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We study the interactions between sovereign debt default and maturity choice in a
setting with limited commitment for repayment as well as future debt issuances. Our
main finding is that under a wide range of conditions the sovereign should, as long
as default is not preferable, remain passive in long-term bond markets, making pay-
ments and retiring long-term bonds as they mature but never actively issuing or buy-
ing back such bonds. The only active debt-management margin is the short-term
bond market. We show that any attempt to manipulate the existing maturity pro-
file of outstanding long-term bonds generates losses, as bond prices move against
the sovereign. Our results hold regardless of the shape of the yield curve. The yield
curve captures the average costs of financing at different maturities but is misleading
regarding the marginal costs.
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1 Introduction

Short-term debt is often cast as the villain in sovereign debt crises, exposing the fiscal
authority to sharp swings in interest rates and raising the vulnerability to a rollover crisis.
Nevertheless, when faced with increased spreads, sovereigns tend to lower debt issuances
while tilting the composition of new bonds toward shorter maturities.1 This favoritism
towards short-term debt during periods of crisis appears puzzling.

In this paper, we study a model that captures various essential elements of sovereign
debt markets: a risk of default that is affected by borrowing decisions, an inability to com-
mit by the sovereign to both repayment as well as the fiscal trajectory, a dynamic choice
over debt maturity, and equilibrium bond prices that reflect and constrain these choices.
Our model adopts several important features from the sovereign debt literature, enriching
them along some dimensions while simplifying along others to isolate the forces having
to do with the commitment problems of the borrower.

A primary contribution of the paper is to characterize equilibrium bond prices and
examine the sovereign’s budget set, exploring how it responds to the maturity structure.
A major result is that refraining from both actively issuing or repurchasing long-term
bonds maximizes the equilibrium budget set. Strategies that engage with long-term debt
are more expensive, despite the fact that actuarially fair investors price all bonds.

In our model, an infinitely-lived sovereign with concave utility borrows by issuing
non-contingent bonds of varying maturity in global financial markets. Investors in these
markets are risk neutral. The sovereign makes decisions sequentially, with no commit-
ment to its future actions, as in the canonical Eaton and Gersovitz (1981) model. Im-
portantly, this includes both its decision to repay or default and its fiscal and debt man-
agement decisions. When the sovereign is highly indebted, a risk of default arises. We
assume default to be costly, to ensure that positive borrowing is possible. We model these
costs as stochastic so that default is not typically predictable and its probability, instead,
rises smoothly with indebtedness.

A short term one-period bond is always available, but we also allow for a rich and
flexible choice over the maturity of debt, allowing the issuance and management of any
number of bonds of different maturity. A competitive equilibrium involves a sequence

1These facts have been documented for the emerging market debt crises of the 1990s and 2000s. Broner et
al. (2013) shows that emerging markets reduce total debt issuances when spreads increase, but the reduction
is particularly pronounced for bonds with a maturity greater than 3 years, sharply reducing the average
maturity of new issuances. Similarly, Arellano and Ramanarayanan (2012) shows that during crisis periods
for four emerging market economies, the average maturity of new debt shortens. Perez (2017) examines
a large sample of emerging markets and shows that debt issuance drops when spreads are high, and the
maturity profile of debt shortens considerably.
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of price functions for each maturity and a description of the sovereign’s behavior. Each
period, each bond price is a function of the entire distribution of outstanding bonds (the
state variable). The sovereign takes these price functions as given to solve a dynamic
optimization problem that determines, in each period, whether to default or repay and,
in the latter case, how much to issue of each bond. Bond prices, in turn, are pinned down
by investors taking future default probabilities into account.

Any given sequence of price functions induces an optimal response by the sovereign,
which can be used to define a new set of price functions, consistent with this behavior. An
equilibrium is a fixed point of this mapping. Fortunately, we can circumvent this seem-
ingly intractable, high dimensional, fixed-point problem. In particular, we show that the
equilibrium outcome solves a planning problem representing a constrained efficient con-
tract between the sovereign and new lenders, with all inherited ‘legacy’ debt from previ-
ous lenders serviced as long as the sovereign does not default. Crucially, our mechanism-
design formulation determines a path of transfers without reference to any prices; in this
sense, it constitutes a ‘primal’ approach, involving only the allocation. Moreover, the
problem admits a tractable dynamic programming formulation, which we exploit.

Our first result is, thus, a welfare theorem of sorts: if a one-period bond is available,
then any competitive equilibrium allocation corresponds to a solution to the mechanism-
design problem.2 Since our representation only requires the presence of a one-period
bond, and does not place any additional restrictions on the set of available maturities, it
follows that the equilibrium allocation can be achieved by exclusively trading one-period
bonds. That is, an equilibrium policy is one where the sovereign services interest pay-
ments of existing long-term bonds, pays off any maturing bonds, and all new issuances
consist of short-term bonds only.

The above result does not rule out that an alternative strategy involving long-term
bonds may also be optimal. Indeed, this occurs when default has zero probability, in
which case the sovereign is entirely indifferent to the maturity structure of debt. A second
main result shows that the optimum is unique whenever default has non-zero probability.
In this sense, the debt maturity choice in our model is entirely determined by considera-
tions having to do with default. We also discuss how the mechanism pinning down this
maturity choice works through equilibrium bond prices. As we show, any attempt by the
sovereign to change the maturity profile of debt generates losses, as bond prices move
against such trades. If the sovereign sells long-term bonds in exchange for short-term
bonds, the relative price of long-term bonds falls; if the operation is reversed, the relative

2This welfare theorem is a useful tool to characterize equilibria, but, as we discuss below, it does not
allow one to conclude that the equilibrium is fully efficient.
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price rises. Due to these adverse price reactions, it is optimal to engage only in short-term
debt.

What drives these price reactions? The answer lies in the effect of the maturity struc-
ture on future default risk. This is not a mechanical effect. Indeed, the maturity profile
of debt does not affect default decisions nor prices if one were to hold fixed future gov-
ernment consumption. However, the maturity of debt does affect the chosen fiscal trajec-
tory, which, in turn, affects sovereign default decisions. In particular, short-term bonds
issuances incentivize the sovereign to choose a fiscal trajectory that reduces default, to
economize on the costs of rolling over debt in the future. In the absence of legacy long-
term debt, this explains why a sovereign would engage only in short term borrowing,
producing a constrained efficient outcome.

Now suppose the sovereign does inherit some legacy long-term debt. Given the
virtues of short-term debt exposed above, why is it not optimal to repurchase outstanding
long-term debt in exchange for short-term debt? The answer is that doing so creates in-
centives to reduce future borrowing, which in turn lowers the future default probabilities,
raising the relative price of long-term bonds. The sovereign prefers to abstain from this
operation since this relative price response makes the short-term debt issuance, which is
required for the repurchase, too onerous.

This outcome is clearly not efficient, underscoring the fact that our welfare theorem,
useful as it is as a tool for the study of equilibrium, does not establish the overall efficiency
for all parties. It solves a constrained efficient problem between the borrower and new
lenders, but does not include the legacy creditors. If the sovereign, new lenders and all of
its legacy creditors could efficiently bargain and restructure debt, the outcome would be
to shorten the maturity of the outstanding debt all the way achieving full efficiency with
only one-period bonds. However, this cannot take place in a competitive equilibrium,
where individual legacy creditors act as price takers, since these legacy investors would
have an incentive to hold out and reap a capital gain.

In summary, our results formalize a rationale for the favoritism of short-term bor-
rowing during times where default is likely. The central insight is that with short-term
borrowing the costs of higher default risk, reflected in higher interest rates, are entirely
borne by the sovereign. Keeping the sovereign “marked-to-market” creates market disci-
pline. Long-term bonds also embed a default premium at the time of issuance, but from
the perspective of later periods this premium is a sunk cost that detaches the sovereign
from the market and weakens incentives going forward.

Our results are driven by a dual lack of commitment. If the borrower lacked commit-
ment to repay but could commit to the path of debt issuance, conditional on repayment,
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then debt maturity would be indeterminate. Likewise, if the borrower lacked commit-
ment to future debt issuances, but could commit to the states in which default versus re-
payment occur, then, again, the maturity of debt would be immaterial. Thus, our model
uncovers an interesting interaction between these two commitment problems.

An implication of our analysis is that the incentive for short-term borrowing is not
encoded in the market yield curve. It is sometimes argued in popular accounts that short
term borrowing is preferred when the yield curve is steep. In our model, given that
all bond prices are actuarially fair, the equilibrium yield curve ends up reflecting the
expected evolution of the default probability. However, maturity choice is not directly
affected by the shape of this yield curve. Indeed, our results hold for any shape of the yield
curve. That is, our model is capable of generating upward or downward sloping yield
curves, i.e. default probabilities that rise or fall over time. Recall that the sovereign should
not engage in trades of long-term bonds to avoid adverse reactions of bond prices. Thus,
our results highlight that that the yield curve reflects average costs at different maturities
along the equilibrium path, but does not capture the marginal costs of financing different
maturities off the equilibrium path.

Related Literature

Our paper relates to an extensive literature on maturity choice, both in corporate finance
and macroeconomics. We review key strands of analysis here, highlighting how our con-
tribution differs from and complements the existing literature. For expositional clarity,
many of our modeling choices are designed to isolate our mechanism from other forces
already established in the literature.

Lucas and Stokey (1983) study optimal fiscal policy with complete markets and dis-
cuss at length how maturity choice is a useful tool to provide incentives to a government
that lacks commitment to taxes and debt issuance, but cannot default. The government
has an incentive to manipulate the risk-free real interest rate, by changing taxes which af-
fects investors’ marginal utility, to alter the value of outstanding long-term bonds, some-
thing ruled out by our small open economy framework with risk neutral investors. Their
main result is that the maturity of debt should be spread out, resembling the issuance of
consols. Our model instead emphasizes default risk, something absent from their work.
Our main result is also the reverse, providing a force for the exclusive use of short-term
debt.

A corporate finance literature initiated by Leland (1994) focuses on the optimal default
decision for a fixed and given capital structure, that may or may not be chosen optimally
in the initial period. In contrast, our model allows the level and maturity of outstanding
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debt is a sequential choice. In fact, these dynamics are crucial to our results.
The corporate finance and banking literature frequently builds on the notion that

bankruptcy involves partially liquidation of an asset, influencing debt maturity choice
in a variety of ways. Calomiris and Kahn (1991) and Diamond and Rajan (2001) empha-
size how short-term debt and the threat of liquidation can discipline a manager. A similar
mechanism is at play in Jeanne (2009) in an international context.

The fact that existing bondholders hold a claim on liquidated assets also makes them
vulnerable to dilution. This is the focus of another vast literature starting from Fama and
Miller (1972). Dilution implies that the recovery value is lower because it is divided across
a larger number of creditors; this effect is present even when the probability of default is
constant and unchanged. Sovereign default differs from private bankruptcies in that there
is no direct liquidation of assets; to make the distinction even starker we abstract from
partial repayment after default. Thus, in our setting there is no dilution in recovery values
for a fixed default probability. Instead, our mechanism works through the incentives for
further debt issuances, which ultimately impact default decisions. Partial liquidation also
endows short-term bonds with implicit seniority. Brunnermeier and Oehmke (2013) show
how this may induce a maturity rat-race that results in a collapse of the maturity structure.
However, this mechanism is not at play when the liquidation value in bankruptcy is zero,
as in our environment.

Maturity choice determines how the available assets span shocks, a feature which
arises in closed-economy models with incomplete markets and perfect commitment, such
as in Angeletos (2002) and Buera and Nicolini (2004). These papers show that the matu-
rity structure can be appropriately chosen to exploit changes in the yield curve, providing
insurance to the fiscal authority.3 The international quantitative sovereign debt litera-
ture emphasizes instead incentives, lack of commitment and the resulting default risk.
Hatchondo and Martinez (2009) and Chatterjee and Eyigungor (2012) show that restrict-
ing the government to issue long-term bonds improves the quantitative fit of sovereign
debt models, and discuss the government’s incentives to dilute existing bond-holders.
Arellano and Ramanarayanan (2012) introduces maturity choice into this framework and
shows that a calibrated version of the model features shortening maturity as default risk
increases. The model combines both a desire to use the maturity structure to hedge fis-
cal risks, together with the inability of the government to commit to future actions (this
latter been the main focus of our analysis). These papers focus on Markov equilibria,

3Whether or not the cyclical shifts in the slope of the yield curve can be exploited to insure the risks facing
economies remains questionable. For example, in the context of full commitment, Buera and Nicolini (2004)
found the positions required to hedge to be implausibly large (see also Faraglia, Marcet and Scott, 2010, for
a more recent analysis showcasing several problems with this approach).
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just as we do here. Relying instead on trigger strategies, Dovis (forthcoming) generates a
shortening of maturity of the stock of debt through the hedging motive alone. In related
work, Niepelt (2014) sets up a tractable framework to study maturity choice and high-
lights that long-term bond prices are relatively elastic, a feature which is also generated
in our framework. Cole and Kehoe (2000) highlighted the potential downsides of short-
term borrowing in a sovereign debt model, because of self-fulfilling roll-over crises, an
aspect that we ignore. Broner et al. (2013) where among the first to focus attention on the
general shift to short-term borrowing during crisis in emerging markets. They proposed
an explanation that is based on time varying risk premia, something that we rule out by
assuming risk neutral lenders.4

Our analysis complements these papers by providing a transparent and tractable frame-
work for analyzing maturity choice. Independently of parameterizations, we identify the
role of the maturity structure in the incentives to borrow, and explain why an active use of
long-term bonds shrinks the budget set of the sovereign through changes in bond prices.
To achieve this, we consciously construct our model to eliminate the hedging motive, fo-
cusing solely on incentives. In general, the quantitative literature features a stochastic
process that drives both the endowment of the government and the cost of default. The
second one arises by modeling default costs as a nonlinear function of the stochastic en-
dowment. We separate the two: the endowment process of the government is determin-
istic in our model, while the cost of default fluctuates stochastically. In our benchmark
model, iid default payoffs guarantee that the maturity composition provides no insur-
ance. In an extension, we introduce a simple form of persistence that creates a trade-off
between insurance and incentives.

The sub-optimality of repurchasing long-term bonds on secondary markets is reminis-
cent of a result in Bulow and Rogoff (1988, 1991). Their analysis turns on a finite amount
of resources available to pay bond holders. In such a situation, a bond buyback concen-
trates the remaining bondholders’ claim on this collateral, and so drives up the price of
bonds. Indeed, the sovereign would like to dilute existing bond holders by selling addi-
tional claims to this fixed recovery amount. The link with Bulow and Rogoff is discussed
in more detail in Section 5.3.

An important feature of our analysis is our focus on outside option shocks. Most of the
literature has primarily focused on income shocks as the main source of uninsurable risk.
We have made this choice to transparently highlight how the incentives for fiscal policy,
and the corresponding budgetary implications, are sensitive to maturity choice along the

4See also the work of Perez (2017) for a more recent data analysis, covering a larger sample of emerging
markets; as well for an alternative explanation based on asymmetric information.
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transition. In particular, maturity choice is not used to hedge risk in our environment. A
hedging motive would arise if shocks affected consumption absent default, and if these
changes in consumption had a non-zero covariance with bond prices. Our environment
abstracts from this hedging motive as shocks do not change equilibrium consumption in
periods of no default (that is, consumption conditional on not-defaulting is deterministic).
Different maturity bonds in our environment are therefore not useful to hedge the risks
we consider. Finally, the desire to hedge is also operative in models of full commitment
under incomplete markets, while our results arise exclusively due to limited commitment.
We provide an extension with a hedging motive in Section 8.

2 The Environment

Consider a small open economy in discrete time with periods t = 0, 1, 2, . . . There is a sin-
gle, freely tradable, consumption good. The economy receives a deterministic sequence
of endowments {yt}, where yt ∈ (0, ȳ).5

Preferences. The sovereign makes economic decisions on behalf of the small open econ-
omy. Preferences over consumption streams are characterized by the following utility
function:

U =
∞

∑
t=0

βtu(ct), (1)

where β ∈ (0, 1) and u is a continuous, strictly increasing, and strictly concave function
defined over the non-negative reals. We denote u ≡ u(0) and u ≡ limc→∞ u(c), with
u, u ∈ (−∞,+∞). Let V ≡ u/(1− β) and V ≡ u/(1− β).

Financial Markets. The country engages in financial trade with the rest of the world, by
issuing bonds of different maturities. The financial market is populated by competitive,
risk-neutral investors with discount factor R−1. We assume βR ≤ 1, a natural restriction
given the small open economy assumption.

A short-term bond is assumed always available, but we are flexible regarding the as-
sumed availability of long-term bonds. At the beginning of each period, the sovereign

5Note that the endowment stream is not subject to unanticipated fluctuations. It is well known that in
models with incomplete markets and shocks to output or government expenditure, maturity choice can
be used to partially or fully replicate a full set of state contingent assets. To maintain a clear distinction
between incentives versus spanning, we abstract from income fluctuations.
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inherits a portfolio characterized by a sequence of net liabilities going forward. We de-
note by bt ∈ R the amount of one-period bonds issued in period t− 1 and due in period
t. The portfolio of long-term liabilities is a sequence lt = {l0, l1, . . . }, where lk ∈ R rep-
resents the net amount due k periods ahead (period t + k). When convenient, we drop
the t subscript and superscript and let {b, l} denote the current period’s inherited lia-
bilities. In what follows, we denote by lk the k-th element of the sequence l, and use
l≥k ≡ {lk, lk+1, . . . } to denote the tail of the sequence l starting k periods ahead. Note that
l0 represents liabilities that were long-term when issued but are due in the current period;
hence, b + l0 represent total debt due in the current period. We restrict l to lie in the set
of bounded sequences, i.e. |lk| ≤ l < ∞ for some l̄ for all k ≥ 0. Let L denote the set of
liability sequences that satisfy this boundedness condition.

The government enters a period with liabilities {b, l}. It has the option to default,
which we discuss below; otherwise, it issues new one-period bonds b′ ∈ R and shuffle
its long-term liabilities to a new sequence l′ ∈ Γ(l, t). The mapping Γ : L ×N → L
characterizes the available set of maturities at time t given l.6 We do not need to impose
any assumptions on this set, except for one natural restriction: it is always feasible to
exit the period with the same long-term promises that the government inherited; that is,
l≥1 ∈ Γ(l, t). This notation nests environments which range from an infinite number of
maturities that are potentially traded, to cases commonly considered in the quantitative
literature in which only a handful of finite maturity bonds or exponentially decaying
bonds are available (Hatchondo and Martinez, 2009; Arellano and Ramanarayanan, 2012).

Default. At the beginning of each period, the government has the option to default, in
which case all lenders receive a payout of zero. A fundamental issue in sovereign debt
markets concerns the limited ability of creditors to enforce contracts with a sovereign
government. A large literature has identified reputational and legal mechanisms which
can sustain debt repayment. These approaches share the general feature that default is
determined by the sovereign comparing the value of repayment to the value achieved by
default. We let vD

t denote the value achieved by default in period t. We model this value
directly assuming it follows a stochastic process, with the following properties for t ≥ 1.

Assumption 1. The outside option is such that

(i) vD
t is drawn from a continuous c.d.f. Ft;

6Note that if Γ does not restrict l′0, then one-period debt issuance b′ and l′0 are perfect substitutes and
any one of the two is redundant.

It is also possible to make the mapping Γ depend on the one-period bonds, both b and b′, without affecting
the results. For notational simplicity, we ignore that in what follows.
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(ii) vD
t is independent across time and independent of liabilities;

(iii) vD
t ∈ VD

t ≡
[
vD

t , vD
t
]

with vD
t > V and vD

t < VD
< V for some VD;

(iv) there exists a umin > u such that umin + βV < vD
t for all t ≥ 1; and

(v) there exists umax < u such that umax + β
´

vD dFt+1(vD) > vD
t for all t ≥ 1.

The continuous distribution assumption in (i) is adopted for expositional convenience.
The assumption of independence in (ii) is of more importance and allows us to abstract
from the hedging benefit of long-term bonds and focus on incentives. The bounded sup-
port restriction in (iii) follows naturally from the notion that vD

t represents a discounted
value of utility achieved after default. Restriction (iv) ensures that receiving zero con-
sumption triggers default with probability one; a simplifying assumption that serves to
ensure an interior consumption allocation. The final restriction (v) ensures that default
does not occur if debt is sufficiently low.

Timing and Government Problem. At the beginning of the period, the government
observes its realized outside option, vD

t . It then decides whether to take this option and
default. If it does not default, it issues new bonds and consumes. When trading, the
government takes as given an equilibrium price schedule for its portfolio of bonds. As is
standard in the sovereign debt literature, we restrict attention to Markov equilibria where
prices are a function only of payoff relevant state variables,7 in this case, the inherited
liabilities and the current period t. Let q denote the one-period bond price function and
Q the cost of changing the portfolio of future long-term liabilities from l to l′. Given
inherited liabilities (b, l), the government budget constraint at t is

c ≤ yt − b− l0 + q(b′, l′, t)b′ + Q(l, l′, b′, t), (BC)

where b′ and l′ denote liabilities brought into to the next period and

Q(l, l′, b′, t) =
∞

∑
k=1

ρk(b′, l′, t)(l′k−1 − lk), (2)

where ρk is the price of a promise to pay one unit in k periods. Note that Q(l, l≥1, b, t) = 0,
so there is no cost associated with carrying forward the inherited long-term liabilities
unchanged.

7As will be clear from the fact that the competitive equilibrium solves a planning problem, the results
may hold for non-Markovian equilibria as well.
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Let V(b, l, t) denote the value of not defaulting in period t given liabilities (b, l). If
V(b, l, t) is less than vD

t , the government defaults; otherwise it solves:

V(b, l, t) = sup
c≥0,b′,l′∈Γ(l,t)

{
u(c) + β

ˆ
max

{
V(b′, l′, t + 1), vD

}
dFt+1(vD)

}
(3)

subject to the budget constraint (BC) and the No-Ponzi condition b′ ≤ B̄, for some finite
B̄ ≥ R(ȳ+ l̄)/(R− 1).8 The continuation value incorporates the strategic default decision
next period. Denote by B(b, l, t) and L(b, l, t) the optimal policies for one-period bonds
and long-term liabilities, respectively. If the constraint set for (3) is empty, i.e. there are no
way to repay current liabilities, even with zero consumption, we set V(b, l, t) = V; this
ensures that default is triggered at the beginning of this period.

Lenders’ Break-Even Condition. Lenders must break even in expectation. To compute
prices that are consistent with this condition requires computing default probabilities. If
the government enters period t with debt (b, l) and exits with portfolio (b′, l′), the break-
even condition for one-period debt is9

q(b′, l′, t) = R−1Ft+1(V(b′, l′, t + 1)). (4)

To compute the break even condition for long debt, we start from an initial state
(b, l, t), and iterate on the government policy functions forward, obtaining the probability
of default. Let {bk}∞

k=1 and {lk}∞
k=1 be given by the recursion

bk+1 = B(bk, lk, t + k), and lk+1 = L(bk, lk, t + k) for k ≥ 1,

with initial conditions b1 = b′ and l1 = l′. Then ρ1(b′, l′, t) = q(b′, l′, t) and for k ≥ 2,

ρk(b′, l′, t) = ρk−1(b′, l′, t)q(bk, lk, t + k− 1), (5)

a version of the expectations hypothesis. Iterating, using equation (4), we have

ρk(b′, l′, t) = R−k
k

∏
i=1

Ft+i(Vt+i)

8The value R(ȳ + l̄)/(R− 1) is an upper bound on the present value of the country’s endowment net
legacy payments.

9The continuous c.d.f assumption allows to ignore the point where the government is indifferent be-
tween defaulting or not, as it is a zero probability event.
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where Vt+i = V(bi, li, t + i).

Equilibrium. We are now ready to define an equilibrium in the usual way:

Definition 1. A Markov Competitive Equilibrium (CE) consists of functions {V, q, Q, ρ,B,L}
such that:

(i) V : R× L×N→ [V, V] solves the Bellman equation (3);

(ii) B : R× L×N → R and L : R× L×N → L are policies that attain the maximum
in (3);

(iii) Q : L× L×R×N→ R satisfies equation (2);

(iv) q : R× L×N→ [0, 1] satisfies equation (4);

(v) ρk : R× L×N→ [0, 1] satisfy equation (5) for all integers k ∈N, k ≥ 1.

As stated, the equilibrium represents a complicated fixed-point problem. There are
potentially an infinite number of price schedules (one for each maturity), which depend
on the government’s fiscal policy going forward. The government’s policies, in turn,
depend on equilibrium price schedules. However, in the next section, we prove that
the competitive equilibrium solves a modified planning problem, which allows a direct
characterization of key properties of the equilibrium.

Discussion. Our modeling choices are guided by our focus on scenarios where the risk
of default is a first-order concern for both consumption-saving decisions as well as the
choice over debt maturity. Of course, in reality there may be many other considerations.
During tranquil periods sovereigns issue a range of maturities to smooth tax distortions;
to provide a source of safe assets for savers; to facilitate payments systems; and to insure
against fluctuations in tax revenues, output or interest rates. However, in the midst of a
sovereign debt crisis these considerations are to a large extent dominated by a sovereign’s
need to issue new debt to skeptical investors, to roll over or buy back outstanding debt,
and perhaps to reduce the outstanding stock of debt in a credible (that is, time consistent)
manner. Our model is intended to transparently isolates the role of maturity choice under
the threat of default.

Before moving on, it is helpful to state a simple result about any Markov equilibrium:

Lemma 1. Consider a Markov Competitive Equilibrium with value function V. Then, for any
(l, t), the value function V(b, l, t) is non-increasing in b. In addition, for any v ∈ [vD

t , V), there
exists a finite value b such that V(b, l, t) = v.

12



3 A Planning Problem

We now characterize competitive equilibria by considering a modified planning problem.
We show although equilibria are not necessarily efficient in the usual Pareto sense, we can
characterize them by solving a planning problem. To motivate the approach, consider
the following contracting problem. A government enters period t with legacy liabilities
(b, l). It then contracts with a new set of lenders, receiving a sequence of consumption
{ct+k}k≥0 in exchange for a sequence of payments {yt+k− lk− ct+k}k≥0 conditional on not
defaulting through t + k. As long as the government does not default it repays any legacy
claims currently due. We consider contracts that maximize the joint surplus between the
government and its new lenders. At it turn out, the allocations delivered by such contracts
are equivalent to the outcome of competitive equilibria.

This contracting problem considers legacy lenders and new lenders as different agents,
and legacy lenders’ payoffs are not included in the joint surplus.10 This is precisely why
equilibria are not generally Pareto efficient, a point we discuss in detail in Section 7.

3.1 Efficient Contracts

Starting from any period t where the government has not defaulted and has long-term
liabilities denoted by lt = l, consider the Pareto problem of allocating the country’s re-
sources from time t onwards between the government and a representative new lender,
taking as given that (i) the government will default whenever it receives an outside op-
tion shock that is higher than its continuation payoff; (ii) if no default occurs in a given
period, previously issued long-term claims must be paid; and (iii) in case of default, all
lenders receive zero. In this particular planning problem, we also impose that the outside
option shocks are not-observable, and as a result, the resulting consumption allocation
cannot be made contingent on the realization of vD

t , absent default.11

An allocation is characterized by a consumption sequence {ct+k}k≥0 which determines
the amount the government consumes at time t + k conditional on no default through
t + k. This sequence implies a corresponding sequence of values, {Vt+k}k≥0, where Vt+k

denotes the expected value of the government conditional on not defaulting through time
t+ k. Incentive compatibility implies that if vD

t+k > Vt+k, the government defaults in t+ k;

10Of course, in equilibrium, the set of old lenders and new lenders may overlap; the idea of contracting
with new versus old lenders is simply a useful device to characterize competitive equilibrium allocations.

11Similarly, we restrict attention to deterministic allocations absent default (that is no randomization on
the part of the Planner), as these represent the allocations that are feasible in equilibrium given our asset
structure.
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if vD
t+k < Vt+k the government does not default; and is indifferent if vD

t+k = Vt+k.12 Given
{ct+k}, we can then define Vt+k recursively:

Vt+k = u(ct+k) + β

ˆ vD
t+k+1

vD
t+k+1

max
{

Vt+k+1, vD
}

dFt+k+1(vD), (6)

for all k ≥ 0. The sequence {Vt+k}k≥0 is the unique solution to this difference equation
that satisfies Vt+k ∈ [V, V].

Definition 2. An incentive-compatible allocation from time t onwards is a sequence of con-
sumption and associated values to the government {ct+k, Vt+k}∞

k=0, such that ct+k ≥ 0;
and {Vt+k}∞

k=0 solves (6).

Conditional on legacy long-term liabilities inherited in period t, l, the resource con-
straint implies that the net payments (absent default) to the new lender nt+k associated
with an allocation satisfies:

nt+k = yt+k − lk − ct+k. (7)

Thus the allocation {ct+k}k≥0 and l defines a stream of net payments to the new lender.
Let Bt denote the expected present value of these payments conditional on not defaulting
in period t:

Bt =
∞

∑
k=0

R−k

(
k

∏
i=1

Ft+i(Vt+i)

)
(yt+k − lk − ct+k), (8)

where the product in brackets represents the probability of not defaulting through period
t + k conditional on not defaulting in period t. This product is evaluated to be one at
k = 0.

As discussed above, we consider the notion of efficiency that weighs the welfare of
new lenders and the government, but disregards the impact on payoffs to existing credi-
tors. More formally:

Definition 3. An incentive-compatible allocation from time t onwards fixing long-term
liabilities l ∈ L, {ct+k, Vt+k}∞

k=0, is efficient at time t if there does not exist an alternative
incentive-compatible allocation from time t onwards {ĉt+k, V̂t+k}∞

k=0 such that V̂t ≥ Vt

and B̂t ≥ Bt with at least one of these inequalities strict, where Bt and B̂t denote the
respective solutions to equation (8).

12With a continuous distribution, the indifference point is measure zero, and can be ignored.
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Given equation (6), the value to a government that does not default at time t can never
fall below u + β

´
vDdFt+1(vD), given the non-negativity of consumption and the option

to the default in the future. Let us denote by B?(v, l, t) : [u + β
´

vDdFt+1(vD), V]× L×
N→ R, the solution to the associated Pareto problem:

B?(v, l, t) = sup
{ct+k,Vt+k}∞

k=0

∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
(yt+k − lk − ct+k) (9)

subject to:

{Vt+k}∞
k=0 solves (6) given {ct+k}∞

k=0

Vt ≥ v. (10)

An efficient allocation, as in Definition 3, must solve this problem.
The following lemma will prove useful later on. It shows that we only need to consider

incentive compatible allocations where equation (10) holds with equality; and, because of
βR ≤ 1, where the sequence {Vt+k} is bounded.

Lemma 2. Let the state be (v, l, t) with v ∈ [vD
t , V). Then for the maximization in Problem

9, it suffices to consider only incentive compatible allocations such that Vt = v and Vt+k ≤
max

{
v, VD

}
for all k ≥ 1; where VD is as in Assumption 1.iii.

The next subsection establishes an associated First Welfare Theorem; namely, that com-
petitive equilibrium allocations are efficient as in Definition 3.13

4 A Welfare Theorem

In this section, we show that competitive equilibria are efficient in the sense of Definition
3. This welfare theorem (Proposition 1 below) will allow us in Section 5 to characterize the
competitive equilibrium by analyzing a simple planning problem and identify the costs
of trading long-term bonds.

Towards this goal, consider a competitive equilibrium with an associated value func-
tion V and price functions q and Q. Given these, let us define the following function

13It is also the case that any efficient allocation can be decentralized as a competitive equilibria. Given our
interest in characterizing competitive equilibria, we omit discussion of this version of the Second Welfare
Theorem.
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B:

B(v, l, t) ≡ sup
c≥0,b′≤B̄,l′,v′≥vD

t+1

{
yt − l0 − c + q(b′, l′, t)b′ + Q(l, l′, b′, t)

}
(11)

subject to :

v = u(c) + βFt+1(v′)v′ + β

ˆ
vD≥v′

vDdFt+1(vD)

l′ ∈ Γ(l, t) and v′ = V(b′, l′, t + 1).

where the maximization problem represents the dual of problem 3.14 Not surprisingly, B
is the inverse of the equilibrium value function V:

Lemma 3. Consider a Markov Competitive Equilibrium with value function V and price func-
tions q, Q. Then, B(V(b, l, t), l, t) = b for any (b, l, t) such that V(b, l, t) ≥ vD

t and where B is
defined as in (11).

A first key result is that the efficient allocation in Problem 9 provides an upper bound
on any equilibrium inverse value function B:

Lemma 4. Consider a Markov Competitive Equilibrium, and let B be as defined in equation (11).
Then, for any (l, t) and v ∈ [vD

t , V), we have B(v, l, t) ≤ B?(v, l, t).

The proof of this result uses the no-arbitrage equilibrium restriction on prices to show
that the constraint set of the dual problem 11 is a subset of the constraints for the planning
problem 9. Intuitively, take a given equilibrium consumption sequence that may involve
trading long-term bonds. In particular, suppose the government trades a portfolio of
bonds in the first period. The amount raised must equal the present discounted value of
payments to all bondholders net of the pre-committed payments to legacy bondholders.
That is, the amount raised must equal the present value of the endowment minus the
sum of consumption and payments to legacy bondholders, discounted at the equilibrium
probability of default. This equality follows from equilibrium pricing condition, and is the
key step in the proof. It is then possible for the planning problem to implement the same
consumption allocation, which implies the same default probabilities, the same value to
the government, and the same net payments. This stream of payments is the objective in
the planning problem and therefore must weakly dominate that of any equilibrium.

We now proceed to show that the upper bound of Lemma 4 is achieved in equilibrium.
For this, we first show that we can use equation 11 to generate a lower bound on B by

14Note that we have restricted attention to continuation values weakly higher than vD
t+1 (the lowest pos-

sible outside option) as this is without loss.

16



artificially restricting l′ = l≥1. Under this restriction, Q = 0, and from equation 11 we
obtain that15

B(v, l, t) ≥ sup
c≥0,v′≥vD

t+1

{
yt − l0 − c + R−1Ft+1(v′)B(v′, l≥1, t + 1) (12)

subject to :

v = u(c) + βFt+1(v′)v′ + β

ˆ
vD≥v′

vDdFt+1(vD)

Note that if the inequality in (12) were to always hold with equality, then the resulting
functional equation would correspond to the Bellman equation that must be solved by
B?. Exploiting this idea, together with the boundedness result of Lemma 2, we obtain the
following lemma:

Lemma 5. Consider a Markov Competitive Equilibrium, and let B be as defined in equation (11).
Then, for any (l, t), and v ∈ [vD

t , V), B(v, l, t) ≥ B?(v, l, t).

Lemma 5 shows that the presence of Q in equation (11) cannot reduce value as com-
pared to an efficient outcome. The proof of the lemma establishes that it is always possible
to choose an allocation that replicates the efficient outcome, and sets Q = 0. Note that
for this lower-bound result, we do not need to know the equilibrium shape of Q, except
for the property that Q = 0 when no trades in long-term bonds occur. This is different
from Lemma 4, were we exploited the equilibrium restrictions that arbitrage imposes on
Q, and showed that the equilibrium value cannot do better than the efficient outcome.
Putting these wtwo lemmas together implies that, for any Markov equilibria, B? = B:

Proposition 1. [Efficiency of CE] Let {V, q, Q, ρ,B,L} be a Markov Competitive Equilibrium.
Then b = B?(V(b, l, t), l, t) for any V(b, l, t) ≥ vD

t ; that is, a competitive equilibrium allocation
is efficient.

Because the competitive equilibrium solves a planning problem, the equilibrium value
function V(b, l) is unique. This immediately implies that the one-period bond price
schedule is also uniquely determined. However, there may be multiple allocations that
solve the same planning problem, implying that the long-term bond price schedules are
not necessarily unique.

15We first use the equilibrium condition q(b′, l′, t) = R−1Ft+1(V(b′, l′, t + 1)) together with the constraint
v′ = V(b′, l′, t + 1) to substitute q(b′, l′, t) by R−1Ft+1(v′). In addition, v′ = V(b′, l′, t + 1) implies that
b′ = B(v′, l′, t + 1), by Lemma 3, so we can substitute out for b′ for B(v′, l′, t + 1), and V(b′, l′, t + 1) for v′.
In addition, we would still need to impose the restriction that any value v′ considered in the dual problem
is attainable in equilibrium, i.e., there exists a b′ that delivers v′ = V(b′, l′, t + 1). Lemma 1 guarantees that
this can always be done. The restriction that l′ = l≥1 provides then a lower bound.
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Recall that in the discussion leading up to Lemma 5, we achieved the efficient pay-
off to new lenders in a competitive equilibrium by not trading long-term bonds. More
generally, it is without loss to consider government policies that do not adjust long-term
liabilities. We state that as a corollary to the proposition:

Corollary 1. [Sufficiency of Short-Term Debt] Let {V, q, Q, ρ,B,L} be a Markov Competitive
Equilibrium. Then, there exists a Markov Competitive equilibrium with {V, q, Q̂, ρ̂, B̂, L̂} where
L̂ is such that L̂(b, l, t) = l≥1.

Proposition 1 and Corollary 1 imply that an efficient allocation can be implemented
in equilibrium using strategies that actively trade only one-period debt. This raises the
question of whether there are equilibria that involve active trading in long-term bonds,
and if not, what makes one-period bonds special. These questions are the subject of the
next section.

5 The Cost of Trading Long-Term Debt

The previous section showed that an equilibrium allocation is efficient in the sense of Def-
inition 3, and it is sufficient to consider policies such that the government trades only one-
period claims. We now discuss why trading long-term bonds may generate strict losses
to the government. We begin with an important property of the inverse value function B;
namely, that it is convex in long-term liabilities. We use this to demonstrate that issuing
or repurchasing long-term bonds is dominated by trading only short-term liabilities, and
strictly so under certain conditions. The section concludes with a discussion of this key
result.

5.1 Convexity

Recall that competitive equilibria deliver B?(v, l, t) to holders of one-period bonds absent
default, conditional on the government’s value v and outstanding long-term debt l. An
important property of the inverse value function B? is that it is convex in l (and strictly so
under some conditions), and its gradient is given by market prices:

Proposition 2. [Convexity] Let {ct+k, Vt+k}∞
k=0 be an efficient allocation at time t that delivers

Vt = v ≥ vD
t , given long-term liabilities l ∈ L. Then, for any other l′ ∈ L:

B?(v, l′, t) ≥ B?(v, l, t)−
∞

∑
k=0

pk
(
l′k − lk

)
18



where pk ≡ ∏k
i=1 R−1Ft+i(Vt+i) with p0 = 1. The inequality is strict if there exists j > 0 such

that (i) pj−1 > 0; (ii) Ft+j(Vt+j) ∈ (0, 1); and (iii) ∑∞
k=j pk

(
l′k − lk

)
6= 0.

The first part of the proposition follows from the fact that a consumption allocation
that delivers v under l also delivers it under l′. Moreover, the objective function in Prob-
lem 9 is linear in consumption, and hence moving from l to l′ without changing the
consumption allocation has a linear effect on value. It then follows that implementing
the l-allocation is feasible for l′ and represents a linear change in the objective, but re-
optimizing may be better.

The second part states conditions where re-optimizing, once the state variable has
changed, leads to a strict improvement. Condition (i) says that period t + j is reached
without default with positive probability; that is, the allocation in period t + j and be-
yond is relevant to payoffs. Condition (ii) says that default in period t + j conditional
on reaching t + j is interior. This implies a small perturbation in the allocation starting
from t + j will affect the default probability in period t + j. The final condition states that
the two long-term liability sequences differ in period t + j or after. We hold off on the
intuition behind this result until Subsection 5.3 below.

5.2 Implications for Cost of Long-Term Bonds

We are now ready to consider the cost of long-term trades. Consider an equilibrium and
a situation where the government starts time t with state (b, l). We know by Proposi-
tion 1 that an optimal strategy for the government at this point would be to issue only
one-period debt and remain passive in the long-term markets by setting l′ = l≥1. How-
ever, perhaps there is an equivalent-payoff strategy that involves trading long-term debt
as well. To explore this, suppose that at time t the government pursues a debt policy of
(b′, l′), where l′k 6= lk+1 for some k ≥ 1. The latter non-equality implies that the govern-
ment actively issues or repurchases long-term debt.

The equilibrium payoff to the government from the (b′, l′) strategy is:

u(c) + βFt+1(Vt+1)Vt+1 + β

ˆ
vD>Vt+1

vDdFt+1(vD), (13)
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where Vt+1 = V(b′, l′, t + 1), and from the budget constraint we obtain16

c = yt − b− l0 + R−1F(Vt+1)

(
B(Vt+1, l′, t + 1) +

∞

∑
k=0

p′k(l
′
k − lk+1)

)
,

where p′k are the equilibrium prices in period t + 1, consistent with state (b′, l′, t + 1), that
is, p′k = ρk(B(b′, l′, t + 1),L(b′, l′, t + 1), t + 1) for k > 0, and p′0 = 1.

Consider now an alternative trade that only uses one-period bonds, but achieves the
same continuation value. That is, suppose the government issues b̂′ such that V(b̂′, l≥1, t+
1) = Vt+1. The fact that continuation values are identical implies that the one-period bond
price, R−1F(Vt+1), remains the same as under the original (b′, l′) strategy; importantly,
long-term bond prices may change, but these have no budgetary impact as no long-term
debt is issued or purchased in this alternative. The budget set implies that the associated
consumption is:

ĉ = yt − b− l0 + R−1F(Vt+1)B(Vt+1, l≥1, t + 1),

and the government’s utility is:

u(ĉ) + βFt+1(Vt+1)Vt+1 + β

ˆ
vD>Vt+1

vDdFt+1(vD). (14)

Comparing (14) to (13), the alternative strategy dominates if ĉ > c. Comparing the
associated expressions for consumption, this is the case if:

B(Vt+1, l≥1, t + 1) > B(Vt+1, l′, t + 1)−
∞

∑
k=0

p′k(lk+1 − l′k).

Given the fact that B = B?, and that any competitive equilibrium allocation is efficient,
it follows that this expression is the same as that in Proposition 2, with the roles of l

and l′ reversed. Therefore, Proposition 2 implies that this strict inequality holds if the
conditions (i),(ii), and (iii) are satisfied. Hence, to achieve a given continuation value,
the government has higher consumption if it remains passive in long-term debt markets:
trading in the long-term bond markets can only shrink the government’s budget set.

The “shrinking” of the budget set is due to the fact that active trades in long-term
bonds have adverse impact on prices. We highlight this feature diagrammatically in Fig-
ure 1. The diagram reflects the above scenario, in which the government enters period t
with long-term liabilities l and pursues a strategy that yields a continuation value Vt+1.

16We use the fact that ρk+1(b′, l′, t) = q(b′, l′, t)ρk(b′′, l′′, t + 1) where b′′ = B(b′, l′, t + 1) and l′′ =
L(b′, l′, t + 1). Substituting this into the definition of Q and re-arranging yields the expression in the text.
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Figure 1: The convexity of the value function and the cost of long-term trades.

The diagram considers two dimensions of the possible debt policy. The diagram’s verti-
cal axis, labelled b′, represents alternative choices for one-period bonds that will be due
next period (t + 1), and the horizontal axis represents alternative choices for long-term
bonds due in period t + 1 + k. Point A represents the inherited one-period debt and pe-
riod t + 1 + k liabilities at the start of t: A = (b, lk+1). From this point, the government
chooses a new portfolio (b′, l′k) to take into period t + 1.

The bold convex line is the inverse value function, B, evaluated at period t + 1 states:
b′ = B(Vt+1, l′, t+ 1). Specifically, holding constant Vt+1, the function depicts the value of
one-period debt associated with alternative choices for liabilities due in period t + k + 1,
l′k. The function is downward sloping as more long-term debt requires less one-period
debt to keep the value to the government constant at Vt+1. Its convexity is established in
Proposition 2, and for the strict convexity that is depicted we assume that the conditions
in that proposition hold for period t + 1 + k. From that proposition, the slope of the
tangency line at each point of B reflects the t + 1 price of liabilities due in t + 1 + k, which
is denoted p′k.17 this price is conditional on the choices (b′, l′k), and thus varies as the
government considers alternative policies.

The diagram considers a policy which, starting from point A, shifts the government’s

17Technically, the price lines are supporting subgradients, as B is not necessarily differentiable every-
where.
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end-of-period portfolio to point A′. The period-t consumption associated with this policy
is:

ct = yt − l0 + R−1F(Vt+1)
[
b′ + p′k(l

′
k − lk+1)

]
.

Note that the term in square brackets is the equation of the line tangent to point A′; thus,
as we follow this tangency to lk+1, the height of this line (denote by m in the graph) maps
into the level of consumption associated with the point-A′ policy.

Now consider an alternative policy starting from point A that moves the portfolio
to point A′′. The vertical height at point A′′, denoted by b̂′, is strictly higher than m,
a fact which follows directly from strict convexity. Correspondingly, the consumption
associated with policy-A′′ is greater than that of point A′. As the continuation value is
the same in both cases, this represents a strict improvement. That is, if the government
were to choose A′ rather than A′′, it will lose resources.

5.3 Discussion

To obtain some intuition for the result, we first discuss the economics behind the convex-
ity of B. Consider the contracting problem between new lenders and the government,
given a sequence of long-term liabilities, l. The efficient allocation delivers a certain level
of utility to the government through a mix of net payments and the values the govern-
ment achieves through default. Now suppose that we increase the long-term liabilities
that are due j periods ahead; lj < l′j. This reduces the surplus in that period that can be
split between new lenders and the government. In an efficient contract, there is an incen-
tive to raise the probability of default in t+ j at the margin, as less of the surplus is at stake
at that time. Starting from an interior default probability at l, the efficient allocation will
therefore lower pj in response to the increased l′j. Note that the long-term debt holder
is hurt by this, but the planning problem ignores this loss. Correspondingly, in a com-
petitive equilibrium, there is no price mechanism that makes the government internalize
this loss. Similarly, if lj > l′j, the new lenders and the government now have a greater
incentive to avoid default in period t + j, and the allocation will adjust accordingly.

This discussion highlights the core inefficiency in the environment. Small perturba-
tions in the probability of default in any given period have a second-order loss for the
government, as they are indifferent to default at the margin. However, they represent
a first-order loss to existing bond holders. Thus efficiency requires that the government
internalize these losses when choosing allocations in the competitive equilibrium. This
is possible for one-period bondholders as prices move one-to-one with the probability of
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default, as is clear from the break-even condition (4). At the margin, the government bears
the full cost or benefit of its consumption/savings decisions. This feature of one-period
bonds is the reason that the competitive equilibrium is efficient from the perspective of
one-period bondholders.

The equilibrium is not efficient from the perspective of long-term bondholders. When
issued, the government pays actuarially fair prices, and thus long-term bondholders are
compensated for expected default. In the future, the government does not face a price that
makes it internalize the consequences of its actions on existing long-term bond holders.
If the government could commit to a path of consumption at the time debt is issued, this
would not represent a problem. However, the efficient consumption plan from the per-
spective of long-term bondholders is not generally time consistent, as there is no period-
by-period price that aligns incentives. As a result, the default premium in short-term
bond prices is akin to a variable cost that must paid each period and moves one-to-one
with changes in default probability, aligning incentives. Long-term bonds also embed a
default premium, at the time of issuance, but from the perspective of later periods, this
premium is a sunk cost and provides weaker incentives going forward.

Another perspective on the sub-optimality of long-term debt arises from optimal con-
tracting; namely, the problem with long-term debt is the lack of exclusivity. Recall that a
competitive equilibrium allocation corresponds to an efficient contract between a set of
new bondholders and the government, conditional on existing liabilities. The contract
calls for a sequence of net payments to the lenders. With exclusivity, that sequence could
be decentralized as a portfolio of bonds of arbitrary maturity, as the government can-
not dilute the creditor by contracting with new bondholders. However, the competitive
equilibrium does not admit the possibility of the government committing to future debt
issuances. With short-term debt, the contract can be viewed as a sequence of one-period
exclusive contracts with the representative lender. Given the assumption that there is
only one auction per period, the one-period bond holder is never at risk of the govern-
ment subsequently contracting with alternative creditors before repayment.

The lack of exclusivity of long-term bonds renders them inefficient. This raises the
question of whether repurchasing the long-term bonds and replacing them with one-
period bonds can undo this inefficiency and generate a higher value for the government.
The above discussion says no. Any change in long-term debt raises the expected pay-
ments to bondholders. As the government replaces its long-term liabilities with short-
term bonds, its incentives to borrow or save change. Specifically, they change in a manner
that raises the price of the repurchased liabilities. However, the new allocation was also
feasible without repurchasing long-term bonds, but not optimal. The government does
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not need to alter its portfolio of long-term debt to contemplate alternative sequences of
consumption, holding constant expected net payments. Thus repurchasing debt repre-
sents an unnecessary transfer to bondholders that could have been avoided by restricting
activity exclusively to one-period bond markets.

Bulow and Rogoff Debt Buybacks

The suboptimality of repurchasing long-term bonds on secondary markets is reminiscent
of Bulow and Rogoff (1988, 1991), henceforth BR. BR emphasize an environment in which
the lenders collect some resources from the country in case of default. The claim of previ-
ous bond-holders on this collateral value can be diluted by issuing new bonds; that is, the
government can raise additional resources from new lenders at the expense of the legacy
bond holders by selling additional claims to the same collateral value. This mechanism
underlies many of the debt-dilution papers in the corporate finance literature.

In an environment with this incentive to dilute legacy bondholders, a government
will strictly lose by repurchasing legacy bonds. A buyback does not reduce the amount
paid by the government to creditors in default. However, the repurchase price includes
the legacy bondholders claim on this collateral. Hence, the reduction in future payments
from the buyback is less in expected value than the buyback price.18 This logic holds even
if the government repurchases at the pre-buyback market price, a result quite different
from our environment, as we show in Section 7.

Our zero long-term trade result shares a similar outcome to BR (repurchases are costly),
but via a different mechanism. Note that differently from BR, our model does not have
a recovery/collateral value in case of default: there is no fixed amount of resources for
foreign lenders to grab in such an event. As a result, the dilution incentive at the heart
of BR’s result is absent in our framework.19 The crucial element in our framework is that
the maturity structure affects the probability of default. In particular, the incentives to
borrow or save depend on how much of the debt must be rolled over along the path. This
is absent from BR, but at the core of our result.

18In BR’s terminology, the reduction in expected future payments is the marginal change to the market
value of debt, while the repurchase price is the average market value.

19Our example in Figure 1 of issuing long-term bonds represented a loss for existing bondholders but
was nevertheless suboptimal. That is, a capital loss for bondholders is not a gain for the government –
default in our environment is not zero sum.
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6 A Stationary Economy with a Perpetuity and a One-Period

Bond

To better understand the forces at play in the model, in this section we proceed to charac-
terize the equilibrium in a stationary environment with a simple asset structure. Specif-
ically, we assume the endowment is constant (yt = y), the distribution of outside option
shocks is independent of time (Ft = F), and the market structure is restricted to a one-
period bond and a perpetuity. A one-period bond is, as before, a promise to deliver 1 in
the subsequent period and zero thereafter. A perpetuity is a promise to deliver a constant
flow of payments of 1 forever. We denote by b the stock of one-period bonds at the begin-
ning of the period, and by l the corresponding stock of perpetuities. Besides previously
issued perpetuity claims, there are no other legacy claims.

Let us first focus on the efficient allocation, given an amount of legacy claims, and
later on, relate this to the competitive equilibrium using Proposition 1. In this case, the
efficient allocation solves:

B?(v, l) = max
c≥0,v′∈[vD,V]

{
y− c− l + R−1F(v′)B?(v′, l)

}
subject to :

u(c) + βF(v′)v′ + β

ˆ
vD≥v′

vDdF(vD) = v

Although the value function is not necessarily everywhere differentiable, we can show
the following marginal characterization:

Proposition 3. [An Euler equation] Suppose that for some state (v, l), the optimal policy, v′, is
such that v′ > vD, then

1
u′(c(v′, l))

− βR
u′(c(v, l))

= 0. (15)

If instead, v′ ∈ (vD, vD). Then the following holds:

1
u′(c′(v′, l))

− βR
u′(c(v, l))

=
f (v′)
F(v′)

B?(v′, l). (16)

Note that equation (15) is the usual Euler equation when debt is risk-free. That is,
when the promised value v′ is sufficiently large and, as a result, the probability of default
is zero, the government behaves (locally) like a standard consumer facing a constant in-
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terest rate. If βR = 1, consumption would be constant. If βR < 1, consumption would be
decreasing with time reflecting relative impatience.

The case when βR = 1
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Figure 2: The solid lines are combinations of (l, b) such that b = B?(v, l) for several values
of v. The shaded area is the “no-default” area where v > vD, and the ex-ante probability
of default in the period is zero. The dashed line represents steady-state points. The figure
also plots two possible equilibrium paths (the circles) where the allocation converges to
either (i) no default but still positive level of one-period debt, or (ii) zero one-period debt
and possible default. The parameters used are u = log, y = 2, R = 1.05, β = 1/R, and
the outside option vD equals u(τy)/(1− β) where τ is uniform in [0.2, 0.9].

Note however that when the promised value v′ is within the support of the outside
option shocks, then the probability of default is strictly positive. In this case, the Euler
equation has a new term given by the right-hand side of equation (16). Suppose for ex-
ample that βR = 1 and that B?(v′, l) > 0. Then, in this case, c′ > c; that is, consumption is
back-loaded. Intuitively, at the margin, it is optimal to increase future continuation values
by postponing consumption in order to reduce the default probability tomorrow by the
marginal density f (v′). In equilibrium, the government internalizes this change because
f (v′)/F(v′) governs the elasticity of the equilibrium one-period bond price schedule with
respect to debt issuances. As long as default has positive probability and there are one-
period bonds outstanding, the government has an incentive to save at the margin. Given
βR = 1, this is the only incentive to tilt consumption, and starting from a situation where
the government has strictly positive one-period debt, the Euler equations imply that the
government will save until either (i) the level of one-period debt is zero, or (ii) default
risk completely disappears.
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Figure 2 depicts the outcome of a numerical simulation of the model. The downward
solid sloping lines are combinations of (l, b) such that v is constant along each line; that
is, b = B?(v, l) for respective values of v. In the Southeast corner of the diagram, debt is
low enough (or v is high enough) that default is never optimal. As we move Northeast, v
declines and the default probability increases. The figure also plots two possible equilib-
rium paths depicted by the circles connected by the arrows. The two equilibrium paths
are distinguished by the initial debt portfolio. In the example on the left, there is a rela-
tively low level of long-term debt and the allocation converges to the no-default region
with strictly positive levels of one-period debt. Once it reaches the no-default region, (15)
implies that consumption is stationary thereafter. In the right example, the government
pays down its one-period debt but never removes the risk of default posed by long-term
debt. Equation (16) implies that consumption is stationary despite the risk of default, as
there is no debt being rolled over. However, in this case the government eventually de-
faults once a high-enough outside option is realized. The fact that the equilibrium paths
are vertical lines in this state space reflects the result that the government only actively
trades one-period bonds (and the perpetuity never matures).

The equilibrium paths depicted in Figure 2 capture the incentive to save provided by
one-period bonds. Recall that bond prices are actuarially fair and are priced at the govern-
ment’s discount rate when βR = 1. Nevertheless, the government faces inter-temporal
prices that induce saving. In particular, equilibrium prices require that the sovereign
compensate lenders for the expected creditor losses in default. However, the government
does not receive the corresponding equivalent benefit from default. To see this, suppose
that the outside option realization is marginally above the government’s value of repay-
ment. In this case, the government is nearly indifferent between default and repayment,
but the creditors suffer a discrete loss. Ex ante, bond prices are such that the government
must compensate creditors for the possibility of the full loss. This provides the govern-
ment an incentive to raise the price of its bonds at the margin by paying down one-period
debt, as indicated by the Euler equation (15). This incentive is operational as long as one-
period debt is outstanding or default is a non-zero probability. The perpetuity provides
no such incentive, as the benefits of reducing the default probability after issuance are not
captured by the government.

When βR < 1, the incentive to pay down one-period bonds is tempered by relative
impatience. From equation (15), the interior of the no-default region is never a station-
ary point, as there is no countervailing cost to front loading consumption at the margin.
Similarly, from equation (16), zero one-period debt is never a stationary point. However,
in regions of the state space with f (v)b > 0, the elasticity of the bond price schedule
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provides an incentive for patience that can support a stationary point. This point may be
on the boundary of the no-default region or in the region of the state space with strictly
positive probability of default, but always with strictly positive one-period debt.

Figure 3 is the counterpart of Figure 2 for the case of βR < 1. The solid and dotted
lines again represent (b, l) loci with constant v. The dashed line represents stationary
points of the equilibrium. The left example equilibrium (again depicted by circles con-
nected by the arrows) is similar to that of Figure 2. In particular, the government pays
down one-period debt until it reaches the no-default region. Once on the boundary, its
impatience is exactly offset by the marginal price decline induced by borrowing into the
possible-default region. Differently form Figure 2, in which the entire no-default region
contained stationary points, if the initial state had been directly below the no-default re-
gion boundary, the government would have borrowed up to the boundary of the region
by exclusively issuing one-period bonds. The right-hand path depicts the case with larger
initial long-term debt. In this case, the stationary point is in the interior of the region in
which default occurs with positive probability. Again, if the initial state had been below
the dashed line, the government would borrow to this point by issuing one-period bonds.
This is the case shown in the middle path. One other difference between the two figures
is that in Figure 3, the convexity of the value function applies to the portions of the dot-
ted lines inside the no-default region. This reflects that if the initial l is large enough, the
government will eventually borrow into the interior of the default region. Correspond-
ingly, trades of long-term assets, even though there is currently no risk of default, entail
strict losses to the government given that future equilibrium default occurs with positive
probability.

6.1 The Yield Curve

The equilibrium trajectories discussed above shed light on the relevance (or irrelevance)
of the slope of the yield curve in determining the optimal maturity of debt issuance. Let
rk denote the implied yield of a zero-coupon bond that matures in k periods. In particu-
lar, the one-period implied yield is r1 = q−1 − 1, where q is the equilibrium price of the

one-period bond. Similarly, rk = ρ
− 1

k
k − 1 for zero-coupon bonds maturing in k periods

that trade at price ρk.20 As a result, rk is therefore the geometric mean of the conditional
hazard of default from t + 1 through t + k. Thus rk+1 ≷ rk depending on whether the
t + k + 1 conditional default probability, Ft+k+1(Vt+k+1), is greater or less than the aver-
age of the periods preceding it. In Figure 3, if the government starts below the dashed line

20That is, ρk = ρk(B(b, l, t),L(b, l, t), t), where (b, l, t) is the current state.
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The case when βR < 1
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Figure 3: The solid lines are combinations of (l, b) such that b = B?(v, l) for several
values of v. The shaded area is the “no-default” area where v > vD, and the ex-ante
probability of default is zero. The dashed line represents steady-state points. The figure
also plots three possible equilibrium paths (the circles) where the allocation converges to
either (i) the boundary of the no-default region, or (ii) the interior of the default region.
The parameters used were u = log, y = 2, R = 1.05, β = .9/R, and the outside option
equals u(τy)/(1− β) where τ is uniform in [0.2, 0.9].

depicting stationary points, it faces an upward sloping yield curve, as creditors anticipate
the higher future debt levels and associated default probabilities. On the other hand, if
it starts above the dashed line, the yield curve will slope down. These two situations are
plotted in Figure 4. However, in both scenarios, the government can achieve its equilib-
rium value without trading long-term debt. Moreover, if the strict convexity conditions of
Proposition 2 are satisfied, trading long-term bonds generates strict losses independently
of whether the yield curve slopes up or down. The irrelevance of the yield curve high-
lights that what is important for the result is not the relative level of the interest rate at
different maturities (as implied by the yield curve or the associated prices), but instead
the elasticity of bond prices to maturity choice.

7 Pareto Efficient Restructuring

Section 3 introduced a planning problem to analyze competitive equilibria. The notion
of efficiency in Definition 3 ignored potential gain or losses to legacy bond holders when
comparing different allocations. In this section, we broaden this to a general notion of
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The yield curve for βR < 1
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Figure 4: The parameters of the simulation are the same as in Figure 3. The solid line is
the yield curve starting from a point above the steady-state line. The dashed line is the
yield curve starting from a point below the steady-state line. In both cases l = 0.25 and b
starts at 0.23 for the solid line and at 1.33 for the dashed line.

efficiency, which would include the expected payoff to long-term bondholders as well.
Specifically, consider making the sequence of payments l̂k a choice variable rather

than a state in the contracting problem (9) (that is, the planner can restructure the legacy
claims). In addition, we add an additional constraint to that problem that guarantees
long-term bondholders a minimal expected payoff w. The problem becomes:

B?(v, w, t) = sup
{ct+k,Vt+k,l̂k}∞

k=0

∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
(yt+k − l̂k − ct+k) (17)

subject to:

{Vt+k}∞
k=0 solves (6) given {ct+k}∞

k=0,

Vt ≥ v, (18)
∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
l̂k ≥ w, (19)

This new problem then traces out the maximum payoff to new bondholders conditional
on the welfare of the government and long-term bondholders, and thus as we vary v and
w we trace out the Pareto frontier.

Note that constraint (19) will bind in the solution to this expanded problem (otherwise
the payment to new-bond holders could be increased). Using this constraint to substitute
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out lk from the objective, we have a problem that simply subtracts w from the net pay-
ments. The problem then is isomorphic to the one considered in Section 3, but with an
additional expected payment of w to creditors replacing the legacy liabilities. From the
results of that section, the Pareto efficient allocation can then be decentralized by allo-
cating short-term bonds with value w to existing long-term bondholders. As long as the
payment w is weakly higher than the market value of their legacy claims in the origi-
nal competitive equilibrium outcome, long-term bond holders will find this restructuring
beneficial.

While such a swap is a Pareto improvement relative to the competitive equlibrium,
it cannot be done via market trades. Consider the alternative planning problem where
constraint (19) is replaced with the following:

∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
l̂k ≥

∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
lk

where {lk} represents the original legacy debt. This alternative constraint imposes that
legacy lenders have the option to hold on to their original claims across alternative alloca-
tions. A new allocation that changes the default probabilities from the equilibrium one
will change the compensation that legacy bondholders require to give up their original
claims. It is easy to see that in the solution to this alternative problem, the hold-out con-
straint above will hold with equality. Substituting this into the objective function delivers
the same problem as in Problem 9; that is, the planner cannot improve upon the equi-
librium outcome in the presence of the hold-out constraint. Hence, the friction in the
competitive equilibrium is the hold-out problem of legacy bondholders.21

The analysis of Section 5 demonstrated that it is never optimal for the government to
issue short-term bonds in order to repurchase long-term bonds. The issue here is that such
trades give too much of the surplus to legacy lenders for the government to be indifferent.
Therefore, such restructurings, if they are to be undertaken, must be implemented via
non-market arrangements (such as bargaining between all creditors, as a group, and the
government).

We explore visually this result in Figure 5. The figure has the similar elements of Fig-
ure 1, but focuses on restructuring from the initial allocation A. The value b on the vertical

21This new problem makes clear that the inefficiency of the competitive equilibrium does not rely on the
size and behavior of the new lenders, but rather depends on the potential hold-out behavior of the atomistic
legacy lenders. For example, consider the scenario in which a large investor buys up all the legacy bonds
and negotiates with the government. If this could be done holding fixed equilibrium prices, the solution
to problem 17 could be implemented and the large investor would capture the net gain. However, if initial
bondholders anticipate this event, prices change and the strategy cannot be profitable.
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Figure 5: A (Pareto-improving) Restructuring of Legacy Claims.

axis represents the amount of one-period bonds currently due and the value lk on the hor-
izontal axis, the legacy claims due k periods ahead. The figure is drawn conditional on
repayment in the current period. As in Figure 1, a tangency line to the function B presents
the price of the long-term claim; in this case, the price assumes equilibrium behavior start-
ing from initial state A, which is our benchmark for restructuring. The vertical intercept
of the tangency line denoted m represents the current period market value of all the debt
at the initial point A; that is, m = b + pklk. Similarly, the intercept of the value function B
and the vertical axis, labelled m′, represents the amount of one-period bonds that would
make the government indifferent between point A and a portfolio composed solely of
one-period bonds. Convexity of B implies that m′ is weakly greater than m, and strictly
so if the conditions for strict convexity are satisfied (which we assume in the diagram).
That is, the government is indifferent to a restructuring that swaps all legacy claims lk

in exchange for an amount m′ − b of additional one-period bonds. With strict convex-
ity, because m′ > m the swap represents a strict improvement for bond-holders, as the
market value of outstanding debt increases. More generally, a restructuring to any point
on the vertical axis between m and m′ represents a Pareto improvement, as these points
represent combinations of increases in the market value of debt and increases in the gov-
ernment’s value. However, these Pareto-efficient restructurings cannot be implemented
through competitive markets. In particular, the convexity of B implies that market prices
of long-term bonds will be higher for portfolios on the vertical axis than at the initial point
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A. If the government were to propose such a swap to bondholders, legacy bondholders
will want to hold-out and reap the resulting capital gains from the restructuring. There-
fore, such restructurings require some form of collective bargaining and cannot be done
through arms-lengths transactions.

The analysis of this section implies that an efficient restructuring reduces the maturity
of the government debt portfolio. From this perspective, the lengthening of maturities
that accompany actual debt restructurings in practice appears puzzling. However, the
conflict between the model and actual practice is less severe than it appears. In the model,
one-period debt provides the correct incentives for the government to minimize the net
loss from default. In particular, a portfolio composed exclusively of one-period bonds im-
plements the fiscal trajectory that a Pareto planner would choose. Maturity extensions in
practice are often motived by providing “breathing room” to the sovereign by mitigating
rollover risk, something we abstract from in the present paper. However, our framework
suggests such extensions provide perverse incentives for fiscal policy going forward. To
address this, many restructurings involving official agencies such as the IMF or EU there-
fore impose conditionality on the debtor. While private markets lack the ability to impose
conditionality, it is also questionable how enforceable official conditionality is in practice,
particularly as the IMF and other supra-national lenders may lack the political will to
punish the debtor ex post. This issue does not arise in the competitive equilibrium we
consider. In particular, bond holders only demand to break even on average, which is
always a time consistent disciplining device.

8 An Extension with Hedging

The benchmark analysis features a model that emphasizes the threat of default as the key
friction. We deliberately constructed the model to suppress a hedging motive in order to
make the analysis as transparent as possible. The preceding discussion emphasized the
inefficient properities of long-term debt, yet at the same time established that the govern-
ment never adjusts the stock of long-term debt in equilibrium. In this section, we extend
our baseline model to explore how long-term bonds are used to hedge consumption risk
in the presence of default. In particular, we study how the trade-off between incentives
and hedging may lay lead a government to issue long-term bonds in the first place.

We extend the previous environment as follows. Consider a new initial period, t =

−1, where the government needs to raise an amount X of resources from international
bond markets. In period t = 0, the government faces the following risk. With probability
π, a (permanently) risky state is realized. The risky state is our benchmark environment
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in which default is the dominant consideration. With probability 1− π, a permanently
safe state is realized. In the safe state, the government never defaults and faces risk-free
prices for t ≥ 0. 22

The important departure from the benchmark is that the states differ in their inherent
risk and this difference is persistent. This persistence provides the opportunity to hedge
using long-term bonds. One can think of the safe state as a low realization of vD that
persists over time.

We follow the example of Section 6 in which the government trades a one-period bond,
b, and a perpetuity, l, that pays 1 every period. The endowment is held fixed at y and the
government discounts at the world interest rate: βR = 1. To simplify expressions, we
assume that there is no default in t = 0.

The question we address is what is the optimal portfolio of the initial bond issuances.
To highlight the hedging motive, we first analyze a complete-markets environment in
which the government issues liabilities explicitly contingent on the realization of the
period-0 state. We then turn to the incomplete markets model of interest.

8.1 Contingent Debt

Consider a government at t = −1 choosing state-contingent consumption sequences.
More precisely, the consumption allocation is contingent on whether the safe or risky state
is realized at t = 0; we continue to assume there is no contingency on the realizations of
default values. Let ct and c̃t denote consumption in period t conditional on the risky
and safe states, respectively. The risky consumption sequence is also contingent on the
government not having defaulted in a previous period. As before, let Vt denote the value
in the risky state at time t given the allocation {ct}, as defined in equation (6), and pt =

R−tΠt
k=1F(Vk) for t > 0 with p0 = 1. The lenders’ break-even condition requires that the

price as of time t = −1 of a liability promising payment of a unit in period t in the risky
state is πR−1pt. Period t payments contingent on the safe state are valued by lenders at
(1− π)R−(t+1) in period t = −1.

22The fact that the alternative is risk-free simplifies the analysis but is not crucial for the incentive to
hedge.
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The government’s period t = −1 problem is:

max
{ct,c̃t,Vt}

πV0 + (1− π)
∞

∑
t=0

R−tu(c̃t) (20)

subject to

X ≤ πR−1
∞

∑
t=0

pt [y− ct] + (1− π)
∞

∑
t=0

R−(t+1) [y− c̃t] , (21)

where {ct, Vt} is incentive compatible as in equation (6). The budget constraint (21) en-
sures that the promised payments to lenders exceed X in market value at period-(t = −1)
prices.

Let µR denote the multiplier on the constraint (21). The first-order condition for c̃t is

u′(c̃t) = µ. for all t ≥ 0

As the government discounts at R−1 and there is no risk of default in the safe state, the
optimal allocation smooths consumption completely.

The first-order condition for initial consumption in the risky state is:

u′(c0) = p0µ = µ,

where the second equality uses the fact that p0 = 1, given that we have ruled out default
in period 0. Thus, the optimal allocation equates consumption in the initial period across
the risky and safe states: c0 = c̃0.

Because consumption sequences are contingent on the realization of the state, the op-
timal allocation in the risky state {ct, Vt} must be efficient from time t = 0 onwards.
Conditional on V0, the chosen allocation thus coincides with the efficient allocation in our
benchmark environment with zero legacy debt. That is, B?(V0,0) = ∑∞

t=0 pt [y− ct]. Re-
calling our benchmark analysis, if F(Vt) ∈ (0, 1) for some t > 0, then there is an incentive
to backload consumption given βR = 1. In this case, consumption in the risky state is the
same as the safe state at t = 0, and then weakly increases over time.

A possible decentralization of the optimal allocation {ct, c̃t, Vt} is for the government
at t = −1 to issue B?(V0,0) units of one-period bonds due in period 0 contingent on the
risky state and zero long-term liabilities. At the same time, the government issues a one-
period bond contingent on the safe state with face value B̃ = ∑ R−t [y− c̃t]. The fact that
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ct ≥ c0 = c̃0 = c̃t implies

B?(V0,0) =
∞

∑
t=0

pt [y− ct] ≤
∞

∑
t=0

R−t [y− c̃t] = B̃.

This holds with a strict inequality if there is a strictly positive probability of default in the
risky state.

The sovereign equates consumption across the states in the initial period; however, af-
ter the state is realized, in the event of the risky state, it backloads consumption. Thus, the
government shifts its liabilities toward the safe state and consumption towards the risky
state in order to reduce the probability of default in the risky state. The complete-markets
example provides the benchmark for the incomplete markets environment, setting the
stage for trading off insurance and incentives that will determine the optimal portfolio in
what follows.

8.2 Incomplete Markets

The government’s problem under incomplete markets is to issue in t = −1 non-contingent
one-period bonds, b, and non-contingent consoles l, using the asset structure and notation
of Section (6). Recall that the perpetuities pay 1 every period.

Let V(b, l) denote the value in period 0 conditional on the risky state and the portfolio
{b, l} chosen in period t = −1. From the analysis of Section 4, V is the inverse of B?; that
is, b = B? (V(b, l), l). The corresponding value in the safe state is:

Ṽ(b, l) =
R
r

u
(

y− rb
R
− l
)

,

where we use the fact that consumption is perfectly smoothed in the safe state when
βR = 1.

Let pt(b, l) denote R−tΠt
k=1F(Vk), with p0 = 1, where {Vt} corresponds to the alloca-

tion selected in the risky state conditional on inherited debt {b, l} in t = 0. Let R−1qS(b, l)
and R−1qL(b, l) denote the prices of the one-period bond and perpetuity, respectively, in
period t = −1. The lenders’ break-even condition requires:

qS(b, l) = 1

qL(b, l) = π
∞

∑
t=0

pt(b, l) + (1− π)
R
r

,

where the first line reflects that there is no default in t = 0.
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The government’s t = −1 problem starting from zero debt is:

max
{b,l}

πV(b, l) + (1− π)Ṽ(b, l) (22)

subject to X ≤ R−1b + R−1qL(b, l)l. (23)

To provide some intuition for the trade offs involved in the optimal portfolio, first note
that it is feasible to equate consumption across all states and time periods. In particular,
setting b = 0 and issuing only perpetuities implies that ct = c̃t = y− l in every period
absent default. Recall from Section 6 that if b = 0, the government has no incentive to save
and simply pays its perpetuity coupon until it defaults. Thus consumption is constant in
the risky state. In the safe state, it is optimal to maintain a constant consumption as well.
Given that debt is non-contingent, the budget set implies that consumption is equated
across states. While feasible, our contingent-debt analysis suggests that full insurance is
not optimal in this environment. This is because it eliminates the incentive to reduce the
risk of default in the risky state.

To explore this trade off, we provide a necessary condition for the optimality of the
full-insurance portfolio. We do this using a perturbation argument. Suppose that it is
optimal for the government to issue zero one-period bonds and l perpetuities. The asso-
ciated consumption sequence in both states is ct = c̃t = y− l for all t.

Now consider a perturbation in which the government at time t = −1 increases one-
period bonds ∆b and adjusts perpetuities to keep auction revenue constant. In particular,

∆b + qL∆l + l∆qL = 0, (24)

where qL is short-hand for qL(0, l) and ∆qL = qL(∆b, l + ∆l) − qL(0, l) is the change in
price associated with the new allocation. To a first-order, the government’s objective
changes by:

∆Objective ≈
[
πVb(b, l)− (1− π)u′(c)

]
∆b +

[
πVl(b, l)− (1− π)

R
r

]
∆l,
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where the envelope conditions imply:23

Vb = −u′(c)

Vl = −u′(c)
∞

∑
t=0

pt(0, l).

Substituting in and rearranging, we have

∆Objective ≈ −u′(c)

(
∆b +

(
π

∞

∑
t=0

pt(0, l) + (1− π)
R
r

)
∆l

)
= −u′(c) (∆b + qL(0, l)∆l)

= u′(c)l∆qL,

where the last line uses (24). Thus, a necessary condition for (0, l) to be an optimal portfo-
lio is that ∆qL = 0; that is, prices are invariant to revenue-neutral changes in the maturity
composition.

This invariance is not true in general. The intuition is that starting from the full-
insurance portfolio of only perpetuities, a shortening of maturity has second-order con-
sequences on insurance but alters the ex post incentives to save in the risky state. This
alters the ex ante price of insurance, and hence the government has an incentive to issue
some one-period debt. The presence of one-period bonds provides the ex post incentive
for the government to reduce the probability of default if the risky state is realized. This
represents the trade off between insurance and incentives.

A similar perturbation establishes that issuing only one-period bonds is not optimal.
While ex post efficient in terms of default, such a portfolio provides no insurance for
the government against the realization of the risky state. Lengthening at the margin has
second-order efficiency losses but first-order gains in the government’s welfare via better
insurance.

Using the parameters of Section 6, we solve for the optimal portfolio conditional on
π. In Figure 6, we plot the share of total bond revenue raised by issuing one-period
bonds for different probabilities of the risky state π, shown in the horizontal axis. The
remaining share is that raised via perpetuities. From the benchmark analysis, the share of
long-term bonds is zero at π = 1, as there is no need for insurance and long-term bonds
are inefficient in the risky state. For π < 1, the government issues some long-term debt

23Here we are assuming that the probability of default is interior. That is, F(V(0, l)) 6= VD and
F(V(0, l)) 6= VD. Recall that Vt = V(0, l) for all t in this allocation, so it suffices to only check that the
initial value is not at the boundary of the support of vD.

38



Optimal Portfolio Shares with Hedging
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Figure 6: The solid line is the share of total bond revenue raised by issuing one-period
bonds for different probabilities of the risky state π, shown on the horizontal axis. The
remaining fraction is raised by issuing perpetuities. The parameters used are u = log,
y = 2, R = 1.05, β = 1/R, X = 5/R, and the outside option vD equals u(τy)/(1− β)
where τ is uniform in [0.2, 0.9].

for insurance purposes, at the cost of reducing incentives in the risky state. Recalling
our benchmark analysis, these perpetuities issued in t = −1 are never repurchased and
no additional perpetuities are issued in subsequent periods. These represent the legacy
bonds that we treated as the initial state in the benchmark analysis.

9 Conclusion

In this paper we have shown that actively engaging in the long-term bond market dur-
ing periods of potential default entails costs for a sovereign. In particular, shifts in the
maturity structure imply changes in the equilibrium relative prices of long-term bonds.
Such changes are always moving against the borrower; that is, the relative price of long-
term bonds rises when the sovereign buys them, while it falls when the sovereign issues
more. Quite generally, these actions will tend to shrink the budget set of the government,
generating an incentive to use only short-term bonds.

We showed that the competitive equilibrium solved a planning problem, and that
the decentralization involves trading one-period bonds exclusively. Interestingly, even
though short-term debt is efficient, the sovereign makes no attempt to repurchase existing
long-term bonds and replace them with one-period debt. Such a swap will be costly. This
holds regardless of whether the equilibrium yield curve slopes up or down. The relevant
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price is the cost of bonds at the margin, and not the prices of existing bonds on secondary
markets.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Let us first show a couple of lemmas, that hold for any given equilibrium.

Lemma 6. Given (l, t), there exists a b such that V < V(b, l, t) < vD
t .

Proof. Let m ≡ supl′,b′≤B̄{q(b′, l′, t)b′ + Q(l, l′, b′, t)}. Given ε > 0, let b ≡ yt − l0 + m− ε.
Note that from (BC), for b = b it follows that for any choice, (c0, b′, l′) we have that

0 < c0 ≤ q(b′, l′, t)b′ + Q(l, l′, b′, t)−m + ε ≤ ε

From the definition of m and ε > 0, there exists a c0, b′, l′ that satisfy these inequalities,
which guarantees that V(b, l, t) > u + βV = V. In addition, picking the highest possible
c0 and the highest possible continuation value delivers an upper-bound:

V(b, l, t) ≤ u(ε) + βV

Assumption 1.iv in turns guarantees that, for ε sufficiently small, V(b, l, t) < vD
t . And

thus, there exists b such that V < V(b, l, t) < vD
t .

Lemma 7. q(b, l, t) = R−1 if b < yt − l0 and u(yt − l0 − b) + β
´

vDdFt+1(vD) ≥ vD
t .

Proof. Note that V(b, l, t) ≥ u(yt − l0− b) + β
´

vDdFt+1(vD), as consuming c = yt − l0−
b > 0 and defaulting in the next period is a feasible strategy. As a result, it follows that
V(b, l, t) ≥ vD

t and q(b, l, t) = R−1F(V(b, l, t)) = R−1.

Lemma 8. Given (l, t), for any v0 ∈ [vD
t , V), there exists a b0 such that V(b0, l, t) > v0.

Proof. Let c̄ be such that u(c̄) = max{umax, (1− β)v0}where umax is as in Assumption 1.v.
Note that c̄ is finite. Let bt+k = ∑∞

s=0 R−s min{(yt+k+s − lk+s − c̄), 0} for all k ≥ 0. Note
that bt+k ≤ 0 for all k ≥ 0. It follows also that for all k ≥ 0,

bt+k = min{(yt+k − lk − c̄), 0}+
∞

∑
s=1

R−s min{(yt+k+s − lk+s − c̄), 0}

≤ (yt+k − lk − c̄) +
∞

∑
s=1

R−s min{(yt+k+s − lk+s − c̄), 0}

= (yt+k − lk − c̄) + R−1bt+k+1 ≤ yt+k − lk − c̄
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Using this, we have that for any k ≥ 0,

u(yt+k − lk − bt+k) ≥ u(c̄) ≥ umax > vD
t+k − β

ˆ
vDdFt+k+1(vD)

where the last inequality follows from Assumption 1.v. Thus, V(bt+k, l≥k, t+ k) ≥ u(yt+k−
lk − bt+k) + β

´
vDdFt+k+1(vD) ≥ vD

t+k and q(bt+k, l≥k, t + k) = R−1. We then have that
for all k ≥ 0, given state variable bt+k, l≥k, setting consumption equal to c̄ and debt
b′ = bt+k+1 is feasible. It follows then that

V(bt+k, l≥k, t + k) ≥ u(c̄) + βV(bt+k+1, l≥k, t + k + 1)

and thus V(bt, l, t) ≥ (1− β)u(c̄) ≥ v0.

Proof of Lemma 1. The fact that V is non-increasing in b follows directly from the fact
that a reduction in b only relaxes the budget constraint, and thus the value function must
weakly increase.

For the second part, we proceed by contradiction. Suppose then that there exists a
v ∈ [vD

t , V) such that there is no b withV(b, l, t) = v. By Lemmas 6 and 8, we can find b0

and b1 such that V(b0, l, t) < v < V(b1, l, t). The fact that V(b, l, t) is non-increasing in b,
implies that there exists a b2 ∈ (b0, b1) and a δ > 0, such that

V(b2− ε, l, t) > v > V(b2 + ε, l, t) for any ε > 0 and ‖V(b2 + ε, l, t)−V(b2 − ε, l, t)‖ > δ.

That is, V must feature a discontinuity at b2. Take now the equilibrium consumption
policy at b2 − ε, and let us denote it by c(ε). From Assumption 1.iv, it follows that
u(c(ε)) > umin, as V(b2 − ε, l, t) > v ≥ vD

t . Note that for sufficiently small ε, the con-
sumption policy c(ε)− 2ε with the same b′ is feasible at b2 + ε, as c(ε) is bounded away
from 0 for all ε. It follows then that

0 ≤ V(b− ε, l, t)−V(b + ε, l, t) ≤ u(c(ε))− u(c(ε)− 2ε)

For ε sufficiently small, we have that

u(c(ε))− u(c(ε)− 2ε) < δ

generating a contradiction of ‖V(b2 + ε, l, t)−V(b2 − ε, l, t)‖ > δ.
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A.2 Proof of Lemma 2

Let Hs be defined as follows:Hs(c, V, V′) ≡ u(c) − V + βGs+1(V′) where Gs(x) ≡´
max{x, vD}dFt+s(vD). An allocation is incentive compatible allocation if and only if

Hs(ct+s, Vt+s, Vt+s+1) = 0 for all s ≥ 0, that is, equation (6) is satisfied.
Let us first argue that we can restrict attention to allocations with Vt = v0. Consider an

incentive compatible allocation {ct+s, Vt+s} with Vt > v0. Given that H0(ct, Vt, Vt+1) = 0,
it follows that H0(ct, v0, Vt+1) > 0. Note also that H0(0, v0, Vt+1) = u− v0 + βGs+1(Vt+1) <

u− vD
t + βV < 0, where the fist inequality follows from v0 ≥ vD

t and Gs+1(V′) ≤ V; and
the second inequality by Assumption 1.iv. Continuity of H0 guarantees that there is a
value of c̃t such that 0 < c̃t < ct and H(c̃t, v0, Vt+1) = 0. We can then construct another
feasible allocation, {c̃t+k, Ṽt+k} with c̃t+k = ct+k and Ṽt+k = Vt+k for all k ≥ 1, and c̃t < ct

and Ṽt = v0. This alternative allocation delivers a strictly higher value than the original
(as the continuation allocation is the same, but initial consumption is strictly lower). As a
result, it is without loss to consider only allocations with Vt = v0.

Let us now argue that we can restrict attention to allocations where Vt+s is bounded.
Letw ≡ max{Vt, VD} < V; and consider any incentive compatible allocation {ct+s, Vt+s}.
Let K be the set of all s ≥ 0 such that Vt+s > w. Let us propose an alternative allocation,
{c̃t+s, Ṽt+s} with the property that Ṽt+s = Vt+s for all s 6∈ K and Ṽt+s = w otherwise.

Such an incentive compatible allocation exists. To show this, we need to find {c̃t+s}
such that

Hs(c̃t+s, Ṽt+s, Ṽt+s+1, s) = 0 (25)

for all s ≥ 0. There are four cases to consider. First case is where Ṽt+s = Vt+s and Ṽt+s+1 =

Vt+s+1. In this case, c̃t+s = ct+s solves (25). The second case is when Ṽt+s = Vt+s ≤
w but Ṽt+s+1 = w < Vt+s+1. In this case, Hs(ct+s, Vt+s, w) ≤ Hs(ct+s, Vt+s, Vt+s+1) =

0. In addition, limc→∞ Hs(c, Vt+s, w) = u + βw − Vt+s ≥ u + βw − w = (1 − β)(V −
w) > 0. Continuity of Hs with respect to c guarantees that there must a c̃t+s ∈ [ct+s, ∞)

such that (25) holds. The third case is when Ṽt+s = w < Vt+s and Vt+s+1 = Ṽt+s+1 ≤
w. For this case, Hs(ct+s, w, Vt+s+1) ≥ Hs(ct+s, Vt+s, Vt+s+1) = 0. We also know that
Hs(0, w, Vt+s+1) = u−w + βGs+1(Vt+s+1) ≤ u−w + βV ≤ u−VD

+ βV ≤ u− vD
t+s+1 +

βV < 0 where the last inequality follows from Assumption 1.iv. Again, continuity of Hs

with respect to c guarantees that there must a c̃t+s ∈ (0, ct+s] such that (25) holds. The
final case is when Ṽt+s = w < Vt+s and Ṽt+s+1 = w < Vt+s+1. In this case, c̃t+s must solve
u(c̃t+s) = (1− β)w, which must exists given that w ∈ [V, V).

We argue now that the new allocation {c̃t+s, Ṽt+s} is an improvement over the original.
Towards this, first note that Ft+s(Vt+s) = Ft+s(Ṽt+s) for all s ≥ 0. The value generated
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from this new allocation, in comparison with the original, can be written as:

B̃t({Ṽt+s})− B̃t({Vt+s}) =
∞

∑
s=0

R−s

(
s

∏
i=1

Ft+i(Vt+i)

)
(ct+s − c̃t+s)

= −
∞

∑
s=0

ps
[
C(Ṽt+s − βGs+1(Ṽt+s+1))− C(Vt+s − βGs+1(Vt+s+1))

]
= − ∑

s∈K′
ps
[
C(Ṽt+s − βGs+1(Ṽt+s+1))− C(Vt+s − βGs+1(Vt+s+1))

]
where C denotes the inverse function of u; ps ≡ R−s ∏s

i=1 Ft+i(Vt+i); K′ ≡ {s|s ∈ K or s +
1 ∈ K}; and where the second equality uses (6), and the last uses that consumption is
only potentially different across allocations for s ∈ K′. It follows that

B̃t({Ṽt+s})− B̃t({Vt+s}) ≥
− ∑

s∈K′
psC′

(
Ṽt+s − βGs+1(Ṽt+s+1)

) {
Vt+s − Ṽt+s − β

[
Gs+1(Vt+s+1)− Gs+1(Ṽt+s+1)

]}
= − ∑

s∈K
ps−1R−1 [(βR)C′

(
Ṽt+s−1 − βw

)
− C′

(
w− βGs+1(Ṽt+s+1)

)]
(Vt+s − w) (26)

where the first inequality uses the convexity of C; and the equality, uses that Gs(w) = w,
that for all s ∈ K, ps = R−1ps−1, and rearranges terms. We also know that

w− βGs+1(Ṽ?
t+s+1) ≥ Ṽt+s−1 − βw

which follows from Ṽt+s−1 ≤ w, and Gs+1(Ṽt+s+1) ≤ Gs+1(w) = w (given that Gs is
increasing). By concavity of C, we have

0 ≤ C′(Ṽt+s−1 − βw) ≤ C′(w− βGs+1(Ṽ?
t+s+1))

for all s ∈ K. Given that βR < 1, the above implies that

(βR)C′
(
Ṽt+s−1 − βw

)
− C′

(
w− βGs+1(Ṽt+s+1)

)
≤ 0; for all s ∈ K

Together with Vt+s ≥ w for all s ∈ K, it follows from (26) that

B̃t({Ṽt+s})− B̃t({Vt+s}) ≥ 0

Thus, the allocation {Ṽ?
t+s} generates a weak improvement over the original. As a result,

we can restrict attention to allocations such that Vt+s ≤ max{Vt, VD}.
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A.3 Proof of Lemma 3

Let v = V(b, l, t). Given that V(b, l, t) ≥ vD
t , the constraint set in problem 3 is non-empty.

Consider then the equilibrium policies, b′ = B(b, l, t) ≤ B and l′ = L(b, l, t) ∈ Γ(l, t) to-
gether with v′ = V(b′, l′, t + 1), and let c be the associated equilibrium consumption. The
equilibrium budget constraint must hold, so yt − l0 − c + q(b′, l′, t)b′ + Q(l, l′, b′, t) ≥ b.
Given that the policy {c, b′, l′, v′} is feasible in problem 11, we have obtained a lower
bound to the value: B(v, l, t) ≥ b. In addition, if B(v, l, t) > b, then there must ex-
ist a feasible vector of policies (c̃, b̃′, l̃′, ṽ′) such that v = u(c̃) + β

´
max{V(b̃′, l̃′, t +

1), vD}dFt+1(vD) and b < yt − l0 − c̃ + q(b̃′, l̃′, t)b′ + Q(l, l̃′, b̃′, t). But this implies that
we can find an alternative policy (ĉ, b̃′, l̃′) with ĉ > c̃ that satisfies the equilibrium budget
constraint at (b, l) and delivers an equilibrium value higher than v = V(b, l, t), a contra-
diction of optimality in equilibrium. It follows then that B(v, l, t) = b.

A.4 Proof of Lemma 4

Let {ct+k}∞
k=0 denote an equilibrium consumption sequence with associated equilibrium

choices {bk, lk}∞
k=1, starting from initial state b0 = b and l0 = l. Given this equilibrium,

let us define pt
k as the equilibrium discounted survival probability k additional periods,

starting from time t. The equilibrium budget constraint requires that

b ≤ yt − l0 − ct + pt
1

(
b1 +

∞

∑
k=1

pt+1
k−1

(
l1k−1 − lk

))

In period t + 1, the equilibrium budget constraint implies

b1 ≤ yt+1 − l10 − ct+1 + pt+1
1

(
b2 +

∞

∑
k=1

pt+2
k−1

(
l2k−1 − l1k

))
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Substituting this into the initial inequality, we get:

b ≤ yt − l0 − ct + pt
1

[
yt+1 − l10 − ct+1 + pt+1

1

(
b2 +

∞

∑
k=1

pt+2
k−1

(
l2k−1 − l1k

))

+
∞

∑
k=1

pt+1
k−1

(
l1k−1 − lk

) ]

≤ yt − l0 − ct + pt
1

[
yt+1 − l10 − ct+1 + pt+1

1

(
b2 +

∞

∑
k=1

pt+2
k−1

(
l2k−1 − l1k

))

+ l10 − l1 +
∞

∑
k=2

pt+1
k−1

(
l1k−1 − lk

) ]

≤
2

∑
k=0

pt
k(yt+k − lk − ct+k)

+ pt
1

[
pt+1

1

(
b2 +

∞

∑
k=1

pt+2
k−1

(
l2k−1 − l1k

))
+

∞

∑
k=2

pt+1
k−1

(
l1k−1 − lk

) ]

≤
2

∑
k=0

pt
k(yt+k − lk − ct+k)

+ pt
1

[
pt+1

1

(
b2 +

∞

∑
k=2

pt+2
k−2

(
l2k−2 − l1k−1

))
+

∞

∑
k=2

pt+1
k−1

(
l1k−1 − lk

)]

But now, we can use that pt+1
k−1 = pt+1

1 pt+2
k−2.and that pt

1pt+1
1 = pt

2. So we have that

b ≤
1

∑
k=0

pt
k(yt+k − lk − ct+k)

+ pt
1

[
pt+1

1

(
b2 +

∞

∑
k=2

pt+2
k−2

(
l2k−2 − l1k−1

))
+ pt+1

1

∞

∑
k=2

pt+2
k−2

(
l1k−1 − lk

)]

≤
1

∑
k=0

pt
k(yt+k − lk − ct+k)

+ pt
1

[
pt+1

1

(
b2 +

∞

∑
k=2

pt+2
k−2

(
l2k−2 − l1k−1

)
+

∞

∑
k=1

pt+2
k−2

(
l1k−1 − lk

))]

≤
1

∑
k=0

pt
k(yt+k − lk − ct+k) + pt

1

[
pt+1

1

(
b2 +

∞

∑
k=2

pt+2
k−2

(
l2k−2 − lk

))]

≤
1

∑
k=0

pt
k(yt+k − lk − ct+k) + pt

2

(
b2 +

∞

∑
k=2

pt+2
k−2

(
l2k−2 − lk

))
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We can keep substituting and we get to the following:

b ≤
N−1

∑
k=0

pt
k(yt+k − lk − ct+k) + pt

N

(
bN +

∞

∑
k=N

pt+N
k−N(l

N
k−N − lk)

)

But recall that
bN ≤ B̄; and

∣∣∣lN
k

∣∣∣ ≤ l̄

where B̄ > 0 and l̄ > 0. Using that pt+N
k−N ≤ R−k+N , we get that

b ≤
N−1

∑
k=0

pt
k(yt+k − lk − ct+k) + R−N

[
B̄ + 2

l̄
R− 1

]

Taking limits as N → ∞, we have that that last term goes to zero, and the equilibrium
allocation must satisfy that

b ≤
∞

∑
k=0

pt
k(yt+k − lk − ct+k)

where pt
k = ∏k

i=1 R−1Ft+i(Vt+i) and where {ct+i, Vt+i}∞
i=0 is an incentive compatible allo-

cation with Vt = v.
The efficient problem 9 maximizes ∑∞

k=0 pt
k(yt+k − lk − ct+k) subject to delivering v =

V(b, l, t) to the government. It follows then that b = B(v, l, t) ≤ ∑∞
k=0 pt

k(yt+k − lk −
ct+k) ≤ B?(v, l, t).

A.5 Proof of Lemma 5

Consider an incentive compatible allocation {ct+k, Vt+k}k≥0 for the planning problem 9
at time t, given v ∈ [vD

t , V) and (l, t), and let us suppose that this allocation satisfies
the condition in Lemma 2. Note that choosing ct and promising v′ = Vt+1 is feasible in
Problem 12, and we have that:

B(v, l, t) ≥ yt − l0 − ct + R−1Ft+1(Vt+1)B(Vt+1, l≥1, t + 1)
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Repeating the above argument sequentially for subsequent dates, it follows that

B(v, l, t) ≥
n−1

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
(yt+k − lk − ct+k)

+

(
n

∏
i=1

R−1Ft+i(Vt+i)

)
B(Vt+n, l≥n, t + n)

≥
∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
(yt+k − lk − ct+k)

+ lim
n→∞

(
n

∏
i=1

R−1Ft+i(Vt+i)

)
B(Vt+n, l≥n, t + n)

Given that we are only considering allocations where Vt+k ≤ max{v, VD}, we have that

B(Vt+n, l≥n, t + n) ≥ B(w, l≥n, t + n) ≥
∞

∑
k=0

R−k min{(yt+n+k − ln+k − c), 0}

where c is such that u(c) = (1 − β)w and w ≡ max{v, VD, umax/(1 − β)}. The first
inequality follows from monotonicity of B and that Vt+n ≤ w, and the second follows
because V(b0, l≥n, t + n) ≥ u(c)/(1− β) = w, using the same argument as in the proof of
Lemma 8.

So we have that

B ≥ B(Vt+n, l≥n, t + n) ≥
∞

∑
k=0

R−k min{(yt+n+k − ln+k − c), 0} ≥ −R
l + c
R− 1

(27)

where the first inequality follows from the No-Ponzi condition, and the last one from the
fact that ln+k ≤ l, and yt+n+k ≥ 0. Given that both sides of equation (27) are finite, it
follows that the limn→∞

(
∏n

i=1 R−1Ft+i(Vt+i)
)

B(Vt+n, l≥n, t + n) = 0, and

B(v, l, t) ≥
∞

∑
k=0

(
k

∏
i=1

R−1Ft+i(Vt+i)

)
(yt+k − lk − ct+k)

for any incentive compatible allocation {ct+k, Vt+k}k≥0 that satisfies the condition in Lemma
2. But given that, to compute the efficient value function, those allocations are sufficient,
we have that

B(v, l, t) ≥ B?(v, l, t).
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A.6 Proof of Proposition 1 and Corollary 1

The proof of Proposition 1 follows from Lemmas 4 and 5.
The proof of Corollary 1 is as follows. For any (b, l, t), we construct policy B̂(b, l, t) to

be such that V
(
B̂(b, l, t), l≥1, t + 1

)
= V (B(b, l, t),L(b, l, t), t + 1) and let the policyL̂(b, l, t) =

l≥1. The price of the associated one period bond, q̂(b, l, t) = R−1Ft+1(V(b, l, t)) = q(b, l, t),
remains the same. In addition, we obtain ρ̂ and Q̂, using equations (5) and (2). Lemmas 4
and 5 guarantee that the policies B̂ and L̂ attain the equilibrium value, given q̂, Q̂, ρ̂, and
thus constitutes an equilibrium.

A.7 Proof of Proposition 2

The weak inequality follows immediately from problem (9), by noticing that the efficient
value at state (v, l′, t) must be at least at high that the value attained using the sequence
{ct+k, Vt+k}k≥0 that solves the problem at (v, l, t).

To prove the strict inequality part, we proceed by contradiction. That is, let us assume
that the conditions (i),(ii), (iii) hold for some j, and the inequality holds with equality.

Let us consider the following perturbation to the efficient allocation that delivers Vt =

v: we will change ct+j by ∆ct+j and change ct+j−1 by ∆ct+j−1 such that:

u′(ct+j−1)∆ct+j−1 + βFt+j(vt+j)u′(ct+j)∆ct+j = 0

Note that we can perform this perturbation, as by condition (ii), Ft+j(Vt+j) > 0, and by
the same argument used in the proof of Lemma 2.ii, consumption at both dates must be
interior (as Vt+k ≥ vD

t ).
By construction, this perturbation has no first order impact on the government values

Vt+i for i ≤ j− 1 nor for i > j + 1. As a result the perturbation has no first order effect on
pk for k ≤ j− 1 and no first order effect on pk/pj for k > j + 1.

The effect of this perturbation on the objective function is

−
(

pj−1∆ct+j−1 + pj∆ct+j
)
+

∞

∑
k=j

(
pk
pj

)(
∂pj

∂ct+j
∆ct+j

)
(yt+k − lk − ct+k)

Using condition (ii), we know that Vt+j is in the interior of the support for Ft+j, and as a
result

∂pj

∂ct+j
= R−1pj−1 ft+j(Vt+j)u′(ct+j) > 0

In addition, pj = R−1Ft+j(Vt+j)pj−1, and we get that the first order impact on the objective
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is

∆Objt ≡ −(pj−1∆ct+j−1 + pj∆ct+j) +
∞

∑
k=j

pk
ft+j(Vt+j)

Ft+j(Vt+j)
u′(ct+j)(yt+k − lk − ct+k)∆ct+j

A necessary condition for optimality is that this perturbation has no first order effect on
the objective, ∆Objt = 0. Under the hypothesis (to be contradicted),

B(v, l′, t) = B(v, l, t)−
∞

∑
k=0

pk
(
l′k − lk

)
which means that the allocation {ct+k}∞

k=0 achieves the maximum value at l′, and thus is
optimal as well. We can then proceed with the same perturbation described above, and
obtain that, a necessary condition for optimality at (v, l′, t) is that ∆Ôbj = 0 where

∆Ôbjt ≡ −(pj−1∆ct+j−1 + pj∆ct+j) +
∞

∑
k=j

pk
ft+j(Vt+j)

Ft+j(Vt+j)
u′(ct+j)(yt+k − l′(k) − ct+k)∆ct+j

As a result, ∆Ôbjt − ∆Objt = 0, which requires that

ft+j(Vt+j)

Ft+j(Vt+j)
u′(ct+j)

∞

∑
k=j

pk(l
′
k − lk) = 0

But this implies that
∞

∑
k=j

pk(l
′
k − lk) = 0

a contradiction of condition (iii).

A.8 Proof of Proposition 3

From Assumption 1.iv, we know that consumption is interior both today and tomorrow
if both vt and vt+1 are bigger than vD, respectively. Consider now increasing ct by an
amount ∆ct and ct+1 by an amount ∆ct+1 so that vt does not change:

u′(ct)∆ct + βF(vt+1)u′(ct+1)∆ct+1 = 0

The effect on the objective is given by:

−∆ct + R−1
(

dF(vt+1)

dct+1
Bt+1 − F(vt+1)

)
∆ct+1
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Optimality of the original allocation implies that the above must be zero.
Using the previous equation, we have that

−∆ct − R−1
(

dF(vt+1)

dct+1
Bt+1 − F(vt+1)

)
u′(ct)∆ct

βF(vt+1)u′(ct+1)
= 0

Note that in the case vt+1 > vD, we have that dF(vt+1)/dct+1 = 0, and (15) follows.
For the case where vt+1 ∈ (vD, vD), we have that dF(vt+1)/dct+1 = f (vt+1)u′(ct+1), and
(16) follows.
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