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Abstract

Using a dual representation, we show that the Markov equilibria of the one-period-bond
Eaton and Gersovitz (1981) incomplete markets sovereign debt model can be represented as a
�xed point of a contraction mapping, providing a new proof of the uniqueness and existence
of equilibrium in the benchmark sovereign debt model. �e arguments can be extended to
incorporate re-entry probabilities a�er default when the shock process is iid . Our represen-
tation of the equilibrium bears many similarities to an optimal contracting problem. We use
this to argue that commitment to budget rules has no value to a benevolent government. We
show how the introduction of long-term bonds breaks the link to the constrained planning
problem.

1 Introduction

�is paper provides a compact characterization of the canonical Eaton and Gersovitz (1981) model
of sovereign debt with one-period defaultable, but otherwise noncontingent, bonds. In particu-
lar, we show that the Markov equilibrium allocation can be characterized in a single Bellman
equation that is the �xed point of a contraction mapping. �is immediately yields existence and
uniqueness, providing an alternative approach to the recent results of Auclert and Rognlie (2016).

�e fact that the equilibrium is the solution to a Bellman equation also sheds light on the eco-
nomics of the equilibrium. �e dynamic programming problem shares many similarities with an
optimal contracting problem between a principal and an agent that is risk averse and lacks com-
mitment. In this sense, the equilibrium allocation has a number of e�ciency properties. However,
the contracting problem includes a constraint that re�ects market incompleteness, highlighting
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Rognlie for helpful comments. We also thank the editor, associate editor and referees. �e views expressed herein
are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve
System.
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the ine�ciencies that arise due to the ad-hoc constraints on contracts imposed in the Eaton-
Gersovitz tradition.

�e argument has two crucial steps. �e �rst is to consider a dual representation of the
equilibrium. Speci�cally, we consider maximizing the value of debt subject to delivering a level
of utility to the government. �is yields a function B(s,v), which speci�es the value of debt when
the exogenous state is s and the “promised utility” of the government is v . �e choice variables
in this program are government consumption (or net payments to the lender) in the current state
as well as continuation values in successor periods, v(s′) for all s′ in some state space S . �e
optimization is subject to the government’s lack of commitment.

At this point, the description is a textbook principal-agent problem with complete markets
and one-sided limited commitment. Hence, the second step of the argument is to ensure that the
optimal allocation is consistent with incomplete markets. In particular, the value of debt next
period cannot vary across state realizations in which the government repays. �is requires that
B(s′,v(s′)) is invariant across all s′ ∈ S in which the government repays. �is is re�ected in an
additional constraint that features the representative lender’s value function.

�e equilibrium is then characterized by an operator that maps the space of possible debt
values, B, into itself. Di�erently from a primal approach, our dual representation allows us to
show that the function B is the �xed point of a contraction operator. �is immediately implies
uniqueness of the equilibrium and can be used to show its existence. Uniqueness has recently
been established by Auclert and Rognlie (2016), who provide a clever proof of uniqueness based
on a replication argument similar to Bulow and Rogo� (1989b). One contribution of this paper is
to establish uniqueness using standard recursive techniques that are taught in �rst-year graduate
courses.

As a consequence of the dual-contracting approach, the analysis highlights certain e�ciency
properties of the equilibrium. �e ability to commit to future debt issuances cannot improve
upon equilibrium allocation, and thus �scal rules have no value. In particular, aside from the
default decision, there is no loss or gain if the government, as part of the contract, cedes future
�scal de�cit choices to the lenders. �ere is also no coordination failure that can lead to a sub-
optimal outcome, highlighting the di�erence between the Eaton-Gersovitz model and the closely
related model of Cole and Kehoe (2000) that does feature self-ful�lling crises. �e di�erent timing
assumptions in the Cole-Kehoe model are not consistent with our dual formulation.

�e use of the dual-contracting approach and the e�ciency properties of short-term bonds
has a precedent in Aguiar, Amador, Hopenhayn and Werning (2019). �at paper demonstrates
how short-term �nancing is e�cient in a sovereign debt model where uncertainty a�ects only the
value of default (that is, the only shocks are those that a�ect the outside option of the government)
and consumption is deterministic absent default. A contribution of the present paper is to extend

2



this e�ciency result to the standard incomplete markets environment where uncertainty a�ects
the endowment and the equilibrium consumption process. �is requires the introduction of a
new constraint that restricts how continuation values can vary by state.

�e e�ciency of short-term bonds stand in contrast to models with long-term bonds.1 �is
distinction is made transparent in our dual formulation. �e relevant objective for the represen-
tative lender is the market value of debt. �e relevant constraint from incomplete markets is that
the face value of debt is noncontingent. Conditional on nondefault, with one-period bonds, the
market value equals the face value at the time of repayment; hence, the same function B charac-
terizes both the value and the constraint set, and the program searches for a single object that sat-
is�es the dual Bellman equation. With long-term bonds, this is no longer the case. �is provides
a stark re�ection of the fact that long-term bonds are subject to dilution (that is, disagreement
about �scal policy between the lender and government) and can induce multiple equilibria in the
Eaton-Gersovitz model (see, for example, Aguiar and Amador (2018) and Stangebye (2018)).

�e environment we study hews closely to the canonical one-period Eaton-Gersovitz models
popular in the quantitative literature, such as Aguiar and Gopinath (2006) and Arellano (2008).
Following the original Eaton-Gersovitz paper, we assume there is no reentry a�er default, but do
allow for arbitrary additional punishments. �is makes the deviation utilities primitives of the
environment rather than equilibrium objects. �e results can be extended to allow for reentry
under iid endowment shocks, but we do not have results for general Markov processes.

In addition to long-maturity bonds, other deviations from the standard one-period-bond Eaton-
Gersovitz model can lead to multiplicity. Lorenzoni and Werning (2018) consider an environment
in the spirit of Calvo (1988) where a government following a �scal rule is vulnerable to self-
ful�lling shi�s in the interest rate of its debt. Ayres, Navarro, Nicolini and Teles (2018) consider
an environment in which lenders o�er the sovereign an interest rate before the sovereign com-
mits to a borrowing amount and show how this auction protocol generates multiplicity with
one-period bonds.2 �is highlights the role played by the Eaton-Gersovitz assumption that the
government is strategic in regard to the impact debt issuance has on prices.

Passadore and Xandri (2018) show that multiplicity can arise in the Eaton-Gersovitz model
if the government is prevented from holding assets. We therefore place no bounds on the space
of assets. To ensure that B is bounded, we restrict that consumption lies in an arbitrarily large
but compact set; this places a de facto upper bound on the government’s value achieved in any

1See, for example, Cha�erjee and Eyigungor (2012), Hatchondo and Martinez (2009), and the already cited Aguiar
et al. (2019).

2Lorenzoni and Werning (2018) also show how multiplicity arises with long-term bonds when the sovereign
endogenously chooses its expenditures but faces constraints in its ability to reduce the de�cit when spreads are
high. Also in the spirit of Calvo (1988), Ayres et al. (2018) show how the same multiplicity arises when the sovereign
commits to �nancing a given �scal de�cit level before the market interest rate is determined.
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equilibrium and hence ensures our equilibrium operator maps bounded functions into bounded
functions. As is standard, the government has time-consistent preferences. �erefore, the analy-
sis does not extend to models in which the government has quasi-geometric preferences, such as
Aguiar and Amador (2011) or Alfaro and Kanczuk (2017).

�e paper is organized as follows. Section 2 introduces the environment and provides a basic
characterization of equilibria. Section 3 shows that the equilibrium is a �xed point of a contraction
mapping. Section 4 discusses the e�ciency of the unique equilibrium and why �scal rules are
not useful. We also discuss why introducing long-term bonds breaks the usefulness of our dual
approach. Section 6 shows how the analysis can be extended to the case of reentry a�er default
(as long as the shock process is iid). Section 7 concludes. Appendix A collects all of the remaining
proofs not included in the main text.

2 �e Eaton-Gersovitz Model

Environment. Let us consider the standard sovereign debt model with one-period bonds, orig-
inally introduced in Eaton and Gersovitz (1981). Time is discrete, indexed by t = 0, 1, . . . , and
there is a single tradable good that is the numeraire. �ere is a small open economy with a
government that makes all consumption, debt-issuance, and default decisions. �ere is also a
international �nancial market, populated by risk-neutral investors that demand a gross interest
rate of R > 1.

Let st denote the exogenous state vector of the economy at time t , and let st denote its history,
up to and including period t . �e exogenous state vector is st ∈ Swhere S is a �nite set. Let π (s′|s)
denote the probability of state s′ next period given s this period.

�e timing within a period is as follows. �e small open economy starts with an inherited
debt level b, all of which matures in the current period. Nature then draws the current state s .
A�er observing s , the government decides whether to repay its maturing debt or default. If it
does not default, the government receives an endowment y(s), auctions new bonds, pays o� the
maturing debt, and consumes. We restrict a�ention to Markov-perfect equilibria of the game
between the government and the international �nancial markets.

We impose the following assumption on technology:

Assumption 1. �e transition probabilities are such that π (s′|s) > 0 for all (s, s′) ∈ S × S. In
addition, mins∈S y(s) ≡ y > 0 and maxs∈S y(s) ≡ y < ∞.

Let V R(s,b) denote the equilibrium value to the government if it chooses to repay its debt
given (s,b). If it defaults, we assume that the payo� to the government is exogenous and equal
to V D(s). Upon default, we assume that the lenders receive a payo� of zero. �e default payo�
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for the government may depend on the exogenous state, but does not vary with the amount of
debt at the time of default. Importantly, in this formulation, the default payo� is a primitive
and does not depend on the other aspects of the equilibrium.3 Strategic default implies that the
government defaults ifV R(s,b) < V D(s). We assume, as it is standard, that the government repays
when indi�erent, that is, when V R(s,b) = V D(s).

Government Optimization. Let us now consider the government’s problem. To rule out Ponzi
schemes, we impose thatb ≤ B, where we assume that B exceeds the present value of the maximal
endowment: B > yR/(R − 1). We let u(c) denote the utility �ows received by the government
given an associated expenditure level c , and we assume that the government evaluates alternative
spending plans discounting future expected utility �ows with an exponential factor β < 1.

We assume consumption is chosen from a compact set: [0, c]. As will become clear below,
an upper bound on consumption allows us to focus on a �nite threshold for assets in any equi-
librium.4 �e bound on consumption can be set to any arbitrarily large �nite number, and in
particular we make the natural assumption that it is always possible to consume the present
value of the endowment in any period:

Assumption 2. c > Ry/(R − 1).

De�ne the upper bound on the value function by V ≡ u(c)/(1 − β).
We assume that the government always prefers to default rather than consume zero in the

current period:

Assumption 3. �ere exists a c ∈ (0, c) such that

u(c) + βV < min
s∈S

V D(s). (1)

�is last assumption implies that, conditional on repayment, consumption is bounded away
from zero — a feature that is helpful when proving the strict monotonicity of the equilibrium
value function.

We now discuss the government’s problem conditional on repayment. �e government faces
an equilibrium price schedule q that maps the current state and newly issued debt b′ ∈ R into
[0,R−1], where R is the world risk-free rate. Given the fact that the government commits to
repaying maturing debt b prior to auctioning b′, q is not a function of b.5 Hence, the budget

3�is is consistent with autarky and exogenous output losses as punishments for default, but it does not admit
reentry to �nancial markets, an extension that we discuss later on.

4�is assumption helps guarantee that the dual operator we provide below maps bounded function into bounded
functions.

5See Cole and Kehoe (2000), and the discussion in Aguiar and Amador (2014), for the implications of an alternative
timing.
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constraint of the government in state (s,b), if the government decides to repay, is c ≤ y(s) − b +
q(s,b′)b′.

We let Xf eas (s) denote the set of debt levels that are feasible to repay in state s ∈ S and let
BF (s) denote its maximum:

De�nition 1. In any equilibrium, we let Xf eas (s) to be de�ned as:

Xf eas (s) = {b | there exists b′ ≤ B such that y(s) + q(s,b′)b′ − b ≥ 0}.

And we let BF (s) represents the largest amount of debt that is feasible to repay in state s :

BF (s) ≡ supXf eas (s) (2)

Note that Xf eas and BF depend on q and hence, are equilibrium outcomes. If the current amount
of debt due, b, is such that b > BF (s), the government has no alternative to default as repayment
is not feasible. In that case, we let V R(s,b) = VNF if b > BF (s), for some su�ciently low value
VNF < mins∈SV D(s).

Given exogenous state s and inherited debt b, the government’s problem conditional on repay-
ment can be wri�en recursively as follows:

If b ∈ Xf eas (s): V R(s,b) = sup
c∈[0,c],b ′

{
u(c) + β

∑
s ′∈S

π (s′|s) max
{
V R(s′,b′),V D(s′)

}}
(G)

subject to:

c ≤ y(s) − b + q(s,b′)b′,

b′ ≤ B.

If b /∈ Xf eas (s): V R(s,b) =VNF

Note that the speci�c value of VNF does not a�ect the value function V R(s,b) for b < BF (s), as
such value is o�-equilibrium (that is, it always triggers default).

Lenders’ Break-even Condition. Given the risk neutrality of lenders (and in�nite collective
wealth), we replace the lenders’ problem and market clearing in the international �nancial mar-
kets with a break-even condition. In particular, given (s,b) and conditional on the government
repaying and auctioning b′, let q(s,b′) denote the equilibrium price of a bond that pays one next
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period absent default. �e lenders’ break-even condition for any s ∈ S and b′ ≤ B is6

q(s,b′) =

R−1 if b′ ≤ 0

R−1 ∑
s ′∈S π (s′|s)1{V R (s ′,b ′)≥V D (s ′)} otherwise,

(BE)

where R−1 denotes the international discount factor, as described previously. �e �rst row on the
right-hand side states that (positive) assets return the risk-free rate.7 �e second row re�ects that
debt will be repaid only if doing so is feasible and optimal for the government. A crucial feature
of (BE) is that current prices depend on the future only through the associated continuation value
V R ; in particular, the debt policy function that generates V R(s,b′) is not directly relevant. �is is
a consequence of one-period debt.

�e Value with No Access to Debt. Before moving on to characterize the equilibrium with
borrowing, let us consider a restricted problem, where the government is only allowed to save
and cannot borrow, that is, b ≤ 0. Let V NA(s,b) denote the corresponding government’s value
function. �is value function is the unique bounded �xed point of the following Bellman: equation

V NA(s,b) = max
c∈[0,c],b ′

{
u(c) + β

∑
s ′∈S

π (s′|s)V NA(s′,b′)

}
(NA)

subject to:

c ≤ y(s) − b + R−1b′

b′ ≤ 0

We impose the following assumption, which implies that default must entail some cost:

Assumption 4. For all s ∈ S, V NA(s, 0) ≥ V D(s).

As established by Auclert and Rognlie (2016), Assumption 4 implies that the government will
never default without strictly positive debt (a result we con�rm below).

De�nition of Equilibrium. Let X ≡ {(s,b) such that s ∈ S and b ≤ B}, the set of admissible
states. With this, we can now de�ne an equilibrium:

De�nition 2. A Markov-perfect equilibrium consists of two functions, V R : X → R and
q : X → [0, 1/R] such that: (i) given q, V R satis�es (G) for (s,b) in X, and the supremum in

6Here, 1x denotes the indicator function that takes one if x is true and zero otherwise.
7We have not explicitly ruled out default when the government holds assets abroad. However, Lemma 1 shows

that our Assumption 4 below is su�cient for this.
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(G) is a�ained for some policy; and (ii) given V R , q satis�es (BE).

Characterizing Equilibria

We now establish key properties of the government’s equilibrium value function. In particular,
we establish that the value function, for a given s , is continuous, weakly decreasing, and strictly
decreasing whenever V is not feasible, as depicted in Figure 1.

Figure 1: �e Government’s Value Function for a given s

b0

V R(s,b)

−A(s)

V

b(s)bD

u(c) + βV

V D(s)

Note: �e diagram depictsV R (s,b) for �xed s ∈ S as a function of b. �resholds −A(s)
and b(s) are de�ned in De�nition 3 and Lemma 3, respectively. Consumption level c
is de�ned in Assumption 3. bD denotes the value such that V R (s,bD ) = V D (s) given
s , and default occurs in state s for b > bD . Note that Assumption 3 implies thatV D (s)
is strictly above u(c) + βV and hence bD < b(s).

Preliminaries

We �rst establish some preliminary results. �e �rst is a property of the feasible repayment set,
BF (s). Using De�nition 1 and that q(s,b′)b′ ≤ R−1B, we have

BF (s) ≤ y + R−1B = B, for all s ∈ S.

�at is, government borrowing is bounded by the present value of the endowment path that
features the highest income realization forever.
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�e next lemma states that it is never optimal to default with a weakly positive net asset
position (Part (i)),8 and it is never optimal to issue debt at a zero price (Part (ii)):

Lemma 1. In any equilibrium,

(i) For any state s ∈ S and b ≤ 0, V R(s,b) ≥ V D(s); and

(ii) For any state s ∈ S and b < BF (s), there exists an optimal debt choice b′ and at least one
element s′ ∈ S such that V R(s′,b′) ≥ V D(s′).

Part (ii) implies that there is always an optimal debt policy such that the government never de-
faults with probability one next period.

Proof. �e proof in the appendix. �

�e next set of results concern the feasibility of the maximal consumption, c , and the maximal
government value,V . Let us de�ne a level of assets that is su�cient to �nance c forever regardless
of future endowment realizations:

De�nition 3. Let A(s) be such that

A(s) ≡ c − y(s) +
c − y

R − 1
for all s ∈ S. (3)

Note that A(s) > 0. We have:

Lemma 2. In any equilibrium, for any state s ∈ S , V R(s,b) = V if and only if b ≤ −A(s).
Moreover, if c = c for any state (s,b) ∈ X, then b < 0.

Proof. �e proof in the appendix. �

Properties of the Value Function

�e following establishes continuity and weak monotonicity of V R on the relevant domain for
debt:

Lemma 3. In any equilibrium,

(i) For any s ∈ S, V R(s,b) is weakly decreasing for b < BF (s).

8Hence, se�ing q(s,b ′) = R−1 for b ′ ≤ 0 is without loss given Assumption 4.
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(ii) For any s ∈ S, there exists a unique threshold b(s) < BF (s) such that:

V R(s,b(s)) = u(c) + βV .

(iii) For any s ∈ S, V R(s,b) is continuous for b ≤ b(s).

Proof. �e proof in the appendix. �

We can now strengthen the monotonicity result:

Lemma 4. In any equilibrium, for all s ∈ S, V R(s,b) is strictly decreasing in b for b ∈
(−A(s),b(s)].

Proof. �e proof is in the appendix. �

3 An Eaton-Gersovitz Contraction Operator

In this section, we proceed to show that the value functionV R must solve a dual problem, whose
solution can be represented as the �xed point of a contraction mapping.

Toward this goal, we �rst combine the government’s problem (G) with the lenders’ break-even
constraint (BE) to write the equilibrium problem as

V R(s,b) = max
c∈[0,c],b ′

{
u(c) + β

∑
s ′∈S

π (s′|s) max
{
V R(s′,b′),V D(s′)

}}
(G′)

subject to:

c ≤ y(s) − b + b′R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′|s)1{V R (s ′,b ′)≥V D (s ′)}

]
,

b′ ≤ B,

where again, we let V R(s,b) = VNF if the constraint set is empty.
Problem (G′) has the familiar recursive structure that takes a continuation value function and

maps it into the current value state by state. Any equilibrium value function V R is a �xed point
of the operator de�ned by this Bellman equation. �e quantitative sovereign debt literature has
developed algorithms to �nd this �xed point numerically. While the operator is monotone and
maps the space of bounded functions into itself (if u is bounded), it does not satisfy discounting.
Even more, it is possible to show that the operator is not in general a contraction mapping (we
provide such an example in Appendix B).

Fortunately, we show below that there is a transformation that delivers an operator that does
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satisfy all of Blackwell’s su�cient conditions. �is alternative operator involves the dual problem
to (G′).

3.1 �e Dual Problem

Given an equilibrium value V R(s,b), let us de�ne the dual of the optimization problem in (G′):

B̂(s,v) ≡ sup
c∈[0,c],b ′

{
y(s) − c + R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′|s)1{V R (s ′,b ′)≥V D (s ′)}

]
b′

}
(B)

subject to:

v = u(c) + β
∑
s ′∈S

π (s′|s) max
{
V R(s′,b′),V D(s′)

}
, (4)

b′ ≤ B. (5)

We now establish a basic duality result, namely, that the inverse of the government’s value
function satis�es problem (B). Speci�cally, Lemmas 2, 3, and 4 imply that in any equilibrium,
there exists a continuous, strictly decreasing function B(s,v) such that

v = V R(s,B(s,v))

for all s,v ∈ S × V where V ≡ [u(c) + βV ,V ], with B(s,V ) = −A(s) and B(s,u(c) + βV )) = b(s) for
all s ∈ S. �at is, B(s,v) is the inverse of equilibrium value function V R(s,b) with respect to its
second argument, b, over its strictly decreasing range (−A(s),b(s)). �en, we have the following
duality result:

Lemma 5. �e function B(s,v) = B̂(s,v) for all (s,v) ∈ S × V.

Proof. �e proof is in the appendix. �

In the next subsection, we show how the solution to problem (B) can represented as the �xed
point of a contraction mapping operator.
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3.2 �e Equilibrium Operator

�e inverse value functionB is a �xed point of an operator implicitly de�ned in (B). More formally,
de�ne the following operator T on functions f : S × V→ R:

T f (s,v) = sup
c∈[0,c],b ′,{w(s ′)}s ′∈S

{
y(s) − c + R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′|s)1{w(s ′)≥V D (s ′)}

]
b′

}
(T)

subject to:

v ≤ u(c) + β
∑
s ′∈S

π (s′|s) max
{
w(s′),V D(s′)

}
(6)

b′ ≤ f (s′,w(s′)) for all s′ ∈ S such that w(s′) ≥ V D(s′) (7)

w(s′) ∈ V for all s′ ∈ S.

Before discussing useful properties of this operator, we discuss di�erences with the original
dual problem (B). �e key alteration is that the government’s repayment value V R no longer ap-
pears in the problem. Rather, the problem allows the choice of the government’s continuation
value state by state, represented by {w(s′)}s ′∈S. In this sense, the problem shares a passing resem-
blance to a standard contracting problem in which a risk-neutral principal insures a risk-averse
agent, subject to limited commitment on the part of the agent. We shall return to this point in
Section 4.

However, recall that one crucial friction in the Eaton-Gersovitz model is the lack of state-
contingent liabilities. �is is accommodated by the presence of b′ in the objective and the con-
straint (7). Speci�cally, the continuation value in the objective is a scalar, b′, rather than a state-
contingent vector of values. �is is the noncontingent debt carried into the next period.

Moreover, the choice of the government’s continuation values must be consistent with the
choice of b′. Hence, a new constraint (an implementability constraint) is introduced in (7). �e
equilibrium imposes that debt and the government’s payo�s be related by b′ = B(s′,w(s′)) for all
s′, which is equivalent to w(s′) = V R(s′,b′) for all s .9

In problem (T), we have relaxed this equality constraint to an inequality, imposing it only for
levels of the continuation value that do not trigger default. �is change allows to restrict a�ention
to continuation valuesw(s′) that lie in V and thus only values in the domain of the �xed point of
(T) need to be considered.10

9Aguiar et al. (2019) study a sovereign debt model without endowment risk. �ey also obtain a dual charac-
terization similar to (T), but without the need for constraint (7) as the equilibrium allocations in their model were
deterministic conditional on repayment.

10In the primal problem, it is in principle possible that for some b ′ and some realizations of the state s ′,V R (s ′,b) 6∈
V. Without this change in the dual problem, it would be necessary to assign a debt value to utility levels outside the
domain of f , V. As we show in Lemma 6, we can bypass this issue.
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Note that, relative to (B), we have also replaced the equal sign in the promise keeping con-
straint with an inequality in (6) and dropped the no-Ponzi condition, which required b′ ≤ B.

Despite these alterations, the equilibrium B that solves (B) is a �xed point of the operator
de�ned by (T):

Lemma 6. Any equilibrium B(s,v) is a �xed point of T .

Proof. �e proof is in the appendix. �

3.3 A Contraction Mapping

We have shown above that the operatorT admits as a �xed point the dual of any equilibrium value
function. Interestingly, even though the original operator that de�ned V R was not a contraction
mapping, the operator T , which works on the dual of V R , is a contraction mapping. We now
proceed to show this.

Toward that goal, we endow the space of functions on which T operates with the sup norm.
Our �rst statement is that T maps bounded functions into bounded functions:

Lemma 7 (Boundedness). Let f : S × V → R be bounded in the sup norm. �en T f is a
bounded function.

Proof. Consider a bounded f such that | | f | |< M for M > 0. For any state s0,v0, consider the policy of c = c and
w(s ′) = V for all s ′ ∈ S. Let b ′0 ≤ −M . �e policy c0,b

′
0, {w0(s ′)} satis�es the constraint set of problem (T), and

thus
(T f )(s0,v0) ≥ y(s0) − c −M/R ≥ y − c −M/R,

but also

(T f )(s0,v0) ≤ y + M/R.

�us, | |(T f )(s0,v0)| |≤ max{y + M/R, c − y + M/R}, which is independent of (s0,v0), and thus, | |T f | |≤ max{y +
M/R, c − y + M/R}, which is bounded. �

Note that this is the place where our assumption that consumption of the government has
an upper bound has really been used — it guarantees that the dual operator T maps bounded
functions into bounded functions. Note also that the particular value of c is irrelevant for all of
the analysis above, as long as it is large enough so that Assumption 2 is satis�ed.

We next show that the operator T is monotone, a property also shared with the original
operator implicit in (G′):
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Lemma 8 (Monotonicity). Let f ,д be bounded functions mapping S×V to R, with f (s,v) ≤
д(s,v) for all (s,v) ∈ S × V. �en, (T f )(s,v) ≤ (Tд)(s,v) for all s,v ∈ S × V.

Proof. Note that (Tд)(s0,v0) only di�ers from (T f )(s0,v0) because of constraint (7). It follows that any choice
available at (T f )(s0,v0) is also feasible at (Tд)(s0,v0) and delivers the same objective. Hence, (T f )(s,v) ≤ (Tд)(s,v)
for all s,v ∈ S × V. �

�e �nal step, and the one where the dual representation is exploited, is to show that the
operator T satis�es the discounting property with module R−1:

Lemma 9 (Discounting). Let a ≥ 0 and let f : S ×V → R be bounded. �en,

[T (f + a)](s,v) ≤ (T f )(s,v) + R−1a

for all s,v ∈ S × V.

Proof. Let a > 0 and we have

[T (f + a)](s,v) = max
c,v (s ′),b′

{
y(s) − c + R−1 max{0,b ′}

∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)}

+ R−1 min{0,b ′}
}

subject to:

v ≤ u(c) + β
∑
s ′∈S

π (s ′ |s) max{v(s ′),V D (s ′)}

b ′ ≤ f (s ′,v(s ′)) + a for all s ′ ∈ S such that w(s ′) ≥ V D (s ′),

c ∈ [0, c]

w(s ′) ∈ V for all s ′ ∈ S,

where we have just replaced b ′1b′>0 with max{0,b ′} and b ′1{b′≤0} with min{0,b ′}.
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We can rewrite the �nal two terms in the objective as

R−1 max{0,b ′}
∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)} + R−1 min{0,b ′} =

R−1 max{−a,b ′ − a}
∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)} + R−1 min{−a,b ′ − a}

+ aR−1

(∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)} + 1

)
≤

R−1 max{0,b ′ − a}
∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)} + R−1 min{0,b ′ − a}

+ aR−1

(
I{b′>a }

∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)} + I{b′≤a }

)
≤

R−1 max{0,b ′ − a}
∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)} + R−1 min{0,b ′ − a}

+ aR−1.

De�ning b̂ ≡ b ′ − a, this implies

[T (f + a)](s,v) ≤ max
c,v (s ′),b̂

y(s) − c + R−1 max{0, b̂}
∑
s ′∈S

π (s ′ |s)I{v (s ′)≥V D (s ′)}

+ R−1 min{0, b̂} + R−1a

subject to:

v ≤ u(c) + β
∑
s ′∈S

π (s ′ |s) max{v(s ′),V D (s ′)}

b̂ ≤ f (s ′,v(s ′)) for s ′ ∈ S.

Note that this problem is identical to the original, save for R−1a in the objective. In particular, [T (f + a)](s,v) ≤
[T f ](s,v) + R−1a. �us, T discounts with modulus R−1. �

�e intuition behind the discounting result in Lemma 9 is simple. Suppose that for all possible
values to the government tomorrow, the payo�s to foreigners in case of repayment increases by
an amount a > 0. Absent default tomorrow, this change would lead to an increase in the present
value of payments to foreigners today of R−1a. �e possibility of default only reduces this value.
Hence, the addition of a to the (dual) continuation value increases the expected present value of
repayments today by at most R−1a < a.11

Lemmas 7, 8, and 9 imply that the operatorT satis�es Blackwell’s su�cient conditions. Hence,
the operator T is a contraction with modulus R−1. �e contraction mapping theorem states that
there is a unique �xed point of T in the space of bounded functions. Recall that we have shown
that an equilibrium dual value function B(s,v) is a �xed point ofT , and thus there is at most one
equilibrium in the Eaton-Gersovitz model.

Note that the contraction mapping theorem guarantees the existence of a �xed point of T . It
11Note that the dual value function only appears in the constraint (7). Because this constraint is linear in the

continuation value and binds with equality, this generates an increase in promised payo�s (b ′) by an amount a.
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is possible to invert this �xed point and construct a primal value function and a price function
that satis�es the conditions in De�nition 2; proving the existence of an equilibrium.12

We summarize these results in the following proposition:

Proposition 1. �ere exists exactly one Markov-perfect equilibrium.

Proof. �e proof of uniqueness follows directly from the uniqueness of the �xed point and the fact that we have
already shown that an equilibrium is a �xed point of T .
�e proof of existence is in the appendix. �

3.4 Discussion of Uniqueness

Auclert and Rognlie (2016) is the �rst proof of uniqueness in the Eaton-Gersovitz model. Au-
clert and Rognlie (2016) use a di�erent approach to establish the result. In particular, they prove
uniqueness by contradiction. Assuming a second equilibrium, the authors construct portfolios
that mimic the allocation in the original equilibrium. �us, the government’s welfare is pinned
down by the best equilibrium. As prices depend only on the government’s value, this uniquely
determines prices. �ere is a link to our proof in that we both exploit the fact that the govern-
ment commits to pay all of its outstanding debt before taking on any new debt, in which case
bond prices depend on the government’s values next period (which depend on the amount bor-
rowed), but crucially not on future �scal policies. As we shall see, longer maturity debt does not
have this feature, and the equilibrium is not necessarily unique.

If the government is restricted from holding assets, then the equilibrium is not unique. Pas-
sadore and Xandri (2018) discuss multiplicity in an environment without assets. If we restrict
b′ ≥ 0, we need an additional constraint in (T). In that case, our proof thatT satis�es discounting
is not valid. Auclert and Rognlie (2016) show that allowing for an arbitrarily small amount of
assets is su�cient to restore uniqueness. �e key is that there is some level of assets (or debt) for
which default is never optimal regardless of creditor expectations.

On the Irrelevance of Sunspots. Suppose that we were to enlarge the state space S by includ-
ing an additional state variable z ∈ Z, unrelated to any payo� relevant state. �is could represent,
for example, a sunspot random variable or something related to the history of actions taken by the
government. Let (s, z) ∈ S×Z represent an element of this new state space. �e same arguments
as above tell us that there is a unique Markov equilibrium, with a value functionV R((s, z),b) that
is the unique �xed point of operator (G′) under the enlarged state space. Now suppose V R(s,b)
is the �xed point of (G′) under the original state space that restricts a�ention to payo� relevant
states s ∈ S . It immediately follows thatV R((s, z),b) = V R(s,b) is a �xed point under the enlarged

12Auclert and Rognlie (2016) provide an alternative proof of existence using the monotonicity of the primal oper-
ator.
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state space. Given that the �xed point is unique, there are no other equilibria. �us, sunspots or
payo� irrelevant state variables have no impact on the equilibrium of the model.

Bulow and Rogo� (1989)’s argument. In their 1989 paper, Bulow and Rogo� show in a
complete-markets environment that no strictly positive level of debt is sustainable if the govern-
ment can save a�er default and if there are no other direct costs of default besides the inability to
borrow again. �eir result is based on an arbitrage argument. It is possible to use the uniqueness
of the Markov-perfect equilibrium to show that the same result holds in the Eaton and Gersovitz
(1981) environment, where markets are incomplete.13

Toward this end, let V D(s) = V NA(s, 0). �at is, the government, a�er default, can save but
cannot borrow again. �e Bulow-Rogo� claim is that, given this outside option, borrowing is not
sustainable in equilibrium. To prove the Bulow-Rogo� claim, we posit that it is true and construct
the associated equilibrium value function. If the associated value is a �xed point of (G′), then zero
borrowing is the only possible equilibrium outcome.

Speci�cally, conjecture the following equilibrium price schedule:

qBR(s,b) =

R−1 for b ≤ 0,

0 for b > 0,

and value function, V BR(s,b), de�ned for b ≤ y(s) as

V BR(s,b) = max
c∈[0,c],b ′

{
u(c) + β

∑
s ′∈S

π (s′|s)V NA(s,b′)

}
subject to:

c ≤ y(s) − b + R−1b′,

b′ ≤ 0,

and as V BR(s,b) = VNF for b > y(s) (as before).
Note that V BR(s,b) = V NA(s,b) for b ≤ 0 and V BR(s,b) < V NA(s, 0) = V D(s) for b > 0 (this

last following from strict monotonicity of the problem above). �is value function justi�es the
conjectured price qBR and is a �xed point of (G′). Given that there is only one �xed point of
(G′), it follows then that {qBR,V BR} is the unique Markov equilibrium. �is equilibrium entails
immediate default for any b > 0: no level of borrowing can be sustained.

13Auclert and Rognlie (2016) use their replication argument to show that the Bulow and Rogo� (1989b) result
holds in the Eaton-Gersovitz model. See also Bloise, Polemarchakis and Vailakis (2017) for a general argument under
incomplete markets.
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Fluctuations in the risk-free rate. It is straightforward to see that we can extend the envi-
ronment to allow for a stochastic or time varying risk free rate. In particular, suppose we replace
R with a function of the exogenous state R(s). If R ≡ mins∈S R(s) > 1, Lemma 9 still holds. Hence,
the dual operator remains a contraction mapping, with modulus R−1, and the uniqueness result
is preserved.

In addition, the Bulow and Rogo� (1989) argument described above holds as well for this case,
as long as R > 1. �at is, without additional punishment for default other than zero access to
debt markets, but with the ability to save in a risk free bond a�er default, the unique Markov
equilibrium cannot sustain any borrowing. �is result is closely related to Bloise et al. (2017),
who have obtained more general conditions for it. It also connects with the recent work by
Bloise, Polemarchakis and Vailakis (2018), who have constructed interesting examples with no
punishments and where borrowing is sustained, but where the real interest rates is required to
be recurrently below 1; that is, R < 1 (or more generally, below the rate of growth of the economy).

4 Constrained E�ciency: Why Fiscal Rules Add No Value

In this section, we show that the equilibrium of the Eaton and Gersovitz (1981) model with one-
period bonds is constrained e�cient, when the incompleteness of the markets and the govern-
ment’s inability to commit to repayment are both taken into account.

To understand this point, consider a situation where the government at time t = 0 commits
to a sequence of debt issuances as a function of the history of shocks: b = {b(st )}t ,st , where
st = (s0, s1, ..., st ) denotes the history of exogenous shocks through time t and b(st ) is the amount
of debt issued at history st and due in period t + 1. We can think of such a state-contingent
debt-issuance policy as arising from a constitutional �scal rule. �e government, however, is still
able to default if its equilibrium value of following this rule lies below the corresponding outside
option for that state.

�e potential value to the government of commi�ing to such a rule is that it potentially a�ects
equilibrium prices. �at is, as the government is large in its own debt market, it recognizes that
there is a corresponding sequence of equilibrium prices associated with a particular �scal rule.

De�ne the sequence {c(st ),v(st )} associated with a �scal rule, given an equilibrium price q =
{q(st )}, by the following recursion:

c(st ) ≡ min
{
y(st ) − b(st−1) + q(st )b(st ), c

}
v(st ) ≡ u(c(st )) + β

∑
s ′∈S

π (s′|st ) max
{
v({st , s′}),V D(s′)

}
, (8)
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where we letv(st ) = V NF if c(st ) < 0, as before. �e price must keep lenders indi�erent, and thus,

q(st ) ≡

R−1 ∑

s ′ π (s′|s)1{v({st , s′}) ≥ V D(s′)} if b(st ) > 0

R−1 if b(st ) ≤ 0.
(9)

�us, associated with any �scal rule is a sequence {c(st ),v(st ),q(st )}t ,st . �e �scal rule design
problem is then to choose b to maximize initial value, v(s0) given b(s−1) = b0:

V?(s0,b0) ≡ sup
{b,q,{v(st ),c(st )}}

v(s0) subject to b(s−1) = b0, (8) and (9). (10)

In this �scal design rule, we are assuming that the designer can choose both the debt sequence
and its associated price (as long as the la�er satis�es the break-even condition for the lenders).
In this way, the designer is allowed to choose the best price (if there were many consistent with a
given �scal rule). �at is, the designer can coordinate the lenders’ expectations. As we will argue
next, there is no value to the �scal rule even in this case. As a result, there will be no value either
when the designer cannot coordinate the lenders’ expectations.

Using the dynamic programming principle, it follows that V? must solve

V?(s0,b0) = sup
c0,b1,q1,{b(st ),q(st ),v(st )}t ≥1,

{
u(c0) +

∑
s ′∈S

π (s′|s0) max{v({s0, s
′}),V D(s′)}

}
(11)

such that

c0 = min{y(s0) − b0 + q1b1, c} (12)

q1 =

R−1 ∑

s ′ π (s′|s)1{v({s0, s
′}) ≥ V D(s′)} if b1 > 0

R−1 if b1 ≤ 0
(13)

{v(st ),b(st ),q(st )}t≥1 satisfy b({s0, s
′}) = b1 for all s′ ∈ S, (8) and (9). (14)

Note that it is optimal to choose a continuation sequence {v(st ),b(st ),q(st )}t≥1 such that
v({s0, s

′}) = V?(s′,b1) for all s′ ∈ S. Replacing v({s0, s
′}) by V?(s′,b1) in the above, we have

an operator that maps the space of potential V? into itself. �e value associated with the opti-
mal �scal rule is a �xed point of this operator. �is operator is identical to that de�ned by the
equilibrium in problem (G′). Given that we have shown that there is a unique �xed point to this
operator, it follows that V R(s,b) = V?(s,b). �us, the ability to commit to a �scal rule o�ers no
scope to increase the government’s value over the Markov-perfect equilibrium value.

A critical feature of the �scal rule design problem above is that the value of autarky,V D(s), is
not a�ected by the rule. �is is natural under the assumption that, once the country defaults, it
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cannot access �nancial markets again, and as a result, it is restricted to consuming its (reduced)
endowment. If we were to change the environment and allow the designer to a�ect, through the
�scal rule, the value of default (and hence, equilibrium prices), then it is possible to construct
examples where a �scal rule generates a value higher than the Markov-perfect equilibrium. It is
not surprising that it may be desirable to manipulate the outside option of an agent in this limited
commitment model – as this potentially relaxes a main friction in the environment.14 Our point
here is that, beyond this (that is, given the value of default to the government), the equilibrium
allocation cannot be further improved once the incompleteness of markets is taken into account.

5 Long-term Bonds: Why the Contraction Argument Fails

Let us now brie�y extend the model to incorporate long-duration bonds as in Hatchondo and
Martinez (2009) and Cha�erjee and Eyigungor (2012). As is now well known, long-duration bonds
generate an ine�ciency into the environment, a point analyzed in detail in Aguiar et al. (2019).15

�e environment is modi�ed in the following way. Rather than issuing a one-period bond, the
government instead issues a perpetual claim to an exponentially declining coupon. Speci�cally,
a perpetuity issued at time t o�ers to pay a coupon 1 in period t + 1, (1−δ ) in period t + 2, (1−δ )2

in period t + 3, and so on. �e parameter δ controls the speed at which the coupon decays: δ = 1
corresponds to the one-period bond, and δ = 0 corresponds to a perpetuity that never decays.
De�ne b as the stock of debt entitled to a coupon 1 today; hence, absent issuance, b decays at the
rate δ .

In a Markov-perfect equilibrium of the long-duration bond model, the government solves the
following problem:

V R(s,b) = sup
{c∈[0,c],b≤B}

{
u(c) + β

∑
s ′
π (s′|s)

{
V R(s′,b′),V D(s′)

}}
subject to c ≤ y − b + q(s,b′) (b′ − (1 − δ )b) ,

where b′ − (1 − δ )b represents the amount of new bond issuances and q(s,b′)(b′ − (1 − δ )b) the
amount of revenue raised from them. Let B(s,b) denote an associated equilibrium debt policy

14For other examples where a policy that a�ects the outside/default option of the agent in a limited commitment
model is bene�cial see Aguiar, Amador and Gopinath (2009) in a context with investment, and Arellano and Heath-
cote (2010) in a sovereign default model with dollarization. See Kehoe and Levine (1993) for a general discussion of
e�ciency in limited commitment models.

15�is ine�ciency is sometimes refered to as “dilution” in the sovereign debt literature. See Hatchondo, Martinez
and Sosa-Padilla (2016) and Hatchondo, Martinez and Roch (2015) for explorations of this ine�ciency and its inter-
actions with alternative �scal rules. Arellano and Ramanarayanan (2012) quantitatively explore its implications for
maturity choice.
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function.
Risk-neutral pricing from the perspective of the lenders leads to the following break-even

condition:

q(s,b′) =

R−1 if b′ < 0

R−1 ∑
s ′ π (s′|s)1[V R (s ′,b ′)≥V D (s ′)] [1 + (1 − δ )q (s′,B(s′,b′))] if b′ ≥ 0.

In case of no default next period, the bondholders receive both the coupon as well as the market
value of the remaining bond: 1 + (1 − δ )q(s′,B(s′,b′)).

�e important element to highlight here is the presence of the equilibrium debt policy func-
tion, evaluated at the subsequent state: the price of the long-duration bond depends not only on
the debt policy chosen today (b′), but also on the debt policy that the government will choose
in subsequent periods. Even if V R(s,b) is strictly decreasing over some domain, implying that
there is a well-de�ned inverse B(s,v) that maps the government’s value to the face value of debt,
this mapping is conditional on a policy B. Hence, the equilibrium cannot be wri�en as the �xed
point of a contraction mapping, as was the case for the one-period bond model. Indeed, as shown
in Aguiar and Amador (2018), there exists parameter values such that the long-duration model
features multiple equilibria — each of them featuring di�erent issuance policies.

6 Reentry a�er Default

In our previous analysis, we have assumed that default entails permanent exclusion from �nancial
markets. �e quantitative literature, however, usually assumes that exclusion is a transitory state:
a government eventually reaccesses the international �nancial markets. In this section, we show
that, under the assumption that shock process s is iid across time, it is possible to extend our dual
approach to show uniqueness when reentry subsequent to default is possible.16

Toward this, let V D(s) denote the value of default under no reentry. �e assumption is that
as long as the government is in the default state, the endowment is yD(s) ≤ y(s), where a strict
inequality represents the output lost a�er default. Speci�cally, let

V D(s) = u
(
yD(s)

)
+ βEV D(s′),

Note that V D(s) ≤ V NA(s, 0) for all s ∈ S.
Now suppose that default is punished by the same lost endowment, but with constant hazard

θ , the government’s liabilities are forgiven and it regains access to bond markets.17 Let Ṽ D denote
16Auclert and Rognlie (2016) also extend their uniqueness proof to encompass reentry under an iid shock process.
17�e initial quantitative work of Aguiar and Gopinath (2006) and Arellano (2008) both assume such a stochastic
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the associated default value conditional on an equilibrium repayment value function V R :

Ṽ D(s) = u
(
yD(s)

)
+ β(1 − θ )EṼ D(s′) + θβEV R(s′, 0).

Let us de�ne by v0 the expected gain from reentry:

v0 ≡ E
[
V R(s, 0) −V D(s)

]
≥ 0.

Manipulating the expressions for V D and Ṽ D , we �nd that

Ṽ D(s) = V D(s) + γv0, where γ ≡
θβ

1 − β(1 − θ )
.

In order to show uniqueness, we proceed as follows. As a �rst step, we take v0 as a primitive
of the environment and show that for a givenv0, there is a unique equilibrium of the model. �is
step follows the same arguments as in the previous analysis. �is implies a mapping from v0

to an equilibrium value function. Consistency requires that v0 = E[V R(s, 0|v0) − V D(s)], where
V R(s,b |v0) is the equilibrium value of repayment conditional on the posited v0. �e �nal step is
to show there is a unique v0 that satis�es this equation.

Given a value of v0, we can write the problem of the government as follows:

V R(s,b |v0) = max
c∈[0,c],b ′

{
u(c) + β

∑
s ′∈S

π (s′) max
{
V R(s′,b′),V D(s′) + γv0

}}
subject to:

c ≤ y(s) − b + b′R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′)1{V R (s ′,b ′)≥V D (s ′)+γv0}

]
,

b′ ≤ B,

where, as in the benchmark (G′), we have substituted prices using the break-even condition.
Conditional on v0, this problem is isomorphic to the benchmark (G′); the only di�erence is

thatV D is translated by a constant γv0. It is helpful to de�ne Ṽ R(s,b |v0) ≡ V R(s,b |v0)−γv0. Using

reentry process.
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the above, we can write that

Ṽ R(s,b |v0) = max
c∈[0,c],b ′

{
u(c) − (1 − β)γv0 + β

∑
s ′∈S

π (s′) max
{
Ṽ R(s′,b′|v0),V D(s′)

}}
subject to:

c ≤ y(s) − b + b′R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′)1{Ṽ R (s ′,b ′ |v0)≥V D (s ′)}

]
,

b′ ≤ B,

In this translated notation, the consistency condition is (1 − γ )v0 = E
[
Ṽ R(s′, 0|v0) −V D(s′)

]
. �e

payo� of the translated problem is that Ṽ R(s,b |v0) is decreasing in v0, a feature we now prove.
As in our analysis before, Ṽ R(s,b |v0) is strictly decreasing in b for −(A(s),b(s)], where A(s) is

as de�ned before, and b(s) is such that Ṽ R(s,b(s)|v0) = u(c) + βV − γv0.
We exploit the dual representation to show that Ṽ R is decreasing in v0. Let B̃(s,v |v0) be the

inverse of Ṽ R(s,b |v0) on the translated domain Ṽ ≡ [u(c) + βV −γv0,V −γv0]. Assumption 3 still
implies that the continuation value of u(c) + βV − γv0 triggers default, as v0 ≥ 0. �us, all of our
conditions from the previous analysis apply, and B̃ is a �xed point of the following operator:

(T f |v0)(s,v) = max
c∈[0,c],b ′,{w(s ′)}s ′∈S

{
y(s) − c + R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′)1{w(s ′)≥V D (s ′)}

]
b′

}
subject to:

v ≤ u(c) − (1 − β)γv0 + β
∑
s ′∈S

π (s′) max
{
w(s′),V D(s′)

}
b′ ≤ f (s′,w(s′)) for all s′ ∈ S such that w(s′) ≥ V D(s′)

w(s′) ∈ Ṽ for all s′ ∈ S.

As in the benchmark environment, this operator is a contraction, givenv0. Hence, it provides
a mapping from v0 to a set of unique values, x (s |v0) = Ṽ R(s, 0|v0) for all s ∈ S. If v0 satis�es
E

[
x (s |v0) −V D(s)

]
= (1 − γ )v0, then we have an equilibrium. �e question is whether there are

multiple values of v0 that satisfy this consistency condition. To answer this, we �rst note that
B̃(s,v |v0) is monotonic in v0:

Lemma 10. B̃(s,v |v0) is decreasing in v0.

Proof. Consider two values of v0: a,b, where a < b, and let Ba and Bb be the corresponding �xed points ofT (·|a)
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and T (·|b). �en

B̃a = T (B̃a |a) ≥ T (B̃a |b).

Given that T (·|b) is a monotone operator (and a contraction), iterating on the above expression implies that

B̃a ≥ lim
n→∞

T n (B̃a |b) = B̃b .

�

Recall that equilibrium consistency requires that

(1 − γ )v0 = E
[
x0(s |v0) −V D(s)

]
, (15)

where x0(s |v0) are values such that B̃(s,x0(s |v0)|v0) = 0 for all s ∈ S . �e monotonicity of
B̃ with respect to v and v0 implies that, as v0 increases, x0(s |v0) must decrease to maintain
B̃(s,x0(s |v0)|v0) = 0. Hence, the right-hand side of equation (15) is decreasing in v0. �e le�-
hand side is, however, strictly increasing inv0. Hence, there is a uniquev0 that is consistent with
equation (15). �us, there is a unique Markov perfect equilibrium in the model with iid reentry.

7 Conclusion

We have shown that a dual approach to characterizing the Markov-perfect equilibria of the Eaton-
Gersovitz incomplete markets sovereign debt model implies that the inverse of the equilibrium
value function is a �xed point of a contraction mapping. �is result implies the uniqueness and
existence of equilibrium in the Eaton-Gersovitz model. It may potentially be useful in numerical
analysis. Given that the equilibrium can be characterized with a contraction mapping operator,
iterating the operator guarantees monotonic convergence with modulus R−1.

�e fact that the operator resembles an optimal contracting problem between lenders and the
government, subject to an additional implementability condition capturing the market incom-
pleteness, sheds light on the e�ciency properties of the model’s unique equilibrium.

References

Aguiar, Mark and Gita Gopinath, “Defaultable Debt, Interest Rates and the Current Account,”
Journal of International Economics, June 2006, 69 (1), 64–83.

and Manuel Amador, “Growth in the Shadow of Expropriation,” �arterly Journal of Eco-
nomics, May 2011, 126 (2), 651–697.

24



and , “Sovereign Debt,” in Gita Gopinath, Elhanan Helpman, and Kenneth Rogo�, eds.,
Handbook of International Economics, Vol. 4, Elsevier, 2014, pp. 647–687.

and , “Self-Ful�lling Debt Dilution: Maturity and Multiplicity in Sovereign Debt Models,”
2018. Working Paper.

, , and Gita Gopinath, “Investment Cycles and Sovereign Debt Overhang,” �e Review of
Economic Studies, 2009, 76 (1), 1–31.

, , Hugo Hopenhayn, and Iván Werning, “Take the Short Route: Equilibrium Default and
Debt Maturity,” Econometrica, 2019, 87 (2), 423–462.

Alfaro, Laura and Fabio Kanczuk, “Fiscal Rules and Sovereign Default,” Working Paper 23370,
National Bureau of Economic Research April 2017.

Arellano, Cristina, “Default Risk and Income Fluctuations in Emerging Economies,” American
Economic Review, May 2008, 98 (3), 690–712.

and Ananth Ramanarayanan, “Default and the maturity structure in sovereign bonds,” Jour-
nal of Political Economy, 2012, 120 (2), 187–232.

and Jonathan Heathcote, “Dollarization and �nancial integration,” Journal of Economic �e-
ory, 2010, 145 (3), 944–973.

Auclert, Adrien and Matthew Rognlie, “Unique Equilibrium in the Eaton-Gersovitz Model of
Sovereign Debt,” Journal of Monetary Economics, December 2016, 84, 134–146.

Ayres, Joo, Gaston Navarro, Juan Pablo Nicolini, and Pedro Teles, “Sovereign default: �e
role of expectations,” Journal of Economic �eory, May 2018, 175, 803–812.

Bloise, Gaetano, Herakles Polemarchakis, and Yiannis Vailakis, “Sovereign debt and in-
centives to default with uninsurable risks,” �eoretical Economics, 2017, 12 (3), 1121–1154.

, , and , “Sustainable Debt,” Technical Report, SSRN 2018.

Bulow, Jeremy and Kenneth Rogo�, “A Constant Recontracting Model of Sovereign Debt,”
Journal of Political Economy, 1989, 97 (1), 155–178.

and , “Sovereign Debt: Is to Forgive to Forget?,” American Economic Review, March 1989, 79
(1), 43–50.

Calvo, Guillermo A., “Servicing the Public Debt: �e Role of Expectations,” �e American Eco-
nomic Review, 1988, 78 (4), 647–661.

25



Chatterjee, Satyajit and Burcu Eyigungor, “Maturity, Indebtedness, and Default Risk,” Amer-
ican Economic Review, October 2012, 102 (6), 2674–2699.

Cole, Harold L. and Timothy J. Kehoe, “Self-Ful�lling Debt Crises,” �e Review of Economic
Studies, January 2000, 67 (1), 91–116.

Eaton, Jonathan and Mark Gersovitz, “Debt with Potential Repudiation: �eoretical and Em-
pirical Analysis,” �e Review of Economic Studies, April 1981, 48 (2), 289–309.

Hatchondo, Juan Carlos and Leonardo Martinez, “Long-Duration Bonds and Sovereign De-
faults,” Journal of International Economics, September 2009, 79 (1), 117–125.

, , and César Sosa-Padilla, “Debt dilution and sovereign default risk,” Journal of Political
Economy, 2016, 124 (5), 1383–1422.

, , and Francisco Roch, “Fiscal Rules and the Sovereign Default Premium,” SSRN Scholarly
Paper ID 2625128, Social Science Research Network, Rochester, NY March 2015.

Kehoe, Timothy J and David K Levine, “Debt-constrained asset markets,” �e Review of Eco-
nomic Studies, 1993, 60 (4), 865–888.

Lorenzoni, Guido and Ivan Werning, “Slow Moving Debt Crises,” Working Paper July 2018.

Passadore, Juan and Juan Pablo Xandri, “Robust Predictions in Dynamic Policy Games,” 2018.
Working Paper.

Stangebye, Zachary R., “Belief Shocks and Long-Maturity Sovereign Debt,” 2018. Working
Paper.

A Proofs

A.1 Proof of Lemma 1

We prove each part of the lemma:

Part (i). LetCNA(s,b) and BNA(s,b) denote the optimal consumption and debt policies of problem
(NA) for b ≤ 0, which exist by standard arguments. Such a policy is feasible in an equilibrium for
any b ≤ 0, as BNA(s,b) ≤ 0 and the corresponding equilibrium price is R−1. It follows that, for all
b ≤ 0,

V R(s,b) ≥ u(CNA(s,b)) + β
∑
s ′∈S

π (s′|s)V R(s′,BNA(s,b))

26



Iterating this equation forward, using that BNA(s,b) ≤ 0, we obtain that V R(s,b) ≥ V NA(s,b) for
all b ≤ 0.

Assumption 4 then implies that V R(s,b) ≥ V NA(s,b) ≥ V D(s) for all s ∈ S and b ≤ 0.

Part (ii). For b ≤ 0, the result is immediate from V R(s, 0) ≥ V D(s) for all s ∈ S . For b > 0, suppose
that this is not the case, and V R(s′,b′) < V D(s′) for all s′. �is implies that default is occurring
with probability one next period. As a result, the price of the bonds is q(s,b′) = 0. �us, from the
budget constraint, we have that

c ≤ y(s) − b .

Now consider the alternative policy of issuing zero bonds, b̂′ = 0. �at policy can a�ain the
same consumption level (as it generates the same budget constraint), and the value under this
alternative policy is

u(c) +
∑
s ′∈S

π (s′|s)V R(s′, 0)

≥ u(c) +
∑
s ′∈S

π (s′|s)V D(s′)

= u(c) +
∑
s ′∈S

π (s′|s) max
{
V R(s′,b′),V D(s′)

}
= V R(s,b).

where the second line follows from Part (i) and the third from the premise thatV R(s′,b′) < V D(s′)
for all s′ ∈ S. Hence, such b̂′ = 0 is a strict improvement (a contradiction) or also constitutes an
optimal policy.

A.2 Proof of Lemma 2

We proceed to prove in each statement individually.

If b ≤ −A(s), then V R(s,b) = V . Start from state (s,b), with b ≤ −A(s), and consider the strategy
of se�ing c = c and b′ = R

R−1 (c − y) = −maxs∈SA(s) < 0. As b′ < 0, q(s,b′) = R−1 and the budget
constraint is satis�ed:

y(s) − b + R−1b′

≥ y(s) + A(s) − (c − y)/(R − 1)

= c,

where the last equality uses the de�nition of A(s). Hence, c = c is feasible. As b′ ≤ −A(s′) for
all s′ ∈ S, the same policy is feasible the following period. It then follows that consuming c
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inde�nitely is feasible and achieves the highest possible utility level, V .

If b > −A(s), then V R(s,b) < V . Suppose, to generate a contradiction, thatV R(s,b) = V . To achieve
this value, consumption must equal c , independently of the sequence of realized shocks in future
periods. Consider the sequence with y = y for the next k periods. Iterating on the budget set with
c = c implies there exists a k < ∞ such that debt exceeds B, violating the no-Ponzi condition.

If c = c for any state (s,b) ∈ X, then b < 0. If c = c is feasible, then there exists a b′1 ≤ B such that

c ≤ −b + y(s) + q(s,b′1)b′1
≤ −b + y(s) + sup

b ′≤B

q(s,b′)b′

= −b + BF (s),

where the last equality uses De�nition 1. �us, b ≤ BF (s) − c < 0, where the last inequality uses
Assumption 2.

A.3 Proof of Lemma 3

We proceed to prove each part.

Part (i). Note that the constraint set in (G) is shrinking in b for b < BF (s), where BF (s) is the
maximal debt level that is feasible to repay. It then follows that, for any s , V R(s,b) is weakly
decreasing in b for b < BF (s).

Parts (ii) and (iii). Note that V R(s,−A(s)) = V > u(c) + βV > limb↓BF (s)V
R(s,b). �e last inequality

follows from noticing that the feasible consumption choices approach 0 as b approaches BF (s).
�en, there exist thresholds b(s) < BF (s) such thatV R(s,b) > u(c) + βV for b < b(s) andV R(s,b) <
u(c) + βV for b > b(s).

To establish continuity, consider a point b0 ≤ b(s). Let b1 = b0 − ϵ for ϵ such that c/2 > ϵ > 0.
Let (c1,b

′
1) be an optimal policy for state (s,b1). As b1 < b0 ≤ b(s), we have u(c) + βV < V R(s,b1).

�is, combined with V R(s,b′1) ≤ V , requires c1 > c .
Now consider b2 = b0 + ϵ . Consider the debt choice b′ = b′1 starting from b2. �e associated

consumption is c̃1 = c1 + b1 − b2 = c1 − 2ϵ > c1 − c > 0. Note also that c̃1 < c1 ≤ c . Hence, this
consumption and debt choice is feasible but may not be optimal. �is impliesV R(s,b1)+u(c1−2ϵ)−
u(c1) ≤ V R(s,b2) ≤ V R(s,b1), where the last inequality follows from weak monotonicity. As u is a
continuous function and c1−2ϵ is bounded away from zero,V R(s,b2)→ V R(s,b1) as ϵ → 0. �us,
V R(s,b) is continuous for all b0 ≤ b(s) and part (iii) is proved. �e fact thatV R(s,b(s)) = u(c) + βV ,
which is part (ii) of the lemma, follows directly from continuity.

28



A.4 Proof of Lemma 4

�e proof is by contradiction. In particular, in contradiction to the lemma, consider the following
premise: for some s ∈ S , there exist b0,b1, with b0 < b1 ≤ b(s) such that V R(s0,b0) = V R(s0,b1).
We establish a number of results based on this premise:

Claim 1. �e equilibrium policy at (s,b1) sets consumption to its upper bound: c1 = c .
Proof. Let b ′1 denote an optimal debt choice at b1 associated with c1. If c1 < c , then it is feasible at b0 to issue b ′1
while consuming c0 = min{c1 + b1 − b0, c} > c1. �is yields a value strictly greater than V R (s,b1), contradicting
the premise. �

�e next claim is that the continuation value following b1 is �at in the neighborhood below
an optimal debt choice b′1 in states of repayment:

Claim 2. If b′1 is an optimal debt policy at (s,b1), then for all s′ ∈ S such that V R(s′,b′1) ≥ V D(s′)
and b′ ∈ (b′1 − R(b1 − b0),b′1), we have V R(s′,b′) = V R(s′,b′1).

Proof. By weak monotonicity,V R (s ′,b ′) ≥ V R (s ′,b ′1) for all s ′ ∈ S if b ′ < b ′1. Now suppose, contrary to the claim,
that there is an ŝ ∈ S and b ′ ∈ (b1 − R(b1 − b0),b1) such that V R (ŝ,b ′) > V R (ŝ,b ′1) ≥ V D (ŝ). Consider then the
following policy in state (s,b0): c = c and b ′0 = b ′. To see that this is feasible, recall that c is the consumption
policy for b1. Hence,

c ≤ y(s) − b1 + q(s,b ′1)b ′1
≤ y(s) − b1 + q(s,b ′)b ′1
= y(s) − b0 + q(s,b ′)b ′ − (b1 − b0) + q(s,b ′)(b ′1 − b

′)

≤ y(s) − b0 + q(s,b ′)b ′ − (b1 − b0) + q(s,b ′)R(b1 − b0)

≤ y(s) − b0 + q(s,b ′)b ′,

where the second line uses the weak monotonicity of q(s, .); the third line adds and subtracts b0 and q(s,b ′)b ′;
the fourth line uses the fact that b ′ > b ′1 − R(b1 − b0) and q(s,b ′) ≥ 0; and the �nal line uses that q(s,b ′) ≤ R−1,
implying (b1 −b0)(q(s,b ′)R − 1) ≤ 0. �e policy {c,b ′} generates a value to the government that is strictly higher
than V R (s,b1):

u(c) + β
∑
s ′∈S

π (s ′ |s) max{V R (s ′,b ′),V D (s ′)}

> u(c) + βπ (ŝ |s)V R (ŝ,b ′1) + β
∑
s 6=ŝ

π (s ′ |s) max{V R (s ′,b ′),V D (s ′)}

≥ u(c) + β
∑
s ′∈S

π (s ′ |s) max{V R (s ′,b ′1),V D (s ′)}

= V R (s,b1),

where the �rst strict inequality uses the premise that V R (ŝ,b ′) > V R (ŝ,b ′1) ≥ V D (ŝ); the second inequality uses
V R (s ′,b ′) ≥ V R (s ′,b ′1) for all s ′ ∈ S given b ′ < b ′1, as well asV R (ŝ,b ′1) ≥ V D (ŝ); and the �nal line uses the fact that
c,b ′1 is an optimal policy for (s,b1). As {c,b ′} is feasible for b0, we have V R (s,b0) > V R (s,b1), a contradiction of
our premise. �
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�is implies the following:

Claim 3. An optimal policy for (s,b1) involves consuming c for all future periods.

Proof. Suppose b ′1 is an optimal debt policy at (s,b1). Let Ŝ ≡ {s ′ ∈ S|V R (s ′,b ′1) ≥ V D (s ′)}. From Lemma 1 Part
(ii), we can choose a b ′1 such that Ŝ is not empty. From the previous claim, for any s ′ ∈ Ŝ , V R (s ′,b ′1) is �at in the
neighborhood below b ′1. Hence, there exists a b ′ < b ′1 such that V R (s ′,b ′) = V R (s ′,b ′1). �is replicates the initial
scenario, and hence c = c in state (s ′,b ′1) for s ′ ∈ Ŝ . From Lemma 2, this implies b ′1 < 0. Lemma 1 Part (i) states
that V R (s ′,b ′1) ≥ V D (s ′) for all s ′ ∈ S, hence Ŝ = S. �us, for all s ′ ∈ S, we can repeat the above arguments
to establish that at (s ′,b ′1) the government consumes c and issues b ′′1 such that V R (s ′′,b ′′1 ) is �at in any state s ′′

following s ′. Iterating forward, c is the optimal consumption plan for all future periods following (s,b1). �

Collecting results, under the premise, consumption is c for all periods following initial state
(s,b1). However, by Lemma 2, this requires b1 ≤ −A(s), which generates a contradiction to the
lemma’s “if” statement. Hence, for all b > −A(s), the function V R(s,b) is strictly decreasing.

A.5 Proof of Lemma 5

Consider a (s0,v0) ∈ S × V.
If v0 = V , then to satisfy constraint (4) from problem (B), it is necessary to set c = c and

V R(s′,b′) = V for all s′ ∈ S. �is requires that b′ ≤ −A(s′) < 0 for all s′. Given that b′ < 0, it is
then optimal, to set b′ = mins ′∈S{−A(s′)} = (c − y)R/(R − 1), where the last equality follows from
(3). �e objective is then

B̂(s0,V ) = y(s0) − c +
1

R − 1
(c − y) = −A(s0) = B(s0,V ),

where the last equality follows from Lemma 2.
Now consider v0 < V . From Lemmas 2 and 4, there exists a unique B(s0,v0) = b0 < −A(s0)

such that V R(s0,b0) = v0.

First, we show that B(s0,v0) ≤ B̂(s0,v0). Let c0 and b′0 be an associated optimal policy to problem
(G′). Note that the policy (c0,b

′
0) satis�es (4) of problem (B), as it delivers the valuev0. �e budget

constraint of problem (G′) implies that

B(s0,v0) = b0 ≤ y(s0) − c0 + R−1

[
1{b ′0≤0} + 1{b ′0>0}

∑
s ′∈S

π (s′|s0)1{V R (s ′,b ′0)≥V D (s ′)}

]
b′0 ≤ B̂(s0,v0),

where the last inequality follows from the fact that (c0,b
′
0) is feasible in problem (B).

Second, we show that B(s0,v0) = B̂(s0,v0). To show this, consider a situation in which B(s0,v0) <
B̂(s0,v0). �en, there exists (ĉ0, b̂

′
0), a policy in problem (B) that delivers some objective b̂0 >
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B(s0,v0) = b0. Rearranging the objective in (B) evaluated at the policy, we have

ĉ0 = y(s0) − b̂0 + R−1

[
1
{b̂ ′0≤0} + 1

{b̂ ′0>0}

∑
s ′∈S

π (s′|s0)1
{V R (s ′,b̂ ′0)≥V D (s ′)}

]
b̂′0

< y(s0) − b0 + R−1

[
1
{b̂ ′0≤0} + 1

{b̂ ′0>0}

∑
s ′∈S

π (s′|s0)1
{V R (s ′,b̂ ′0)≥V D (s ′)}

]
b̂′0, (16)

where the second line follows from b̂0 = B̂(s0,v0) > b0. Note that (16) implies that the budget
constraint of problem (G′) holds for state (s0, b̂0): {ĉ0, b̂

′
0} is feasible and delivers value v0. Hence,

V R(s0, b̂0) ≥ v0 = V R(s0,b0). By monotonicity of V R , b̂0 ≤ b0, a contradiction.

A.6 Proof of Lemma 6

LetV R be an equilibrium value function with inverse B. We need to show that (TB)(s,v) = B(s,v)
for all (s,v) ∈ S × V.

First we show that TB ≥ B. Consider a state (s0,v0) ∈ S × V. Note that the constraint set of
problem (B) is non-empty (for example, set b′ = mins ′{−A(s′)} ≤ B and let c ∈ [c, c] be such that
(4) is satis�ed).

Let (c0,b
′
0) be an element of the constraint set in problem (B) given that state. For each s′ ∈ S

such that V R(s′,b′0) ≥ V D(s′), de�ne w0(s′) ≡ V R(s′,b′0).
�is implies w0(s′) ∈ [V D(s′),V ] and thus w0(s′) ∈ V by Assumption 3. For all other s′ such

that V R(s′,b′0) < V D(s′), we let w0(s′) be arbitrary elements of (u(c) + βV ,V D(s′)).
We now argue that the choice (c0,b

′
0, {w0(s′)}) satis�es the constraint set of problem (T) when

f = B given state (s0,v0).
For constraint (7), note that

b′0 = B(s′,w0(s′)) if b′0 ≥ −A(s′)

b′0 ≤ B(s′,w0(s′)) if b′0 < −A(s′)

for all s′ such that w(s′) ≥ V D(s′); hence, constraint (7) is satis�ed. Note that (c0,b
′
0, {w0(s′)})

satis�es constraint (6) with equality.
Hence, for any (s0,v0) ∈ S×V, and for any feasible choice, (c0,b

′
0) in problem (B), there exists

a policy, (c0,b
′
0, {w0(s′)}) that is feasible in problem (T) given the state (s0,v0) when f = B and

a�ains the same value for the objective. It follows that (TB)(s,v) ≥ B(s,v) for all s,v ∈ S × V.

Next, we show that TB ≤ B. Given (s0,v0) ∈ S × V, consider a feasible choice (c0,b
′
0,{w0(s′)}) of

problem (T) (that is, it satis�es the constraints of that problem) when f = B. Let us consider a
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policy (ĉ, b̂′) for problem (B). We now check that we can construct a feasible policy where b̂′ = b′0
and ĉ ≥ c0.

(i) Constraint (5) holds with b′0: b′0 ≤ B.

Note that for any s′ such that w0(s′) ≥ V D(s′), constraint (7) implies b′0 ≤ B(s′,w0(s′)) ≤ B.
If w0(s′) < V D(s′) for all s′ ∈ S, constraint (7) is not relevant and any b′0 ≥ 0 delivers the
same objective; hence, we can consider an arbitrary b′0 ≤ B.

(ii) �ere exists a ĉ ∈ [c, c0] such that (ĉ,b′0) satis�es (4) with equality.

First, consider s′ ∈ S such that w(s′) ≥ V D(s′). For all such states, constraint (7) evaluated
at f = B implies b(s′) ≥ B(s′,w(s′)) ≥ b′0. Now, V R(s′,B(s′,w(s′))) ≤ V R(s′,b′0), as V R is
monotonic. Using that B is the inverse of V R , it follows that w(s′) ≤ V R(s′,b′0) for s′ ∈ S
such that w(s′) ≥ V D(s′). �is implies

u(c0) +
∑
s ′∈S

π (s′|s) max{V R(s′,b′0),V D(s′)}

≥ u(c0) +
∑
s ′∈S

π (s′|s) max{w(s′),V D(s′)}

≥ v0

≥ u(c) + βV

≥ u(c) +
∑
s ′∈S

π (s′|s) max{V R(s′,b′0),V D(s′)}

where the third line follows from (6) and the fourth line fromv0 ∈ V. Hence, by continuity
of u, there exists ĉ ∈ [c, c0] such that

v0 = u(ĉ) +
∑
s ′∈S

π (s′|s) max{V R(s′,b′0),V D(s′)}

A similar argument guarantees the existence of such ĉ ∈ [c, c0] when w(s′) < V D(s′) for all
s′ ∈ S.

Hence, (ĉ,b′0) satis�es the constraints in problem (B) for (s0,v0). From the optimization in
problem (B),

B(s0,v0) ≥ y(s0) − ĉ + R−1

[
1{b ′0≤0} + 1{b ′0>0}

∑
s ′∈S

π (s′|s)1{V R (s ′,b ′0)≥V D (s ′)}

]
b′0

≥ y(s0) − c0 + R−1

[
1{b ′0≤0} + 1{b ′0>0}

∑
s ′∈S

π (s′|s)1{w(s ′)≥V D (s ′)}

]
b′0.
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�e �nal line is the objective in (T). As (c0,b
′
0, {w0(s′)}) was arbitrary, we have B(s0,v0) ≥

(TB)(s0,v0).

A.7 Proof of Proposition 1: Existence

For the proof of existence, note that because T is a contraction mapping, it has a �xed point;
which we denote by f ?. �e way we proceed is to use the inverse of f ? to construct a candidate
equilibrium value function, V?R , and a price function, q?. For simplicity, we de�neV ≡ u(c) + βV ,
so that V = [V ,V ].

Let д denote the objective of Problem (T):

д(c,b′, {w(s′)}|s) ≡ y(s) − c + R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′|s)1{w(s ′)≥V D (s ′)}

]
b′.

Given a bounded f : S × V→ R, consider the following constraint set Γ(s, f ):

Γ(s, f ) =
{
v, c,b′, {w(s′)}

���
u(c) + β

∑
π (s′|s) max{w(s′),V D(s′)} −v ≥ 0,

1{w(s ′)≥V D (s ′)} (f (s′,w(s′)) − b′) ≥ 0 for all s′ ∈ S,

v ∈ V,w(s′) ∈ [V D(s′),V ] ∪ {VL} for all s′ ∈ S, c ∈ [0, c],b′ ∈ [f , f ] ∪ {0}
}
,

for some VL ∈ (V ,mins ′V D(s′)), and where f = infs∈S,v∈V f (s,v) and f = sups∈S,v∈V f (s,v).
�e set Γ(s, f ) represents the the constraint set of Problem (T) with two modi�cations. �e

�rst is that we have replaced the constraint that w(s′) ∈ V with the tighter constraint w(s′) ∈
[V D(s′),V ] ∪ {VL} ⊂ V for VL < V D(s). �is modi�cation has no e�ect on Problem (T), as values
ofw(s′) such thatw(s′) < V D(s) do not a�ect the other constraints nor the objective function. �e
second modi�cation is to restrict b′ to be zero or to lie between the minimum and maximum of
f (s,v). �is is without loss of generality, as if the promised values are such that constraint (7)
needs to hold for some s′, then it requires b′ ≤ f , and it is never optimal to choose b′ < f . If the
promised values are such that constraint (7) does not need to hold for any s′, then Problem (T)
places no restriction on b′ and b′ = 0 is optimal.

�e above implies that problem (T) can be rewri�en as

T f (s,v) = max
c,b ′,{w(s ′)}

д(c,b′, {w(s′)}|s) (T’)

subject to: (v, c,b′, {w(s′)}) ∈ Γ(s, f ).
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We can now state the following results:

Claim 4. For any bounded f , s ∈ S and v0 ∈ V, the set {(v, c,b′, {w(s′)}) ∈ Γ(s, f )|v = v0} is
non-empty.

Proof. Note that the vector {v = v0, c = c,b ′ = f ,w(s ′) = V for all s ′ ∈ S} satis�es all the constraints in Γ(s, f ),
proving the claim. �

Claim 5. If f : S×V→ R is bounded and upper-semicontinuous, then Γ(s, f ) is closed and bounded
for all s ∈ S.

Proof. Letpn ∈ R3+ |S | where |S| denotes the number of elements in S. We takepn = (vn , cn ,b ′n , {wn (s ′)}) ∈ Γ(s, f ).
Consider now a convergent sequence {pn}∞n=1 with pn ∈ Γ(s, f ) for all n ∈ {1, 2, 3, . . . }. Note that Γ(s, f ) is a
bounded subset of R3+ |S | and thus the sequence has a �nite limit p? = limn→∞ pn . Let v?, c?,b?, {w?(s ′)} denote
the individual elements of the limit. Our goal is to argue that p? ∈ Γ(s, f ).
First note that

v? ∈ V,w?(s ′) ∈ [V D (s ′),V ] ∪ {VL} for all s ′ ∈ S, c? ∈ [0, c],b? ∈ [f , f ] ∪ {0},

as all the respective sets are compact.
Given that u(c) + β ∑

s ′ π (s ′ |s) max{w(s ′),V D (s ′)} −v is a continuous function of c , {w(s ′)} and v , it follows that

u(c?) + β
∑
s ′
π (s ′ |s) max{w?(s ′),V D (s ′)} −v? ≥ 0

by passing the limit to a continuous function.
Turning to (7), consider now a given s ′ ∈ S. �ere are two possibilities to consider: either w?(s ′) = VL or
w?(s ′) ∈ [V D (s),V ]. We treat each case separately.
Case 1: w?(s ′) = VL . In this case, the constraint 1w?(s ′)≥V D (s ′)(f (s ′,w?(s ′)) −b?) ≥ 0 is automatically satis�ed as
w?(s ′) < V D (s ′).
Case 2: w?(s ′) = [V D (s),V ]. In this case, there must exists a �nite N such that wn (s ′) ∈ [V D (s),V ] for all n > N

(as V D (s) > VL). Note that for all n > N , we have that

f (s ′,wn (s ′)) − bn ≥ 0.

Given that f is upper-semicontinuous, the le�-hand side of the above is an upper-semicontinuous function in
(b ′,w(s ′)). It follows that:

f (s ′,w?(s ′)) − b? ≥ lim sup
n

f (s ′,wn (s ′)) − bn ≥ 0.

Hence, (7) is satis�ed in the limit for s ′ ∈ S. �is argument can be repeated a �nite number of times for all s ′ ∈ S.
�us, we have shown that p? ∈ Γ(s,v). And hence Γ(s,v) is closed. �

Note also that the objective д is upper-semicontinuous, and thus:

Claim 6. If f : S × V → R is bounded and upper-semicontinuous, then the supremum in T f (s,v)
is achieved for all (s,v) ∈ S × V.
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Proof. Note that the subset of Γ(s, f ) such thatv is constant is non-empty, bounded and closed by Claims 4 and 5.
Given �at д is an upper-semicontinuous function on c,b ′, {w(s ′)}, д a�ains a maximum in a non-empty compact
set. �

Let F be the set of functions such that f ∈ F if and only if: (i) f is bounded and upper-
semicontinuous on S ×V; (ii) f is a weakly decreasing function in v ∈ V ; (iii) f (s,V ) = −A(s) for
all s ∈ S; and (iv) f (s,V ) ≤ B for all s ∈ S. Let F0 denote the subset of F that contains only strictly
decreasing functions of v . Note that F is closed. �en,

Claim 7. �e operator T maps F into F0.
Proof. Let f ∈ F . We have already established (Lemma 7) that T f is bounded.

Strict monotonicity. Fix s ∈ S. Consider v1 and v2 such that V ≤ v1 < v2 ≤ V for v2 − v1 ≤ δ where
0 < δ < u(c) − u(0). Let {ci ,b ′i , {wi (s ′)}}, i = 1, 2, denote allocations that achieve the supremum for Problem (T’)
at (s,vi ), i = 1, 2, respectively; the existence of such optimizing allocations was established in Claim 6.
Note that ci ∈ [c, c]. �e upper bound follows from the constraint set. �e lower bound follows from Assumption
3, as if ci < c , then u(ci ) + β

∑
s ′ π (s ′ |s) max{wi (s ′),V D (s ′)} < u(c) + βV = V , violating promise keeping as

vi ∈ V = [V ,V ].
De�ne c̃1 to be such that u(c̃1)−v1 +v2 −u(c2) = 0. Let H (c) ≡ u(c)−v1 +v2 −u(c2). �e function H is continuous
and strictly increasing in c ∈ [0, c]. H (c2) = v2 − v1 > 0, and H (0) = u(0) − u(c2) + v2 − v1 < u(0) − u(c) + δ < 0.
Hence, there exists a unique c̃1 ∈ (0, c2) such that H (c̃1) = 0.
For problem T f (s,v1), the allocation (v1, c̃1,b

′
2, {w2(s ′)}) ∈ Γ(s, f ), and is a feasible choice. Hence, we have:

T f (s,v1) ≥ T f (s,v2) + c2 − c̃1 > T f (s,v2),

where the second inequality follows from c̃1 < c2. �us T f (s,v) is strictly monotone in v , given s .

Upper semi-continuity. Consider a given s ∈ S and take a monotonically increasing sequence {vn}∞n=1 that
converges tov0 from below. We want to show that limn→∞T f (s,vn ) = T f (s,v0). Establishing le�-hand continuity
is su�cient to establish upper semi-continuity as T f is strictly decreasing in v .
For each n ≥ 1, let (cn ,b ′n , {wn (s ′)}) denote optimal policies associated with problem (T’) evaluated at (s,vn ) given
f , and let pn ≡ (vn , cn ,b ′n , {wn (s ′)}). Note that pn ∈ Γ(f , s). Given that Γ(f , s) is a compact subset of R3+ |S | , by
the Bolzano-Weierstrass theorem, the sequence {pn}∞n=1 contains a convergent subsequence {pni }∞i=1 in Γ(s, f ).
Let p? ∈ Γ(s, f ) denote its limit, and let v?, c?,b? and {w?(s ′)} denote the respective elements of p?. Note that
v? = v0, as the sequence of {vn} converges to v0.
Let д(pn ) denote д(cn ,b ′n , {wn (s ′)}). Note thatT f (s,v0) ≥ д(p?) as p? ∈ Γ(s, f ) withv = v0 but may be suboptimal.
Given that д is upper-semicontinuous, it follows that д(p?) ≥ lim supi→∞ д(pni ). Using that д(pn ) = T f (s,vn ), we
have that

T f (s,v0) ≥ д(p?) ≥ lim sup
i→∞

T f (s,vni ) = lim
n→∞

T f (s,vn )

where the last step follows from the monotonicity of the sequence {vn} and the monotonicity ofT f with respect
to v .
Also, as vn ≤ v0 and T f is decreasing, we have that

T f (s,vn ) ≥ T f (s,v0)⇒ lim
n→∞

T f (s,vn ) ≥ T f (s,v0)

Taken together, we have that limn→∞T f (s,vn ) = T f (s,v0) for any increasing sequence {vn} and thus, T f is
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upper-semicontinuous in v .

�e value at V . We now show that if f (s,V ) = −A(s) for all s ∈ S, then T f (s,V ) = −A(s) for all s ∈ S.
Fix s ∈ S, and consider the problem (T’) forv = V . It follows from the (6) that u(c) = c andw(s ′) = V for all s ′ ∈ S.
As a result, we have that

T f (s,V ) = sup
b′
{y(s) − c + R−1b ′}

subject to b ′ ≤ f (s ′,V ) = −A(s ′) for all s ′ ∈ S.

Note that the constraint on b ′ binds with equality at an optimum. Using the de�nition of A(s), we therefore have

T f (s,V ) = y(s) − c + R−1 min
s ′

(−A(s ′)) = −

[
c − y(s) +

c − y

R − 1

]
= −A(s)

Repeating this argument for all s ∈ S, we complete the proof that T maps F into F0.

�e value at V . Note that, using that f is decreasing in v :

T f (s,v) ≤ y(s) + R−1 max
{
max
s ′∈S

f (s ′,V ), 0
}
≤ y + R−1B = B

Where the �rst inequality follows from noticing that if f (s ′,V ) ≤ 0 for all s ′ ∈ S, then an upper bound to the
value T f (s,v) is y(s). And, if there is at least one s ′ ∈ S such that f (s,V ) > 0, then an upper bound to the value
is y(s) + R−1 maxs ′∈S f (s ′,V ). �e second inequality follows from the B > 0 and f (s ′,V ) ≤ B. �

As the contraction T maps elements of the closed set F into its subset F0, it follows then that
f ? ∈ F0. Let f ? denote the �xed point of the dual operator (T). Let

SB ≡ {(s,b)|s ∈ S, and b ≤ f ?(s,V )}.

De�ne the following generalized inverse function v?:

v?(s,b) ≡ max{v ∈ V| f ?(s,v) ≥ b},

for (s,b) ∈ SB. Note that the set {v ∈ V| f ?(s,v) ≥ b} is non-empty as f ?(s,V ) ≥ b (given that
f ? is strictly decreasing), is bounded, and is closed (by upper-semicontinuity of f ?). Hence, v?

is well de�ned. In addition, it is continuous on SB. Note also that v?(s,b) = V for all b ≤ −A(s).
Our candidate equilibrium price schedule is then constructed from the set SB and the inverse

v?:

q?(s,b) ≡

R−1 ; if b ≤ 0,

R−1 ∑
s ′∈S π (s′|s)1{(s ′,b)∈SB and v?(s ′,b)≥V D (s ′)} ; otherwise,

which is de�ned for all (s,b) ∈ X = S × (−∞,B]. Note also that q?(s,b) ∈ [0, 1/R].
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Given this price function, letXf eas (s) andBF (s) be as in (2). LetR(b) ≡ {s |(s,b) ∈ SB and v?(s,b) ≥
V D(s)}. �en, we then de�ne the repayment value function, V?R (s,b), as follows:

V?R (s,b) ≡ sup
c∈[0,c],b ′≤B

{
u(c) + β

[ ∑
s ′∈R(b ′)

π (s′|s)v?(s′,b′) +
∑

s ′ 6∈R(b ′)
π (s′|s)V D(s′)

]}
(17)

subject to:

c ≤ y(s) − b + q?(s,b′)b′

for all b ∈ Xf eas (s); and V?R (s,b) ≡ V NF otherwise.
We have the following result:

Claim 8. �e function V?R (s,b) ≤ V and is weakly decreasing in b ∈ Xf eas (s) given s ∈ S

Proof. �e bound follows from maximal consumption c = c and maximal continuation value V ≥ v?(s,b) all
(s,b) ∈ SB and V > V D (s) for all s ∈ S. �e fact that V?

R is weakly decreasing in b follows from the fact that b
only appears in the budget set, and a lower b weakly expands it. �

Claim 9. �e function V?R (s,b) = v?(s,b) for (s,b) ∈ SB.

Proof. We now argue that V?
R (s,b) = v?(s,b) for (s,b) ∈ SB. Towards a contradiction, consider an (s0,b0) ∈ SB

such that V?
R (s0,b0) 6= v?(s0,b0).

Note that there exists an optimizing allocation for the dual problem (T’) evaluated at f ?. Let {c0,b
′
0, {w0(s ′)}} be

an optimal consumption, debt choices, and promised values associated with (s0,v0) where v0 = v?(s0,b0).
We now show that the allocation c0,b

′
0 is feasible for problem (17).

• First, we show that we can restrict a�ention to b ′0 ≤ B. If b ′0 > B, then w ′0(s ′) < V D (s ′) for all s ′ ∈ S given
that f ? ∈ F (that is, there is no w0(s ′) such that f ?(s0,w0(s ′)) > B). Hence se�ing b ′0 = 0 is also optimal.
�at is, {c0,b

′ = 0, {w0(s ′)}} is an optimal allocation.

• Note that if b ′0 ≤ 0, then
b0 ≤ f ?(s0,v0) = y(s0) − c0 + R−1b ′0

and thus, the choice of c0,b
′
0 is feasible for problem (17) as q?(s,b ′0) = R−1.

• For B ≥ b ′0 > 0:

– We �rst show that (s ′,b ′0) ∈ SB for all s ′ such that w0(s ′) ≥ V D (s ′). �is follows because 0 ≤ b ′0 ≤

f ?(s ′,w0(s ′)) ≤ f ?(s ′,V D (s ′)) ≤ f ?(s ′,V ), where the �rst inequality is (7), and the remaining two
follow from monotonicity of f ?. And thus (s ′,b ′0) ∈ SB.

– Now note that evaluating the objective at an optimum:

b0 ≤ f ?(s0,v0) = д(c0,b
′
0, {w0(s ′)}|s0) = y(s0) − c0 + R−1 ∑

s ′∈S
π (s ′ |s0)1{w0(s ′)≥V D (s ′)}b

′
0.

– From (7), we have f ?(s ′,w0(s ′)) ≥ b ′0 for s ′ ∈ S such that w0(s ′) ≥ V D (s ′). �erefore, by de�nition
of v?, we have v?(s ′0,b

′
0) ≥ w0(s ′).
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– Next we show thatv?(s ′0,b
′
0) = w0(s ′). To see this, towards a contradiction suppose thatv?(s ′,b ′0) >

w0(s ′) ≥ V D (s ′). �en, in the original dual problem, choosing w̃(s ′) = v?(s ′,b ′0) satis�es (7), strictly
relaxes (6) and weakly increases the objective. �is implies that there exists a v ′ > v0 for which
the value in the dual problem, f ?(s0,v

′) is weakly higher than f ?(s0,v0), contradicting strict mono-
tonicity of f ?. Hence, v?(s ′,b ′0) = w0(s ′) for all s ′ such that w0(s ′) ≥ V D (s ′), and therefore:

b0 ≤ f ?(s0,v0) = y(s0) − c0 + R−1 ∑
s ′∈S

π (s ′ |s0)1{v?(s ′,b′0)≥V D (s ′)}b
′
0

= y(s0) − c0 + q?(s0,b
′
0)b ′0.

�e above implies that {c0,b
′
0} is a feasible choice for Problem (17). �erefore, V R (s0,b0) ≥ v?(s0,b0) for all

(s0,b0) ∈ SB.
We now argue that V R (s0,b0) = v?(s0,b0) for all (s0,b0) ∈ SB.

• Towards a contradiction, consider an (s0,b0) ∈ SB such that V ≥ V?
R (s0,b0) > v?(s0,b0).

Let us rede�ne c0 and b ′0 to denote a feasible allocation for problem (17) that delivers a value strictly higher
than v?(s0,b0). Set w0(s ′) = v?(s ′,b ′0) for all s ′ ∈ R(b ′0) and set w0(s ′) = VL for all s ′ /∈ R(b ′0).

• �e allocation {c0,b0, {w0(s ′)}} satis�es (7) as f ?(s ′,w0(s ′)) ≥ b ′0 for w0(s ′) ≥ V D (s ′).

• Given that {c0,b
′
0} delivers a value in problem (17) strictly higher than v?(s0,b0), we have that:

v?(s0,b0) < u(c0) + β
∑
s ′

max{v?(s ′,b ′0),V D (s ′)} = u(c0) + β
∑
s ′

max{w0(s ′),V D (s ′)} ≡ v̂ ≤ V .

Note that the objective of (T’) evaluated at this allocation is

д(c0,b
′
0, {w0(s ′)}|s0) = y(s0) − c0 + R−1

[
1b′0≤0 + 1b′0>0

∑
s ′∈S

π (s ′ |s0)1{v?(s ′,b′0)≥V D (s ′)}

]
b ′0

= y(s0) − c0 + q?(s0,b
′
0)b ′0 ≥ b0,

where the last step follows from the budget constraint of problem (17).

�e allocation {v̂, c0,b
′
0, {w0(s ′)}} ∈ Γ(s, f ?) and delivers a value in Problem (T’) weakly higher than b0.

Given v̂ ∈ (v?(s0,b0),V ], this violates the strict monotonicity of f ?.

Hence V?
R (s,b) = v?(s,b) for (s,b) ∈ SB. �

We now argue that {V?R ,q
?} is an equilibrium:

Claim 10. �e functions V?R and q? de�ned above constitute a Markov equilibrium.

Proof. First note that if V?
R (s,b) ≥ V D (s), then (s,b) ∈ SB and v?(s,b) ≥ V D (s).

�is follows from the monotonicity of V?
R (s,b) with respect to b and that V?

R (s, f ?(s,V )) = v?(s, f ?(s,V )) = V <

V D (s); where the �rst equality follows from Claim 9; and the second equality follows from the strict monotonicity
of f ? and the de�nition of v?. Hence, we have that

R(b) = {s |(s,b) ∈ SB and v?(s,b) ≥ V D (s)}

= {s |V?
R (s,b) ≥ V D (s)}.
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�is implies that the pricing equation for q? solves (BE) given V?
R . Similarly, notice V?

R solves (G) given q?.
Finally, we show that the supremum is achieved. Note that because v?(s,b) is continuous in b ≤ B, the objective
function of Problem (17) is continuous in b ′.
Given that SB is closed, and thatv? is continuous, it follows that q?(s,b)×b is an upper-semicontinuous function
for b ≤ B. Hence the constraint set of Problem (17) is bounded and closed (if non-empty). �us, problem (17)
admits a maximizer. �

B �e Primal is not a Contraction

Here we provide a simple example that shows that the operator de�ned by the primal problem
(G′) is not a contraction mapping.

Consider the original primal problem, (G′). De�ne the primal operator, TP to be

TPv(s,b) = max
c∈[0,c],b ′

{
u(c) + β

∑
s ′∈S

π (s′|s) max
{
v(s′,b′),V D(s′)

}}
(18)

subject to:

c ≤ y(s) − b + b′R−1

[
1{b ′≤0} + 1{b ′>0}

∑
s ′∈S

π (s′|s)1{v(s ′,b ′)≥V D (s ′)}

]
,

b′ ≤ B.

where TPv(s,b) = vNF if the constraint set is empty. A Markov equilibrium value function is a
�xed point of TP under the sup norm: ‖x ‖= sups,b |x (s,b)|.

For the example, we narrow a�ention to the case with only two states, where S = {s1, s2} with
an iid distribution and where π (s1) = p. We impose that the endowment is constant, y(s) = y for
all s ∈ S ; and V D(s1) ≡ vD > V D(s2) ≡ vD .

Consider two initial value function guesses: v1(s,b) = vD − ϵ for all s,b and v2(s,b) = vD + ϵ
for all s,b; for vD −vD > ϵ > 0. Note that ‖v2 −v1‖= 2ϵ > 0.

Given that the two value functions are assumed to be independent of the debt level; it is
possible to compute the solution to the primal above. In particular, forv1, we have thatTPv1(s,b) =
u(min{y−b, c}) + β(pvD + (1−p)vD) for b ≤ y; andTPv1(s,b) = vNF for b > y. Similarly, forv2, we
haveTPv2(s,b) = u(min{y−b +R−1(1−p)B, c}) + β(pvD + (1−p)(vD +ϵ)) for y−b +R−1(1−p)B ≥ 0;
and TPv2(s,b) = vNF otherwise.

Now, consider the di�erence between TPv1 and TPv2 evaluated at b = 0:

TP (v2)(s, 0) −TP (v1)(s, 0) = u(min{y + R−1(1 − p)B, c}) − u(y) + β(1 − p)ϵ >

Note that there exists an ϵ > 0 such that ϵ < 1
2−β(1−p) (u(min{y + R−1(1 − p)B, c}) − u(y)). As a
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result,

TP (v2)(s, 0) −TP (v1)(s, 0) > 2ϵ

It follows then that

‖TP (v2) −TP (v1)‖≥ |TP (v2)(s, 0) −TP (v1)(s, 0)|> 2ϵ = ‖v2 −v1‖

Hence, TP is not a contraction.
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