes significant when we consider how [λxy ∀F (Fx ≡ Fy)]

behaves on abstract objects. Some interesting results trace back to the

following theorem of object theory (where a, b are abstract objects and R

any relation):20

20Consider an arbitrary R. By Comprehension for Abstract Objects,

∃x(A!x& ∀F (xF ≡ ∃y(A!y & F =[λz Rzy] & ¬yF )))
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∀R∃a, b(a 6=b & [λx Rxa]=[λx Rxb])

In other words, for every relation R, there are distinct abstract objects

a, b such that the property of bearing R to a is the same property as that

of bearing R to b. This interesting result has a rather natural explanation

in terms of the models temporarily assumed in the paragraph above. If

a, b are modeled as distinct sets of properties, then clearly we may not

form distinct new properties [λxRxa] and [λxRxb], by the constraints of

Cantor’s Theorem explained previously.

If we apply the above theorem to the relation [λxy ∀F (Fx ≡ Fy)], we

get the result (where a, b are abstract objects) that

∃a, b(a 6=b& ∀F (Fa ≡ Fb))

In other words, there are distinct abstract objects (i.e., they encode dif-

ferent properties) that are indiscernible from the point of view of exem-

plification.

What is happening here is that there are too many abstract objects for

the traditional notion of exemplification to distinguish. Abstract objects

don’t have haecceities, and some are indiscernible with respect to the

properties they exemplify despite being discernible with respect to the

properties they encode. Although these indiscernible abstract objects

don’t actually play a role in our analysis of indiscernibles in mathematics,

it is nevertheless important to have an understanding of the above facts,

as will be seen in the next section.

Call an arbitrary such object k, so that k is defined by

∀F (kF ≡ ∃y(A!y & F =[λzRzy] & ¬yF ))

Now consider [λz Rzk]. Assume ¬k[λz Rzk]. Then, by definition of k,

∀y(A!y & [λz Rzk]=[λz Rzy]→ y[λz Rzk])

Instantiate this universal claim to k, and it follows that k[λz Rzk], contrary to as-

sumption. So k[λz Rzk]. So by the definition of k, there is an object, say l, such

that

A!l & [λz Rzk]=[λz Rzl] & ¬l[λz Rzk]

But since k[λz Rzk] and ¬l[λz Rzk], k 6= l. So

∃x, y(A!x&A!y & x 6=y & [λz Rzx]=[λz Rzy])

./
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4.4 Indiscernibles Are Not Elements

The problem of indiscernibility for structuralism arises whenever there

are non-trivial automorphisms of the domains of mathematical theories.

Mathematical practice reveals the existence of a variety of these non-

trivial automorphisms: in the points of a dense, linear ordering without

endpoints, in the points of Euclidean space, in some of the simplest graphs

and groups exhibiting reflectional and rotational symmetries, in the in-

tegers under addition, in the complex plane, etc. In each of these cases

of non-trivial automorphisms, there appear to be at least two distinct

elements of the domain that are absolutely indiscernible, in the sense

that they have exactly the same (relational) properties. Burgess 1999,

Hellman 2001, and Keränen 2001 clearly describe the problem for the

structuralist: if the elements of structures are identical whenever they

have the same relational properties, there can’t be two or more distinct

indiscernibles, contrary to what appear to be the facts from mathematical

practice. Shapiro (2006, 112) asks the rhetorical question, ‘Indeed, every

point of Euclidean space has the same relations to the rest of space as

every other point. . . . Do I have to say—absurdly—that there is only one

point?’.

Ladyman (2005) proposes that the structuralist adopt standards weaker

than absolute discernibility in response to the problem. Thus, he notes x

and y are ‘relatively discernible’ just in case there is a formula ϕ in two

free variables such that ϕ(x, y) but not ϕ(y, x) (2005, 220). Moments of

time bearing the asymmetrical ‘earlier than’ relation would be discernible

on this standard. But the standard needed for structuralist mathemat-

ics, he suggests, is that x and y are ‘weakly discernible’ whenever there

is two-place irreflexive relation R such that Rxy. Thus, ‘is the additive

inverse of’ is an irreflexive relation R that would weakly discern 2 and −2

in the domain of integers under addition (they bear R to each other but

not to themselves), and weakly discern i and −i in the complex plane (for

the same reason).

MacBride (2006a) offers philosophical considerations against the idea

that a structuralist can appeal to weak discernibility. Describing what he

takes to be a tacit assumption in Russell 1911–12, he says:

In order for objects to be eligible to serve as the terms of an irreflex-

ive relation they must be independently constituted as numerically

diverse. Speaking figuratively, they must be numerically diverse
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‘before’ the relation can obtain; if they are not constituted inde-

pendently of the obtaining of an irreflexive relation then there are

simply no items available for the relation in question to obtain be-

tween. (67)

MacBride thus argues that in order to apply weak discernibility, you must

presuppose that you have separate things that are weakly discernible. So

a structuralist who relies on weak discernibility will need to explain what

constitutes their numerical diversity.

Further, Ketland (2006, 309) offers counterexamples to the standard

of weak discernibility by exhibiting mathematical structures with objects

that aren’t even weakly discernible. He cautions against abandoning the

identity relation that comes with a mathematical theory (311). Ladyman,

himself, has moved away from arguments based on weak discernibility by

providing, with Leitgeb, some additional examples from graph theory

(Leitgeb and Ladyman 2008, 392–3).

We present our solution to the issue of indiscernibles through an ex-

amination of a few cases in detail. Consider first the case of the theory of

dense, linear orderings, without endpoints, as given by the axioms

∀x, y, z(x < y & y < z → x < z) (Transitivity)

∀x(x 6< x) (Irreflexivity)

∀x, y(x 6= y → (x < y ∨ y < x)) (Connectedness)

∀x, y∃z(x < z < y) (Dense)

∀x∃y∃z(z < x < y) (No Endpoints)

Let’s call this theory, and the structure that results, D. Isn’t everything

in D indiscernible?

Ontologically speaking, there are no elements of D; rather, D as a

structure encodes the facts about the ordering relation <D and the iden-

tity relation =D unique to that theory. From such facts, we may conclude

that <D encodes such properties of relations as:

[λR ∀x¬xRx]

[λR ∀x, y, z(xRy & yRz → xRz)]

etc.

That is, <D encodes the property of being a relation R that is irreflexive,

transitive, etc. Although we can identify <D and =D as relations of

the structure D (using the definition of Section 3.2), there is no abstract

object that qualifies as an element of the structure D.
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Consider an analogy. A novel asserts, ‘General B advanced upon

Moscow with an army of 100,000 men’. We think it is unreasonable to

suppose that the analysis of this sentence requires that there be 100,002

characters (General B, Moscow, and 100,000 distinct men) in the novel in

question. Instead, there are only 3 characters: General B, Moscow, and

the army of 100,000 men. Similarly, in the case of the structure D, the

theory D doesn’t require that there be an infinite number of indiscernible

points; all it requires is that there be two relations (namely <D and =D)

that encode—not exemplify—certain properties.

To see why this understanding is justified, note how the closing obser-

vation about structuralism in Keränen 2001 fails to find its mark in the

present theory:

In model theory one takes the various domains of discourse as given,

and assumes that there is no difficulty in securing reference to ob-

jects in these domains. This, we suspect, is the reason why prob-

lems of the kind explored in this paper have so far gone virtually

unnoticed. While the structuralist purports to be constructing a

foundationalist account of mathematical ontology, she neverthe-

less remains captive to the comforting picture model theory offers.

(329)

By contrast, our foundationalist account of mathematical ontology is not

captive to the picture model theory offers. We reject the model-theoretic

definition of what it is to be an object of a theory (i.e., being in the range

of a bound variable of the mathematical theory), and of what it is to be

an element of a structure (i.e., being in the range of a bound variable in a

model-theoretic description of such a structure). But we emphasize that

this is not to claim that the language of model theory can no longer be

used or is somehow illegitimate, but only to claim that we can’t draw on-

tological conclusions on the basis of the language and definitions of model

theory; that theory is not ontologically basic but rather must itself be

analyzed in terms of our philosophically prior system of abstract objects.

Our system offers us the definitions about the elements of structures from

which we may draw ontological conclusions.

We suggest, therefore, that Shapiro’s rhetorical question about the

points of Euclidean space should answered by saying that nothing exem-

plifies being a point of Euclidean space, though that is not to say that

the property of being a point in Euclidean space doesn’t itself encode the
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properties of properties that such a property must exemplify in the theory

of Euclidean spaces.

4.4.1 The Case of i and −i

The problem of the indiscernibility of i and −i arises because there exists

a non-trivial automorphism of the complex plane in which i is mapped to

−i. To see how the problem can be precisely stated for the present view,

consider first how the theory of complex numbers becomes imported into

our theory. Note that usual mathematical practice is to obtain the theory

of complex numbers, C, by adding the following axiom to the axioms

for <:

i2 = −1

When the theorems of C are imported into the present theory, one might

expect that this last axiom would be represented with such singular,

functional, and relational expressions as iC, 2C, 1C, the exponentiation

function ( )( )C , the negative function −C( ), and the identity relation =C.

However, for reasons that will soon become apparent, we won’t index ‘i’;

we’ll simply represent the above axiom as C |= i2 =C −1C, and talk sim-

ply of i, −i, etc., without indices. We may therefore identify the structure

C as the abstract object that encodes exactly the properties F which are

properties of the form [λx p] such that C |= p.

Now one might object to our version of structuralism as follows:

Objection: Your treatment of complex analysis in object theory

yields the absurd theorem (in object theory) that i=−i.

Purported Proof: From mathematical practice (i.e., from a known

automorphism of the complex plane), we know that any i-free for-

mula ϕ(x) in the language of complex analysis (with only x free)

that holds of i also holds of −i, and vice versa. Thus, i and −i
are indiscernible in complex analysis. During the importation of

C into object theory, each formula ϕ(x) defines a property F (by

Comprehension, since the imported formulas have no encoding sub-

formulas). Since i and −i are elements of the structure C, the

Reduction Axiom for Individuals ensures that the indiscernibility of

i and −i in complex analysis becomes manifest in object theory by

the following fact: C |=Fi ≡ C |=F−i. Independently, by the Equiv-

alence Theorem for Individuals, it follows both that iF ≡ C |= Fi

Uri Nodelman and Edward N. Zalta 34

and −iF ≡ C |= F−i. From all these facts, it then follows that

iF ≡ −iF . Therefore, i = −i, by the definition of identity for

abstract objects.

But this purported proof rests on a false premise. In particular, we say:

Reply: The argument is blocked because neither ‘i’ nor ‘−i’ denote

abstract objects—they don’t denote elements of the structure C.

Thus, neither the Reduction Axiom for Individuals nor the Equiv-

alence Theorem for Individuals can be applied to derive facts ex-

pressed by sentences containing ‘i’ and ‘−i’.

It is well known that indiscernibles arise from symmetries (non-trivial au-

tomorphisms) of the structure. Clearly, mathematicians working with a

structure find it useful to give names to indiscernibles. But these names

don’t denote elements of the structure. After all, these names are logically

arbitrary in the same sense as names introduced by the rule of Existential

Elimination. So there is nothing (i.e., no property) within the theory that

distinguishes the indiscernibles from each other. Indeed, the mathemati-

cian doing complex analysis uses ‘i’ and ‘−i’ in a way that is different

from their use of ‘1’ and ‘−1’. The naming of 1 and −1 is not arbitrary—

one can’t permute 1 and −1 and retain the same structure. So it makes

sense to say that ‘i’ and ‘−i’ do not denote objects the way that ‘1’ and

‘−1’ do.

The false premise in the purported proof above is that i and −i are

elements of structure C. Indeed, they fail to be elements by the definitions

in Section 3.1 and 3.2, where we define: x is an element of C iff C |=
∀y(y 6=Cx→ ∃F (Fx&¬Fy)). By this definition, i fails to be an element of

C, because C |= i 6=C−i but there is no property that distinguishes them.

And the same reasoning applies to establish that −i is not an element

of C.

Indeed, we suggest that the correct procedure for interpreting the lan-

guage of C is as follows: before importation, eliminate the logically non-

well-defined term ‘i’ by replacing every theorem of the form ϕ(. . . i . . .)

by a theorem of the form: ∃x(x2 + 1 = 0 & ϕ(. . . x . . .)); then import

the result. We suggest that this is the right procedure because mathe-

matical practice here really involves two steps: (1) add the axiom that

asserts ∃x(x2 + 1 = 0), and (2) eliminate the quantifier and introduce

an arbitrary name for the existentially quantified variable. Though a

structuralist should be happy enough with step (1), the use of arbitrary,
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non-well-defined names in step (2) is not justified ontologically. Though

we are quite happy to allow mathematical practice to carry on in the

usual way, our view is that a philosopher may not appeal to that practice

of using arbitrary names to generate ontological problems.

Under this analysis, then, i and −i disappear and we are left with

structural properties of complex addition, complex multiplication, com-

plex exponentiation, etc. For example, in the case of complex addition

+C, for each theorem ∃x(x2 + 1 = 0 &ϕ(x,+)), we can abstract out prop-

erties encoded by +C of the form [λR ∃x(x2R1 = 0 & ϕ(x,R))]. Similar

techniques can be used for complex multiplication ×C, complex exponen-

tiation, etc. The point is that, ontologically speaking, there is no need

to worry about what constitutes the numerical diversity of i and −i. ‘i’

and ‘−i’ don’t denote distinct abstract objects—they are arbitrary names

used by mathematicians as labels on a structural symmetry of C.

We note here that the conclusion we’ve reached about how to un-

derstand the mathematician’s use of ‘i’, though consistent with the view

described in Shapiro 2008 (300), Brandom 1996 (Section 6), and Menzel

(forthcoming), is based both on a theoretical definition of what it is to be

an element of a structure and a counterfactual theoretical argument as to

why i would fail to be an element of C if one were to treat it as a singular

denoting term in need of an analysis.

4.4.2 Some Other Often Discussed Examples

Our view is that the problems posed for structuralism by simple cardinal

structures, simple (e.g., 2-node) graphs, simple groups and the structure

〈Z,+〉 are all resolved by recognizing that the model-theoretic perspec-

tive has led the discussion astray. In each case, the discussion focuses on

existential claims that, within the theory, are multiply-satisfied by indis-

cernibles. For example, in graph theory, for a 2-node graph with no edges

one can assert

∃x, y(Node(x) & Node(y) & x 6=y))

In 〈Z,+〉, we assert the existence of additive inverses using

∀m∃n(n+m = 0)

In complex analysis, we assert the existence of an imaginary number using

∃x(x2 + 1 = 0)
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In the latter two cases, names are introduced (1 and −1, i and −i, etc.),

yet as we’ve seen, these can’t be understood as genuine names with unique,

distinguishable denotations, but rather must be understood as arbitrary

names. The formulas in which those arbitrary names occur have to be

understood in expanded notation, where the names in the formula are

replaced with variables bound by an existential claim conjoined to the

front of the formula. Ignoring the arbitrary names, the latter two cases

are handled in the same way as the theory of the 2-node graph with

no edges. In all of these cases, our view is that these existential claims

are true only relative to their respective theories. The symmetries such

existential claims introduce are nothing more than higher-order structural

(projective) properties of the relations of the structure.

To see this more clearly, recall the case of the structureD (dense, linear

orderings without endpoints) and consider another example, namely, the

cardinal three-structure (‘3S’) given by the axiom ∃x, y, z(x 6= y & y 6=
z & x 6= z & ∀u(u=x ∨ u=y ∨ u= z)). The structural analysis of 3S in

object theory yields only an abstract relation =3S and the higher-order

projective properties like the following that it encodes:21

[λR ∃x, y, z(¬Rxy & ¬Ryz & ¬Rxz & ∀u(Rux ∨ Ruy ∨ Ruz))]

[λR ∃x, y(¬Rxy)]

[λR ¬∃x1, x2, x3, x4(¬Rx1x2 & ¬Rx1x3 & . . . & ¬Rx3x4 &

∀u(Rux1 ∨ Rux2 ∨ Rux3 ∨ Rux4))]

There are no elements of the structure, though there would be individual

witnesses in any concrete physical system (i.e., group of concrete objects

bearing relations to one another) in which there is a relation R′ that

exemplifies every (higher-order projective) property that =3S encodes.

Only an insistence on the model-theoretic perspective leads one to suggest

otherwise, and this, we would argue, is illegitimate when developing a

philosophy of mathematics free of ontological danglers.

5 Conclusion

We believe that our solution here actually preserves many of the intu-

itions of the structuralists and the structuralist critics. The relations of

21The following properties are ‘higher-order’ because they are properties of relations,

and they are ‘projective’ because they are similar to the following properties, both of

which may be defined as projections of the relation R: [λx∃y(Ryx)] and [λx∃y(Rxy)].
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the theory give a mathematical structure its structure. Without relations,

there’s no structure (even if it is only a relation of identity used in small

cardinal structures). An element of a structure must be uniquely charac-

terizable in terms of the relations of the structure—it must be discernible.

Keränen can’t complain that we’ve used the comforting picture of model

theory for doing mathematical ontology. Leitgeb and Ladyman are cor-

rect to say that the mathematical theory’s identity relation is enough to

support the numerical diversity of mathematical objects (2008, 396)—but

only when working within the mathematical theory. When you move out-

side the theory itself, MacBride (2006a) is vindicated when he says that

the terms of an (irreflexive) relation must be independently constituted

as numerically diverse for the relation to hold.

Given the foregoing, Keränen’s conclusion in the following passage is

unpersuasive:

As we have argued, however, as soon as the task of furnishing

ontology is taken seriously, such a complacent attitude towards

identity and reference must be rejected. And once we do reject it,

we come to realize that in the case of systems with structurally

indiscernible elements, the idea of treating the structure of such

a system as an object in its own right is incoherent. . . . Another

way of putting the point is to say that Benacerraf was right all

along: if mathematical entities have no properties besides the ones

relating them to the other elements in the same structure, they are

not properly individuated objects at all. We can now see why he

was right. (Keränen 2001, 329)

We haven’t taken a complacent attitude, yet we can treat the structures

of these systems as objects in their own right, as long as we avoid the

‘incoherency’ of trying to give ontological weight to the indiscernibles

that stem from structural symmetries. Thus, Benacerraf’s conclusion,

and Russell’s conclusion about Dedekind, are incorrect in a setting such

as ours, though we acknowledge that, in absence of the distinction between

exemplification and encoding predication, those conclusions seemed to be

correctly and reasonably drawn.

We also think Leitgeb and Ladyman (2008, 389) must take care when

they write:

Though philosophical claims about mathematical objects cannot

actually be derived from descriptions of mathematical practice, the
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more closely a position in the philosophy of mathematics resembles

the ways in which mathematicians actually talk and reason, the

more prima facie plausibility it has.

Prima facie plausibility may lead one astray. We have shown in the forego-

ing how philosophical claims about mathematical objects do follow from

descriptions of mathematical practice, once those descriptions are prop-

erly analyzed. Indeed, we claim that our analysis is faithful to mathemat-

ical practice because we show how to go from the claims mathematicians

make within their practice to metaphysical claims that validate the struc-

turalist view. But one can’t draw ontological conclusions directly from the

mathematicians’ actual talk, especially when they take logical shortcuts

by using arbitrary names as if they are genuine names.

Our view also provides a way to analyze Yap’s deflationist understand-

ing of mathematical ontology. She writes:

Dedekind, as I have characterised him, is certainly a deflationist

about ontology.[14] There are such things as mathematical objects,

but they are not things with a ‘real existence’ in a robust real-

ist sense, being only the intensional objects of mathematics. The

objects are created by the axioms, and thus have a rather ‘thin’

existence, since it only makes sense to talk about them with ref-

erence to their background structure. Though, in contrast to an

anti-realist view, Benacerraf’s first criterion has not entirely been

abandoned. Mathematical statements do still refer to mathemati-

cal objects, and the properties of these objects determine the truth

and falsity of such statements. Although these objects differ from

physical ones in their being incomplete, the Dedekindian view does

not reject the criterion of a referential semantics. (2009, 170)

On our view, the deflationary conception of mathematical objects arises

when one restricts one’s attention to the properties they encode.22

Our main point has been to provide foundations for structuralism that

answer basic questions about this view of mathematics. We have shown

22One need not endorse Yap’s suggestion that intensional objects are not real in

a robust sense. Yap’s view may be a result of the restrictions of the classical logic

of exemplification, in which one can’t assert the existence of incomplete objects (i.e.,

objects x such that there is a property F such that neither Fx nor F̄ x). But, if the

quantifiers in the logic of encoding are interpreted in the usual Quinean way, so as to

assert real existence, our logic would allow us to assert the real existence of intensional

objects that are incomplete with respect to the properties they encode.
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how our foundations are grounded in basic insights about abstract objects

and the value of theorems and truths over entities. We have shown how

philosophical issues are resolved from theoretical considerations instead of

appeals to intuitions about a particular concern or intuitions about what

constitutes faithfulness to mathematical practice. We emphasize that

claims within mathematical practice (existential or otherwise) can’t be

exported to simple facts. And we are faithful to that practice by showing

how to move from descriptions of the practice to philosophical claims

about structuralism. We hope to have at least provided a standard for

structuralism: the transition from mathematical practice to philosophical

claims can be done carefully and precisely.23
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