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Abstract

We establish that creditor beliefs regarding future borrowing can be self-ful�lling, leading
to multiple equilibria with markedly di�erent debt accumulation pa�erns. We characterize
such indeterminacy in the Eaton-Gersovitz sovereign debt model augmented with long ma-
turity bonds. Two necessary conditions for the multiplicity are: (i) the government is more
impatient than foreign creditors, and (ii) there are deadweight losses from default. �e multi-
plicity is dynamic and stems from the self-ful�lling beliefs of how future creditors will price
bonds; long maturity bonds are therefore a crucial component of the multiplicity. We in-
troduce a third party with deep pockets to discuss the policy implications of this source of
multiplicity and identify the potentially perverse consequences of traditional “lender of last
resort” policies.

1 Introduction

�e recent sovereign debt crisis in Europe, along with the associated policy responses, under-
scores the importance of self-ful�lling debt crises. We introduce and analytically solve a tractable
version of the canonical Eaton and Gersovitz (1981) sovereign debt model with long duration
bonds and study the vulnerability to self-ful�lling debt crises. �e Eaton-Gersovitz model, en-
hanced to incorporate long-term bonds, has become the workhorse paradigm for a large quan-
titative literature that has successfully explained key empirical features of sovereign default.1
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1Examples, among many others, are Aguiar and Gopinath (2006), Arellano (2008), Yue (2010), Hatchondo and

Martinez (2009), Mendoza and Yue (2012), Cha�erjee and Eyigungor (2012), Arellano and Ramanarayanan (2012),
and Bianchi, Hatchondo and Martinez (forthcoming). See Aguiar and Amador (2014) for a survey.
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However, due to the intractability of the model, it is not known whether and under what cir-
cumstances this environment generates self-ful�lling debt crises.2 �is is a major shortcoming,
as long-term bonds are the primary source of government �nancing around the world. More-
over, they play a key role in bringing the quantitative sovereign debt models closer to the data, in
large part due to the inherent incentive to dilute bondholders. We establish that the same force
generates multiplicity.

Our analysis introduces a tractable version of the Eaton-Gersovitz model for which we solve
for equilibrium objects explicitly. We show that as long as the government is relatively impatient
and there are deadweight costs to default, there is a parameter con�guration and a maturity of
debt that supports multiple equilibria.

�e multiplicity is dynamic. Creditor expectations of future borrowing and default behavior
determine bond prices today. In turn, current and anticipated bond prices a�ect the government’s
incentives to borrow. To shed light on this feedback mechanism, we characterize two types of
equilibria with markedly di�erent debt dynamics. In a “borrowing” equilibrium, the government
issues bonds until it reaches an endogenous debt limit. In a “saving” equilibrium, the government
reduces its stock of debt until default no longer occurs with positive probability. �e tension at
work in both equilibria is the relative impatience of the government and the deadweight costs of
default.

�e government saves in order to enjoy high prices when it rolls over the remaining debt in the
future. However, this incentive is only operable if there is a deadweight loss in default; as prices
are actuarially fair in any equilibrium, they do not provide an incentive to save when default is
zero sum.3 Hence, the combination of deadweight costs and the need to roll over maturing debt
provides the foundation for the saving equilibrium.

�e government’s relative impatience provides a countervailing force that supports the bor-
rowing equilibrium. In the borrowing equilibrium, creditors anticipate future borrowing going
forward (that is, “debt dilution”), and prices are low regardless of the current level of indebted-
ness. In this equilibrium, there is no reward for keeping debt low due to creditor beliefs about
future debt dynamics. Hence, whether relative impatience or deadweight costs of default are the
dominant force in determining debt dynamics depends on creditor beliefs.

Maturity plays a key role in this indeterminacy, which arises only when debt is of intermediate
maturity. When maturity is su�ciently long, the saving equilibrium cannot be supported, as the

2In a recent contribution, Auclert and Rognlie (2016) show that the Eaton-Gersovitz model with one-period bonds
features a unique equilibrium, but their arguments do not extend to long-term bonds. See also Aguiar and Amador
(2019).

3While lenders receive zero in the default state, a deadweight cost implies the government’s value is strictly less
than that associated with zero debt. Competitive bond markets imply that creditors are compensated in expectation
for the full loss, while the government does not reap the same expected gain. �is provides the government with an
incentive to reduce the probability of default.
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amount of debt to be rolled over at high prices is too small to warrant saving. In particular,
as the probability of default is reduced, the gain from the reduction in the deadweight costs of
default is split between the government, which is issuing new debt at high prices, and holders
of non-maturing bonds, who enjoy a capital gain. As the la�er component is irrelevant for the
government’s decision to save, longer maturity bonds eliminate the government’s incentive to
save.

Conversely, at very short maturities, the government internalizes the gains from reducing the
probability of default. In fact, we show that as maturity becomes arbitrarily short, the govern-
ment’s �scal policy approaches what would be chosen in a constrained e�cient contract between
the lenders and the government, as in Aguiar, Amador, Hopenhayn and Werning (2018). In this
case, the borrowing equilibrium becomes impossible to sustain without a high degree of rela-
tive impatience or zero deadweight costs. For intermediate values of maturity, impatience, and
deadweight costs, either equilibrium can be sustained.

We show that this multiplicity has novel implications for the design of third-party programs
to eliminate ine�cient equilibria. Common prescriptions motivated by rollover crisis intuition,
such as price �oors or emergency lending when spreads are high, may have the perverse outcome
of eliminating the preferred equilibrium in the Eaton-Gersovitz model. In our framework, a �oor
on prices does not eliminate the borrowing equilibrium; in fact, it may eliminate the saving equi-
librium and select the borrowing equilibrium. �e saving equilibrium requires a steep gradient
in prices across the domain of debt to incentivize saving (or prevent dilution). A price �oor that
extends across a wide range of debt levels eliminates this important feature of the saving equi-
librium. A more e�ective policy to prevent borrowing would be to either limit debt explicitly or
promise a price �oor conditional on remaining within an exogenous bound on debt that is strictly
tighter than the equilibrium debt limit. Such a policy would select the saving equilibrium and not
require on-equilibrium resources. However, as with the lender of last resort, o�-equilibrium cred-
ibility is key. �e failure of such explicit debt limits in Europe (and traditional conditionality of
the IMF) suggests that such credibility is di�cult to establish in practice.4

�e main analysis uses a tractable, continuous time model. Using a slightly modi�ed version
of Cha�erjee and Eyigungor (2012) (henceforth, CE12), we also con�rm that such multiplicity
exists in the standard quantitative model. We adopt CE12’s framework largely unchanged, save
for one modi�cation to the endowment process. Speci�cally, motivated by the work of Barro
and Ursa (2008) and others, we add a rare-disaster state, in which the endowment falls sharply.5

�e modi�ed CE12 model features (at least) two equilibria at the calibrated expected maturity of
4Bocola and Dovis (2016) explore the e�cacy of a price �oor in a quantitative model of the European debt crisis.

�e policy they consider to rule out rollover crises similarly imposes a price �oor combined with a debt limit.
5Ayres, Navarro, Nicolini and Teles (2015), Rebelo, Wang and Yang (2019), and Paluszynski (2019) introduce rare

disasters in a quantitative sovereign debt model.
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20 quarters. �ere is a “borrowing” equilibrium, in which the ergodic distribution features high
debt and recurrent default, which has similar quantitative properties as the calibration reported
in CE12. For the same parameterization, there is also a “saving” equilibrium, in which an indebted
government saves in order to a�ain a risk-free price.

By varying the maturity, we successfully compute a saving equilibrium for maturities ranging
from 1 to 33 quarters. �e borrowing equilibrium can be computed for maturities as short as 9
quarters. �us there is a signi�cant range of empirically relevant maturities that support multiple
equilibria. By varying the default cost in the disaster state, we use the quantitative model to
explore the role of deadweight costs in generating multiplicity. For very low default costs, the one-
period maturity version converges to a borrowing equilibrium and we were unable to compute
a saving equilibrium. However, as we increase default costs, both a borrowing and a saving
equilibrium can be supported.

�ese experiments reveal two lessons for quantitative sovereign debt models. One is that
multiplicity is possible in such models for a wide range of empirically relevant maturities, as
long as default costs are not too small. �e second is that the practice of calibrating nonlinear
default costs in order to match debt and default frequencies in the data may naturally lead to
environments in which an absorbing Safe Zone is not constrained e�cient, and hence a saving
equilibrium may be unlikely to exist. However, such low default costs are not directly tied to em-
pirical evidence and this practice may provide an incomplete picture regarding the vulnerability
to self-ful�lling dilution.

�e recent literature exploring multiplicity has built on two canonical frameworks, namely,
the works of Calvo (1988) and Cole and Kehoe (2000). �e Calvo multiplicity arises due to the
feedback of prices to the budget set. �is is easiest to see in a framework in which the government
is forced to raise a certain amount of revenue from a bond auction. A low price (or high spread) for
bonds forces the government to issue a greater quantity of debt in terms of face value. �is raises
the debt payments going forward, increasing the incentive to default and therefore supporting
the low price at auction. Conversely, a high price requires lower debt payments and thus may
also be an equilibrium. Calvo-style multiplicity is studied in dynamic se�ings by Lorenzoni and
Werning (2013) and Ayres et al. (2015).

Lorenzoni and Werning (2013) provide an antecedent to our paper by analyzing the role of
long-term bonds in dynamic se�ings with multiple equilibria. In an environment where the gov-
ernment follows a �scal rule, they show how Calvo-style multiplicity arises and how longer debt
maturity contributes towards uniqueness.6 Closer to our current environment, they also discuss
how multiplicity arises in a model where the government endogenously chooses its expenditures

6In their benchmark model, they show that issuing longer maturities shrinks the region of multiplicity and helps
select the “good” equilibrium, while the reverse is true in our analysis.

4



(rather than following a pre-speci�ed rule), but faces constraints in its ability to reduce the de�cit
when confronted by adverse bond prices. �ey uncover an equilibrium where the government
saves and bond prices are high, as well as other equilibria where the government instead borrows
and prices are low (when the debt is high enough). However, as we discuss in detail in Section 8,
the mechanism we identify as generating multiplicity is distinct. Lorenzoni and Werning (2013)
emphasizes the limits to �scal discretion when bond prices are low. In contrast, we emphasize the
absence of such limits. �e fact that limited commitment to �scal policy gives rise to multiplicity
when the government issues bonds of intermediate maturities is the novel insight of our paper.

�e Cole-Kehoe multiplicity is a “static” multiplicity. Speci�cally, holding future equilibrium
behavior constant, the market clearing price for bonds is not determined. A high price for bonds
allows the government to roll over its maturing debt. However, a zero price forces the gov-
ernment to repay all maturing bonds out of current endowment, making default optimal.7 �is
type of multiplicity has been extended recently by Aguiar, Cha�erjee, Cole and Stangebye (2017)
and explored quantitatively by Bocola and Dovis (2016). In our framework, the multiplicity is
inherently dynamic in that future expectations over future equilibrium behavior are crucial in
supporting the alternative equilibria. �e Cole-Kehoe multiplicity emphasizes the vulnerability
of short-maturity bonds to crises and favors lengthening maturity to avoid self-ful�lling crises.
Our analysis shows that such lengthening opens up the economy to both ine�ciencies and a new
form of multiplicity.

A recent paper, Stangebye (2018), shares our interest in multiplicity in a Eaton-Gersovitz
framework. Stangebye computationally constructs a version in which there exists two Markov
equilibria. Interestingly, Stangebye emphasizes concavity of the utility function as crucial in
supporting multiplicity. �e multiplicity we identify, on the other hand, exists whether the gov-
ernment is risk-neutral or has concave utility. In Section 8, we discuss additional equilibria that
arise with a lower bound on consumption, which may play the same role as concavity in Stange-
bye’s analysis. Nevertheless, given the common structure, there are many points of overlap in
the nature of the multiplicity studied in the two independent papers, and we view our analysis
as complementary to Stangebye’s.

�e rest of the paper is as follows: Section 2 lays out our benchmark analytical model; Section
3 discusses e�cient allocations from a benchmark planning problem; Section 4 contains the main
analysis of the alternative equilibria; Section 5 discusses the role of maturity in generating mul-
tiplicity; Section 6 explores how commonly proposed third-party policies may or may not select

7A related point on the possibility of a liquidity crisis in sovereign debt markets had been made by Sachs (1984)
in a model with bank lending. Defaulting because of the inability to roll-over maturing debt generates coordination
failures on the lenders side. Detragiache (1996) presents a related analysis of how investment can also generate
multiple equilibria. In both of these papers, the multiplicity arises even with �nite horizons. See also the recent
work of Galli (2019).
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a particular equilibrium; Section 7 shows how the theoretical insights extend to the richer envi-
ronments used in quantitative analysis; Section 8 discusses the relationship with other sources
of multiplicity; and Section 9 concludes.

2 Environment

We study an in�nite-horizon small open economy. Time is continuous and indexed by t . �e
economy receives a constant �ow endowment y. Consumption and savings decisions for the
economy are made by a government. �e government has access to a non-contingent bond that
it trades with atomistic, risk-neutral lenders. �e lenders discount at the world risk-free interest
rate R = (1 + r ). �e small open economy assumption implies that R is invariant to the gov-
ernment’s borrowing or default decisions. Lenders have su�cient wealth as a group to hold an
arbitrary quantity of bonds.

�e asset space is restricted to a single type of bond. To incorporate maturity in a tractable
manner, we follow Leland (1994), Hatchondo and Martinez (2009), and Cha�erjee and Eyigungor
(2012) by considering random maturity bonds. A bond matures with a constant hazard rate δ ,
at which point a payment of 1 is required. We assume that bonds mature independently such
that a deterministic fraction δ of any portfolio of bonds matures each instant. �e expected life
span of a bond is 1/δ ; hence, δ is a measure of (inverse) expected maturity. �e advantage of this
formulation is that all bonds that have yet to mature are identical; in particular, they all have the
same expected maturity going forward regardless of when they were issued.

We normalize the coupon of a bond to be the risk-free rate r . �at is, a bond pays a �ow coupon
r each instant through maturity. �is implies that a risk-free bond has price 1 in equilibrium,
which serves as the upper bound on the price of the sovereign’s bond.

If the government misses a coupon or principal payment, it is in default. As in Aguiar et al.
(2018), the value of default is a random variable and captures any punishment that can be imposed
by creditors, including lost endowment, as well as any utility costs (or bene�ts) to the government
from defaulting. Changes in the value of default represent the source of risk to creditors in our
analysis.

We model the stochastic process for the default value as follows. �e government almost
always has the option to default and receive a payo� of V D(t) = V . With constant arrival proba-
bility λ, this default value temporarily increases to V D(t) = V > V . �e higher value represents
an opportunity to default with lower consequences for punishment. If the government does not
exercise this high default value option when it arrives, the default value returns to V until the
next arrival of V .

To de�ne preferences, let c = {c(t)}t≥0 denote a deterministic consumption stream that char-
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acterizes the government’s consumption until default.8 We assume linear �ow utility, u(c) = c .
�is allows an explicit characterization of the equilibrium objects while incorporating key eco-
nomic forces that are robust to curvature in utility. Consumption at each point in time is restricted
to lie in the interval [C,C]. Let C denote the space of consumption sequences with c(t) ∈ [C,C]
for all t .9

Given a consumption sequence c, we de�ne the government’s expected value as follows. Let
T denote the time at which the government defaults, if ever, at the low outside default value. �e
value to the government of a consumption sequence c, V (t , c), is recursively de�ned by:

V (t , c) = sup
T≥t

{[ ∫ T

t
e−ρ(s−t)c(s)ds + e−ρ(T−t)V

]
e−λ(T−t)+∫ T

t

[ ∫ s

t
e−ρ(τ−t)c(τ )dτ + e−ρ(s−t)max〈V (s, c),V 〉

]
λe−λ(s−t)ds

}
= sup

T≥t

{ ∫ T

t
e−(ρ+λ)(s−t)c(s)ds + e−(ρ+λ)(T−t)V+ (1)

λ

∫ T

t
e−(ρ+λ)(s−t)max〈V (s, c),V 〉ds

}
.

�e �rst line is the value absent the arrival of the high default outside option, where the prob-
ability that T is reached before the �rst arrival of the high outside option is e−λ(T−t). �e inner
integral in the second term is the value conditional on the high outside option �rst arriving at
time s < T , which is then integrated over all possible s ∈ [t ,T ). �e second equality follows from
straightforward integration. Standard methods verify that there is a unique bounded �xed point
V that satis�es (1) given c. From (1), we have immediately that V (t , c) ≥ V for all t and c, as
T = t is always an option.

We make the following assumptions on the primitives of the environment:

Assumption 1. (i) ρ ≥ r ; (ii) y ≥ ρV ; (iii) C > y; (iv) C < (ρ + λ)V − λV .

�e �rst item ensures that the government is relatively impatient (as compared to the market
interest rate) and does not accumulate in�nite assets. �e second states that consuming the en-
dowment forever is weakly greater than the high default value. If V were strictly greater than
this value, the government may prefer default to holding a small amount of assets. Wheny > ρV ,
there is a deadweight loss in default; in particular, from the lenders’ perspective, all debt is zeroed

8�e fact that c(t) is not indexed to the realization of V D anticipates the fact that without contingent bonds,
consumption will be deterministic conditional on no default.

9Given our restriction that c ∈ [C,C], it would be equivalent to de�ne u for the entire real line but set u(c) = C

for c ≥ C and u(c) = −∞ for c ≤ C .
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out once default occurs, but the government receives a value that is strictly less than full debt
forgiveness. In the original Eaton and Gersovitz (1981), this di�erence re�ected the loss of insur-
ance. In the recent quantitative literature starting with Aguiar and Gopinath (2006) and Arellano
(2008), an additional endowment cost is imposed during default. In the current environment, the
gap y − ρV makes default ine�cient (in terms of joint borrower-lender surplus) and will play
an important role in equilibrium debt dynamics. �e third condition ensures that consuming
the endowment is always feasible. �e �nal condition guarantees that it is feasible to deliver
the low default value to the government, V , by assigning it a su�ciently low consumption level
and le�ing the government default once V D(t) = V . �at is, V is feasible without requiring an
immediate default.

Some of the assumptions above were made to obtain tractability and build on earlier work in
this literature.10 However, as we will see in Section 7 the underlying economics are robust to the
inclusion of endowment risk, concave utility, and discrete time.

3 Constrained E�cient Allocations

We �rst study an e�cient allocation that maximizes the joint surplus between a risk-neutral
lender and the government subject to the government’s lack of commitment to repay. �e e�cient
allocations provide a useful benchmark to understand the competitive equilibria studied in the
next section.

Consider a Pareto planning problem that maximizes the expected payments to a risk-neutral
lender conditional on delivering a value weakly greater thanv to the government. As in Aguiar et
al. (2018), the planning problem chooses a consumption stream c, but the planner cannot prevent
the government from defaulting when the government �nds it optimal to do so. In particular,
for consumption sequence c, the government’s value is de�ned by (1). When the government is
indi�erent to default or continuing, the planner can break the tie.

Given an allocation c and time T that maximizes (1) at time t = 0, the expected payments to
the lender can be de�ned as:

P(c,T ) =
∫ T

0
e−

∫ t
0 r+1[V (s,c)<V ]λds[y − c(t)]dt , (2)

where 1[x] is an indicator function that takes value one if x is true and zero otherwise. �e inte-
10For continuous time formulations of sovereign debt models with Poisson shocks that trigger default see Aguiar,

Amador, Farhi and Gopinath (2013), Lorenzoni and Werning (2013) and Bornstein (2018). For Brownian motion
shocks, see Nuño and �omas (2015), Tourre (2017), and DeMarzo, He and Tourre (2018). �e la�er two also discuss
how linear utility (in their cases without consumption bounds) facilitates �nding closed form solutions. See also
Carré, Cohen and Villemot (2019) for Lévy processes.
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grand represents the �ow payments to the lender, which are discounted by r and the probability
of default prior to period T . Here we have incorporated that the government does not default
when indi�erent upon the arrival of the high default value, which is without loss given that we
will focus on Pareto e�cient allocations.

De�nition 1. An allocation {c,T } is e�cient ifT maximizes (1) at t = 0 given c, and if there is no
alternative allocation (c̃, T̃ ) such that V (0, c̃) ≥ V (0, c) and P(c̃, T̃ ) ≥ P(c,T ), with one inequality
strict.

Toward characterizing e�cient allocations, we de�ne the following planning problem:

P?(v) = sup
c∈C,T≥0

P(c,T ) (3)

subject to

V (0, c) = v
T maximizes (1) at t = 0.

We de�ne P? on the domain v ∈ [V ,Vmax ] ≡ V. It is infeasible to deliver v < V . It is also
infeasible to deliver higher value thanC/ρ, and we assumeVmax < C/ρ.11 Note that if P? is strictly
decreasing, it characterizes the Pareto frontier. In what follows, we assume C is su�ciently low
to guarantee that P? is strictly decreasing.12

�e �rst result states that we can restrict a�ention to allocations in which default occurs only
if V D(t) = V :

Lemma 1. It is weakly optimal in problem (3) to never default ifV D(t) = V . �at is, in any e�cient
allocation, T = ∞.

�e argument why default never occurs atV D(t) = V is as follows. It is always feasible to deliver
V by choosing a constant level of consumption until the �rst arrival of V , at which point the
government defaults (a result that follows from Assumption 1(iv)). �is level of consumption is
strictly less than the endowment because of the deadweight costs of default at V (from Assump-
tion 1(ii) andV < V ). Hence, this allocation dominates immediate default atV . �is lemma allows
us to substitute T = ∞ in (3).

11�e fact that Vmax is strictly less than C/ρ ensures that the planner can set Ûv < 0 at the upper bound of the
domain, a controllability requirement used in some of our proofs.

12�e reason why P?(v) may not be decreasing is that the threat of default is so severe that the planner would
rather “forgive debt” by raising v to v ′ > v(0) instantaneously at t = 0 without compensating lenders. If C is
su�ciently low, forgiveness is dominated by se�ing c = C until v(t) = v ′. As C → −∞, this approximates a lump-
sum payment at t = 0, which allows the planner to movev arbitrarily fast relative to the �rst arrival ofV . Speci�cally,
limC→−∞(P?(v) − P?(v ′)) ≥ v ′ −v .
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To solve problem (3), we appeal to standard recursive techniques and study the following
Hamilton-Jacobi-Bellman (HJB) equation:

(r + 1[v<V ]λ)P?(v) = sup
c∈[C,C]

{
y − c + P?′(v) Ûv}

, (P)

subject to

Ûv = −c + ρv − 1[v<V ]λ
[
V −v

]
(4)

and the state-space constraint v ∈ V. Let C?(v) denote an optimal policy associated with this
recursive formulation. Proposition B.1 in the appendix details the necessary and su�cient con-
ditions for a candidate value function to be a solution to (P).

Problem (P) implies that we can divide the state space into two regions. Forv ∈ [V ,V ), default
occurs with probability λ. Following Cole and Kehoe (2000), we refer to this subset of the domain
as the Crisis Zone. For v ∈ [V ,Vmax ], default does not occur even if the high outside default value
is available. We refer to this subset as the Safe Zone. �e fact that default occurs in the Crisis
Zone even in the presence of a deadweight loss (that is, ρV < y) re�ects market incompleteness.
Speci�cally, the planner would like to adjust consumption in response to the realization ofV , but
is prevented from doing so.

To characterize Pareto e�cient allocations, we proceed in steps: we conjecture a candidate
e�cient allocation; we solve (P) under this conjecture; and then we verify if and when the candi-
date allocation satis�es the optimality conditions set out in Proposition B.1. Our conjectures are
guided by the two competing forces driving debt dynamics; namely, relative impatience favors
debt accumulation, while the costs of default favor debt reduction. �e next two subsections de-
rive solutions assuming that the borrowing and saving forces dominate, respectively. With the
solutions in hand, we verify under what parameter con�gurations they solve the Pareto problem.
We also verify that there are no parameter con�gurations for which neither the borrowing nor
the saving allocation is e�cient.

3.1 E�cient Borrowing Allocations

We �rst conjecture that the borrowing incentive dominates. Given the linearity of utility, a rea-
sonable conjecture is that consumption is at the upper bound until v reachesV . In particular, we
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de�ne

C?B (v) ≡

C for v ∈ (V ,Vmax ]
(ρ + λ)V − λV for v = V .

(5)

�is sets consumption at its maximum possible level, C , for the entire state space except at
the lowest possible value V . �is implies Ûv < 0 for v > V . At v = V , the value cannot be further
reduced given the government’s option to default. Hence, consumption is set to deliver Ûv = 0.
From equation (4), Ûv = 0 at V implies that c = (ρ + λ)V − λV .

Let P?B denote the value to the lenders under this conjectured consumption policy function.
We solve for P?B using (P) together with the value at the boundary, P?B (V ) (which is determined
by consumption at V ). �e appendix contains closed form expressions for P?B for �nite C; in the
text, we take the limit as C →∞ to provide intuition. In particular, for any v ,

lim
C→∞

P?B (v) = P?B (V ) − (v −V ), (6)

where P?B (V ) = (y − (ρ + λ)V + λV )/(r + λ). Expression (6) states that the payment to the lenders
is the maximal incentive-compatible payment minus a lump sum consumed by the government
in the initial period.

We now verify if and when P?B is a solution to Problem (P). Consider an initial promised value
at the boundary of the Safe Zone, v = V . One feasible allocation is to set consumption at c = ρV .
�is maintains a constant value ofV for the government, which guarantees no default. �e value
to the lender is (y − ρV )/r . A necessary condition for P?B to be optimal is that it delivers weakly
greater value at V than this alternative. We show that this is also su�cient:

Proposition 1. P?B is a solution to the planning problem if and only if

rP?B (V ) ≥ y − ρV . (7)

�is condition has the following interpretation: it is e�cient to borrow into the Crisis Zone
rather than remain in the Safe Zone inde�nitely. �e le�-hand side is the annuitized value of the
objective from borrowing into the Crisis Zone. �e right-hand side is the net payments to the
lender from se�ing Ûv = 0 at the boundary of the Safe Zone (that is, the payments that guarantee
that the government’s value does not enter the Crisis Zone). �e decision of whether to exit
the Safe Zone is the crucial question given the ine�ciencies associated with default, and the
proposition states that this is the only restriction on parameter values that needs to be checked
to verify that the borrowing allocation is e�cient.

11



Again, for intuition, we let C →∞, and (7) becomes:

r (ρ − r )
(
V −V

)
≥ λ

(
y − ρV

)
. (8)

�e right-hand side represents the deadweight costs of default times the probability of default
in the Crisis Zone. �e larger this is, the more costly it is to enter the Crisis Zone and the more
stringent this condition. �e le�-hand side captures relative impatience and the value of deliver-
ing utility to the government by front-loading consumption. �e larger the discount rate ρ, the
less stringent this condition. When ρ = r , the condition cannot be satis�ed if y > ρV , that is, if
there is a deadweight cost to default and the government is not impatient. Conversely, if y = ρV ,
this condition will be satis�ed as long as ρ > r . �is logic extends to �nite C .

Note that if condition (8) is violated (or more generally, condition (7)), then the planner would
not �nd it optimal to borrow into the Crisis Zone: it prefers to deliverV to the government with-
out inducing a future default. We use this observation to construct our second type of e�cient
allocations, where the planner chooses to exit the Crisis Zone when the promised value is close
to the boundary of the Safe Zone.

3.2 E�cient Saving Allocations

An alternative to borrowing into the Crisis Zone is to save into the Safe Zone. �is allocation
favors reducing the probability of default over the relative impatience of the government.

We start then by conjecturing that the Safe Zone is an absorbing state. In particular, for the
Safe Zone, we let consumption be

C?S (v) ≡

C if v ∈ (V ,C/ρ)
ρV if v = V .

(9)

�is implies that in the interior of the Safe Zone, the government receives the maximal consump-
tion. However, at the boundary, the government receives the consumption that sets Ûv = 0, and
hence v never transits from the Safe Zone into the Crisis Zone. With this conjecture, we can
solve for the implied value function in the Safe Zone, which we denote P?S (see the appendix for
the closed form expression).

For the Crisis Zone, the planner decides between saving toward the Safe Zone or remaining
in the Crisis Zone. We denote the former scenario with a “hat.” In particular, the linearity of the
problem leads us to conjecture that if saving is e�cient, consumption will be at its lower bound.

12



�us, we de�ne

Ĉ(v) ≡ C for v ∈ [V ,V ). (10)

�e associated value from this policy is P̂ , which is obtained by solving (P) using P?S (V ) as a
boundary condition.

�e appendix contains the expression for P̂ for �nite C; for intuition, we take the limit as
saving becomes arbitrarily fast:

lim
C→−∞

P̂(v) = P?S (V ) +V −v . (11)

�at is, the conjectured allocation calls for an initial lump sum payment by the government that
is su�cient to reach the boundary of the Safe Zone immediately.

�e value from saving into the Safe Zone is one building block of the e�cient saving allo-
cation. However, the planner may �nd it optimal to abandon the savings strategy in the Crisis
Zone and instead pursue the borrowing one when the initial debt level is su�ciently high (that is,
the promised is low). As a result, our conjectured value function in the Crisis Zone is the upper
envelope of the savings and the borrowing conjectures:13

P?S (v) ≡ max〈P̂(v), P?B (v)〉 for v ∈ [V ,V ). (12)

It is possible to show that P̂ and P?B cross at most once for v ∈ [V ,V ]. We denote by vI ∈
[V ,V ] such a crossing point and set vI = V if they do not cross. �e point vI has a particular
interpretation: the planner is indi�erent between saving out of the Crisis Zone versus remaining
in the Crisis Zone inde�nitely at that point. For values of v above vI , the planner �nds it optimal
to save, while for values belowvI , the planner �nds it optimal to borrow. With this result in hand,
we can complete the characterization of the policy function by se�ing

C?S (v) ≡

C if v ∈ [vI ,V )
C?B (v) if v ∈ [V ,vI ).

(13)

To verify that P?S is a solution to the planning problem, again consider the point V at the
boundary of the Safe and Crisis Zones. As with the borrowing allocation, the crucial condition
is whether at the boundary of the Safe Zone, the objective is maximized by staying put versus
borrowing to the upper bound:

13�e Cole-Kehoe model also features a savings and a borrowing region within the Crisis Zone (for certain pa-
rameter values) when the government is impatient. See, for example, Cole and Kehoe (1996), Figure 2.
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Proposition 2. P?S is a solution to the planning problem if and only if

rP?S (V ) = y − ρV ≥ rP?B (V ). (14)

Note that this condition is the mirror image of Proposition 1, which established the e�ciency of
the borrowing allocation. Together, Proposition 1 and 2 characterize an e�cient allocation under
any parameter con�guration consistent with Assumption 1. In particular, either the borrowing
or the saving allocation is e�cient.

4 Competitive Equilibria

We now discuss competitive equilibria, and, as we will see, the e�cient allocations provide a
useful benchmark in the characterization.

We consider Markov equilibria. �e payo� relevant states are the face value of debt b and
default payo� V D . Recall that the high default payo� state is only relevant if the government
exercises the option to default; otherwise, the low default payo� state resumes. �erefore, we
subsume the notation for the default payo� state V D = V when de�ning prices and values con-
ditional on repayment.

4.1 �e Government’s Problem

LetV (b) denote the government’s equilibrium value of repayment given the face value of debt b.
Strategic default implies repayment if V (b) ≥ V D , and default otherwise.

Parallel to the analysis of Section 3, it is useful to split the state space into two regions. Given
an equilibrium value V , we de�ne the following: the Safe Zone is b ∈ [−a,b] where b satis�es
V (b) = V and de�ne a ≡ (C − y)/r as the upper bound on assets that can be consumed; and
the Crisis Zone is b ∈ (b,b], where b satis�es V (b) = V . In each of the equilibria we study, we
will establish the existence of these thresholds. As in the preceding analysis, the Safe Zone is
the space of debt (and assets) such that the government will not default if the high default payo�
state arrives. However, the government may default at some point in the future. �e Crisis Zone
is the space of debt such that the government will default upon the arrival of V D = V . For
b > b, the debt level is so high that, if the initial state is in this region, the government defaults
immediately regardless of the payo� state. �is region is beyond the endogenous borrowing limit
and will never be reached from below in equilibrium. We denote the relevant debt state space in
a competitive equilibrium by B ≡ [−a,b].

To characterize the government’s problem, assume that the government faces an equilibrium
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price schedule q : B → [q, 1], where q > 0 is de�ned as

q ≡ r + δ

r + δ + λ
, (15)

which is the lowest possible bond price consistent with equilibrium in B (that is, the bond price
that obtains when the government always defaults at the �rst arrival of V ).

At each point in time, the government chooses consumption as well as decides whether to
pay its debt obligations or default a�er observing the realized V D . Given consumption c , the
government’s debt, conditional on repayment, evolves according to

q(b)[ Ûb + δb] = c + (r + δ )b − y, (16)

where Ûb denotes the derivative of debt with respect to time. �e le�-hand side represents revenue
from bond auctions, where the term in brackets is the change in the face value of debt plus the
fraction of debt that matured, which is net new issuances. �e terms on the right represent
consumption plus payments of interest and principal minus income.

It may be the case that q(b) is discontinuous at some debt level b0. �is occurs, for example,
when the government is indi�erent between borrowing or saving. When indi�erent, we break the
tie by having the government save, which implies that the equilibrium price at b0 is the highest
of the prices consistent with the two possible strategies.14

We prove in Appendix Lemma B.2 that the government’s value function,V , is strictly decreas-
ing and Lipschitz continuous. In addition, it is the unique, bounded, continuous solution to the
following HJB equation on B, given a price schedule q:

(ρ + Λ(b))V (b) = max
c∈[C,C]


c +V ′(b)

(
c + (r + δ )b − y

q(b) − δb
)

︸                        ︷︷                        ︸
Ûb

+Λ(b)V


, (17)

14For technical reasons, we place one more constraint on debt issuance policies around points of price discontinu-
ity. We impose that for an arbitrarily small neighborhood around b0, debt buybacks occur at price approaching q(b0).
�e speci�cs are spelled out in Appendix C.5. Debt buybacks occur when Ûb < −δb, that is, when debt decreases faster
than existing debt matures. Imposing that buybacks occur at the higher of the two prices around the discontinuity
allows us to apply recent results in optimal control with discontinuous dynamics. Note that this condition is imposed
only around points of discontinuity in the price schedule and for an arbitrarily small interval around them. We �ag
when we use this restriction in footnotes 28 and 31. In what follows, we suppress this constraint in the notation for
the government’s HJB equation.
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where

Λ(b) ≡ λ1[V (b)<V ]. (18)

In the appendix, Proposition B.2 provides necessary and su�cient conditions for a solution to
(17).

4.2 �e Lenders’ Problem

�e equilibrium condition from the lenders’ problem is that lenders must be indi�erent to pur-
chasing the government’s bonds versus holding risk-free assets that return R. We consider b ≤ 0
to represent risk-free assets held abroad that have a price of one. For b > 0, b represents the lia-
bilities of the government. To price debt in equilibrium, consider starting from a debt level b > 0,
and using the government’s policy C(b) and the budget constraint (16) to derive the equilibrium
path of debt going forward, b(t). �e present value “break-even” bond pricing equation for the
lender is15

q(b) =
∫ ∞

0
e−(r+δ )t−

∫ t
0 Λ(b(s))ds(r + δ )dt . (19)

�e integrand is the coupon payment r plus principal δ . �e discount factor is the interest rate
r plus the rate at which bonds mature δ plus a further discount to re�ect the default survival
probability. Note that given an equilibrium path b(t), q satis�es the following ODE:

(r + δ + Λ(b(t)))q(b(t)) = (r + δ ) + q′(b(t))b′(t). (20)

for b(t) > 0.

4.3 De�nition of Equilibrium

We are ready to de�ne an equilibrium:

De�nition 2. An equilibrium consists of a compact domain B and functions of debt, {q,V ,C},
such that: (i) given the government’s consumption policy C and strategic default, lenders break even
in expectation at prices q; (ii) given a price schedule q, the government’s maximal value conditional
on repayment is V (b), which is achieved by consuming C(b) ∈ [C,C]; and (iii) for b ∈ B = [−a,b],
V (b) ≥ V , with V (b) = V .

15�is equation anticipates that the government does not cross b = 0 more than once in a Markov equilibrium;
and does not default with assets.
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In the de�nition of equilibria, we require that V (b) = V . �at is, b represents the maximal
endogenous borrowing limit. We do this to eliminate the possibility of generating equilibria that
depend on ad hoc borrowing limits.

Note that b is the face value of debt, which de�nes the government’s promised payments
absent default. �e expected present value of payments to lenders in equilibrium is the market
value of debt: q(b)b. �is distinction is useful to bear in mind when comparing competitive
equilibria to the Pareto problem studied in Section 3.

Mirroring the analysis of e�cient allocations, we focus on two types of equilibria. In a bor-
rowing equilibrium, the government borrows up to its borrowing limit b regardless of initial con-
ditions. In particular, if the government starts in the Safe Zone (or with assets), it borrows into
the Crisis Zone and eventually defaults. In a saving equilibrium, the Safe Zone is an absorbing
state.16

4.4 �e Borrowing Equilibrium

We denote equilibrium objects in the borrowing equilibrium with the subscriptB; that is, CB,VB,qB
are the consumption, value, and price functions, respectively. Similarly, let bB denote the thresh-
old between the Safe and Crisis Zones, and bB the endogenous upper bound on debt.

In the borrowing equilibrium, we conjecture that the government borrows to its endogenous
debt limit. Given the linearity of preferences and weak impatience, a reasonable conjecture is
that the government consumes at its upper bound until b = bB . At the debt limit, the government
pays coupons and rolls over maturing bonds until the �rst arrival ofV , at which point it defaults.

�is allocation is the same allocation as in the e�cient borrowing allocation, a symmetry
we use to streamline the derivation. In particular, the conjectured equilibrium delivers the same
payo�s to lenders and government as in the e�cient borrowing allocation. Given a price schedule
qB , the borrowing equilibrium payo�s to the lender are qB(b)b and the payo� to the government
is VB(b). Hence, it is the case that:

P?B (VB(b)) = qB(b)b, (21)

for any b ≤ bB .
To solve for bB , note that in the Crisis Zone, there is a constant hazard λ of default, and thus

the price of the bond equals q de�ned in (15). At b = bB , the government is indi�erent to default
at V ; that is, VB(bB) = V . From (21), we have bB ≡ P?B (V )/q. Accordingly, we have CB(b) = C for

16In Appendix A, we discuss a third type of Markov equilibrium, which we denote a hybrid equilibrium because it
combines features of both the saving and borrowing equilibria. Given the multiplicity we discuss below, one could
also construct sunspot equilibria.
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b < bB , and CB(bB) = C?B (V ).
We solve for the boundary of the Safe Zone, bB , in a similar fashion. At the boundary, we

have P?B (V ) = qB(bB)bB = qbB , where the last inequality uses the knowledge of the price at the
boundary under the conjectured borrowing dynamics.17.

Given the price schedule in the Crisis Zone (bB,bB], we extendqB into the Safe Zone by solving
the ODE in (20) with boundary condition qB(bB) = q. �e solution can be expressed in closed
form (see appendix equation (31)). For b ∈ [−a, 0], the equilibrium price is 1 (as the government
has assets). Le�ing BB ≡ [−a,bB], this completes our conjecture of the borrowing equilibrium.

Figure 1 depicts the equilibrium objects for a parameterized borrowing equilibrium. Panel (a)
depicts the value function. �e do�ed horizontal lines represent the two default values, V and
V . �e Safe Zone is demarcated by the vertical line at bB . By de�nition, VB(bB) = V at this point.
Similarly, the endogenous upper bound of debt, bB , occurs whenVB(b) intersectsV . For reference,
the dashed line depicts the value of se�ing Ûb = 0, given the equilibrium price schedule and the
equilibrium default policy. �e stationary value has a discontinuity at bB because defaulting
when V arrives is strictly be�er than the stationary value. �e stationary value is the same as
the equilibrium value at the upper bound bB . Panel (b) of Figure 1 depicts the price schedule.
�e price is monotonically decreasing in the Safe Zone and then is �at at q for b ∈ [bB,bB].
�e consumption policy function is depicted in Panel (c). For reference, the dashed line depicts
the stationary consumption level, given the equilibrium price schedule. Consumption is strictly
above the dashed benchmark until b = bB , at which point consumption drops to the stationary
level.

To verify when the conjectured borrowing equilibrium satis�es the equilibrium conditions,
we need to check thatVB is a solution of (17). In this case, the important condition is that starting
from the Safe Zone, the government prefers to borrow into the Crisis Zone and eventually default
rather than remain in the Safe Zone. We have:

Proposition 3. �e conjectured borrowing equilibrium {CB,VB,qB,BB} is a competitive equilib-
rium if and only if

VB(b) ≥
y − [r + δ (1 − qB(b))]b

ρ
, for all b ∈ [0,bB]. (22)

�e right-hand side of (22) is the value of inde�nitely consuming the stationary level of con-
sumption at equilibrium prices in the Safe Zone. �us, borrowing into the Crisis Zone is an
equilibrium outcome if doing so dominates remaining in the Safe Zone.

Crucially, condition (22) is a weaker condition than for borrowing to be e�cient, condition
(7). E�ciency requires P?B (v) ≥ (y − ρv)/r in the Safe Zone. Using that the equilibrium payo� to

17Using the formula for P?
B in the appendix, we can show that bB ≥ 0 as P?

B (V ) ≥ 0
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Figure 1: Borrowing Equilibrium
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�e �gure depicts the value, price, and consumption functions in a borrowing equilibrium, respectively. �e equilib-
rium functions are represented by the bold solid blue lines. �e horizontal lines in the value function plots represent
the two default values. �e dashed line in the value function plots represents the stationary value function at the
corresponding equilibrium prices. �e dashed line in the consumption plots represents the level of consumption
associated with the stationary value. �e equilibrium is constructed with parameters r = 1, ρ = 2, y = 1, λ = 2,
δ = 10, C = 1.2, V = .8y/ρ, and V = .95y/ρ.
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lenders is qB(b)b and the government’s value isVB(b), the e�ciency condition (7) can be rewri�en
as:

VB(b) ≥
y − rqB(b)b

ρ
, (23)

for all b ∈ [0,bB]. As qB(b) < 1 on this domain, condition (22) is strictly weaker than (23).
Both inequalities (22) and (23) compare the value function to the value that would be generated

by keeping the level of debt constant. �e di�erence between the two inequalities is the price
used to compute this stationary value. In inequality (22), the comparison uses the equilibrium
prices. In equation (23), the comparison uses the planner’s cost of rolling over the lender’s value,
qB(b)b, at the risk-free interest rate r . �is di�erence stems from a time consistency problem. �e
planner can commit to remaining in the Safe Zone, and in that case, discounts payments at the
risk free rate r . In a borrowing equilibrium, the cost of keeping debt constant in the safe zone
is strictly greater than r . In this equilibrium, lenders expect that the government in the future
will borrow into the Crisis Zone and eventually default. If the government were to remain in
the Safe Zone today, because of these expectations with regard to its future behavior, the price of
the bonds would remain lower than one. Hence, it would nevertheless pay a default premium,
rolling debt over at a yield greater than r . �us, the crucial time consistency problem in the
borrowing equilibrium is the inability to credibly commit not to exit the Safe Zone at some point
in the future. �e link between creditor beliefs about future �scal policy and the government’s
best response to the resulting equilibrium price schedule will provide the source of multiplicity
discussed in the next section.

Maturity is at the heart of this time consistency problem. To see this, let us consider what
happens when δ →∞, that is, as the bonds mature instantaneously (the appropriate continuous
time analog of one-period debt). In the proof of the next proposition, we show that qB(b) → 1
and δ (1−qB(b)) → 0 for b ∈ [0,bB), as δ →∞. Hence, the equilibrium condition (22) and the ef-
�ciency condition (23) become identical.18 More generally, the proof of the following proposition
establishes that condition (22) becomes stronger as δ increases. Summarizing the above,

Proposition 4. �e following holds:

(i) If the borrowing allocation is e�cient, then the conjectured borrowing equilibrium is a compet-
itive equilibrium for any δ ;

(ii) If the borrowing equilibrium exists for δ0, then it exists for any δ ∈ [0,δ0]; and
18Note that δ has no e�ect on P?

B because the planning problem is independent of maturity. Even though bB is
a�ected by changes in δ , qB (bB )bB remains constant.
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Figure 2: Joint Surplus: Borrowing Equilibrium
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�e �gure depicts the joint surplus in the borrowing equilibrium. �e solid line is a parametric
plot of (VB (b),qB (b)b) for b ∈ [0,bB ]. �e dashed reference line is P?(v) for v ∈ [V ,VB (0)].
�e parameters are the same as in Figure 1.

(iii) If the borrowing allocation is not e�cient, then there exists a δ1 < ∞ such that the conjectured
borrowing equilibrium is not a competitive equilibrium for δ > δ1.

In Figure 2, we plot the market value of debt, qB(b)b, against the corresponding value for
the government, VB(b), using the same parameters as in Figure 1. Speci�cally, the solid line
in the �gure depicts the joint surplus between the lenders and the government in a competitive
equilibrium. �e dashed line is the e�cient frontier, which in this parameterization is the e�cient
saving value, P?S (v). �e e�cient borrowing value, P?B , is identical to the equilibrium frontier. �e
ine�ciency of the borrowing equilibrium re�ects that the government borrows in the competitive
equilibrium, while the planner would like to implement the saving allocation.

4.5 �e Saving Equilibrium

We now consider an alternative equilibrium that features saving out of the Crisis Zone. �e ap-
proach closely parallels that of the e�cient saving allocation. As in the e�cient saving allocation,
we conjecture that the Safe Zone is an absorbing state and the Crisis Zone can potentially be di-
vided into a saving region and a borrowing region. Let [−a,bS ] denote the Safe Zone, (bS ,bI ] the
saving region in the Crisis Zone, and (bI ,bS ] the borrowing region in the Crisis Zone.

As the Safe Zone is absorbing, prices are one for b ≤ bS . �e government’s value at the
boundary isV by de�nition, which is obtained by consumingy−rbS forever. �us,bS = (y−ρV )/r .

For b ∈ (bS ,bI ], the government is actively saving toward the Safe Zone. �e value and
associated prices solve the two ODE’s characterizing the government’s and lenders’ problems
using the Safe Zone value and price as boundary conditions. We present the details and solutions
in the appendix.

21



Figure 3: Saving Equilibrium
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�e �gure depicts the value, price and consumption functions in a saving equilibrium, respectively. �e equilibrium
functions are represented by the bold solid blue lines. �e horizontal lines in Panel (a) represent the two default
values. �e dashed line in Panel (a) represents the stationary value function at the corresponding equilibrium prices.
�e dashed line in Panel (b) represents the level of consumption associated with the stationary value. �e equilibrium
is constructed with the same parameters as Figure 1: r = 1, ρ = 2, y = 1, λ = 2, δ = 10, C = 1.2, V = .8y/ρ, and
V = .95y/ρ. �e value of C is set low enough so that it never binds in equilibrium.

�e debt level bI , if it exists, is determined as in the e�cient analysis; speci�cally, it is the
unique point of indi�erence between saving and borrowing in the Crisis Zone. For b ∈ (bI ,bB],
the value and prices are the same as in the borrowing equilibrium. IfbI does not exist, bS is pinned
down by the point the value of saving reaches V .

�e equilibrium objects {CS ,VS ,qS ,BS } are detailed in the appendix and depicted in Figure 3,
which follows the layout of Figure 1.

As in our discussion of e�cient allocations, the key question is whether it is optimal to remain
in the Safe Zone or borrow to the upper bound. Crucially, for the equilibrium, the question is
now whether the government �nds it privately optimal. �e condition for saving to be a valid
equilibrium outcome is stated in the following proposition:
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Figure 4: Joint Surplus: Saving Equilibrium
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�e �gure depicts the joint surplus in the saving equilibrium. �e solid line is a parametric
plot of (VS (b),qS (b)b) for b ∈ [0,bB ]. �e upper and lower dashed reference lines are P?

S (v)
and P?

B (v), respectively, for v ∈ [V ,VB (0)]. �e parameters are the same as in Figure 1.

Proposition 5. �e conjectured saving equilibrium {CS ,VS ,qS ,BS } is a competitive equilibrium if
and only if

bS ≡
y − ρV

r
≥ bB . (24)

To see why saving can be an equilibrium outcome, �rst note that the government always has
the option to remain in the Crisis Zone and wait for the high default option. AsV > VS (b) in the
Crisis Zone, this is a plausible alternative. �e cost of this strategy is that the government must
roll over its debt at a discounted price while waiting forV . If instead the government saves to the
Safe Zone, it can roll over its debt at the risk-free price. �is increase in price ensures that the
government at least partially internalizes the gain from reducing the probability of default and
provides the government with the incentive to save.

However, the government’s private incentive to save in equilibrium is weaker than that of
the planner. Recall from Proposition 2 that saving is e�cient if (y − ρV )/r ≥ P?B (V ) = qbB . As
q < 1, condition (24) is stronger than the e�ciency condition. �us, e�ciency of saving does not
imply that it can be sustained in equilibrium. �at is, a necessary but not su�cient condition for
a saving equilibrium to exist is that the saving allocation is e�cient.

To gain more intuition, we let C →∞ and condition (24) becomes

r (ρ − r )
(
V −V

)
≤

[
δ

r + δ + λ

]
λ(y − ρV ).

�e term in square brackets is strictly less than one. Comparing to condition (8), we see that the
condition for saving in equilibrium is strictly tighter. We can also infer the role of maturity, δ .
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�e gap between the two conditions is decreasing in δ . As δ → ∞, that is when bonds have
arbitrarily short maturity, then savings is an equilibrium if and only if it is e�cient. As maturity
lengthens, saving is harder to sustain in equilibrium even when e�cient. In particular, the greater
the fraction of debt rolled over each period, the stronger the government’s private incentive to
save, while maturity is irrelevant for the e�cient allocation. At one extreme, if δ = 0 and bonds
are perpetuities, the government never saves in equilibrium regardless of e�ciency; at the other
extreme, as δ → ∞, the conditions for saving to be e�cient and to be an equilibrium outcome
converge. Collecting results:

Proposition 6. A necessary condition for {CS ,VS ,qS ,BS } to be a competitive equilibrium is that
saving is e�cient. If saving is strictly e�cient, that is, P?S (V ) > P?B (V ), there exists a δS ∈ [0,∞),
de�ned by

δS ≡
λP?B (V )

P?S (V ) − P?B (V )
− r , (25)

such that {CS ,VS ,qS ,BS } is a competitive equilibrium if δ ≥ δS , and is not an equilibrium otherwise.
If ρ > r , then δS > 0.

Even when the government saves in equilibrium, it exits the Crisis Zone at a slower pace than
the planner. In the planning problem, consumption is at its lower bound C in the saving region.
In the appendix, we solve for equilibrium consumption and show that it is interior in the saving
region. In particular, equilibrium debt dynamics are such that Ûb ≥ −δb. �at is, while saving,
the government never repurchases non-matured bonds; it deleverages by le�ing bonds mature
and not fully replacing them with new bonds. �is re�ects the ine�ciency of long-term debt
discussed by Aguiar et al. (2018). �e government does not capture the full return to eliminating
the probability of default and thus does not have an incentive to save as quickly as possible. �is
leads to a divergence between the saving equilibrium allocation and the e�cient saving allocation.

Figure 4’s solid line plots the market value of debt, qS (b)b, against the government’s value,
VS (b). �e upper and lower dashed lines are the e�cient frontier for the saving and borrowing
allocation, respectively. �e saving allocation dominates the borrowing allocation and hence
represents the Pareto frontier. Forv ∈ [V ,VS (bI )], that is, forb ∈ (bI ,bB], the government borrows
when it is e�cient to save. For v ∈ [VS (bI ),V ], or b ∈ [bS ,bI ], the government saves, but at a rate
that is ine�ciently slow. Hence the equilibrium surplus remains within the Pareto frontier. Note
that the discontinuity in the equilibrium price schedule at bI is re�ected in the sharp change in
the lender’s value around this threshold. For v ≥ V , or b ≤ bS , the government is in the Safe
Zone, and the e�cient and equilibrium allocations coincide.

�e fact that maturity drives a wedge between e�ciency and equilibria anticipates the next
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section. Even when saving is e�cient and can be supported as an equilibrium, it is still possible
that the borrowing allocation remains a valid competitive equilibrium. In the next section, we
discuss the role of maturity in this multiplicity.

5 Maturity and Multiplicity

�e preceding section provided necessary and su�cient conditions for both the borrowing and
saving equilibria. �is allows us to explore under what parameterizations the model has multi-
plicity as well as the economics behind the multiplicity.

�e key condition to sustain either equilibrium is whether the government prefers to remain
in the Safe Zone or borrow into the Crisis Zone. Importantly, the government makes this deci-
sion taking the equilibrium price schedule as given. �is is the crucial distinction between the
equilibrium problem and the planning problem and is at the heart of the potential multiplicity.

First, consider the borrowing equilibrium depicted in Figure 1. While in the Safe Zone (b <
bB), there is no threat of immediate default asVB(b) ≥ V . Nevertheless, the bond price lies strictly
below one. �e creditors require a default premium because they anticipate that the government
will borrow into the Crisis Zone (b > bB), and then potentially default, before the debt matures.
Hence, the government does not have the option to remain in the Safe Zone at risk-free prices.
Rather, the question is whether to maintain its debt position in the Safe Zone at a price below
one, or borrow into the Crisis Zone. As can be seen, the stationary value in the Safe Zone lies
strictly below the equilibrium value function. Given that the price schedule o�ers no reward for
remaining in the Safe Zone, the creditors’ pessimistic expectations become self-ful�lling.

Now consider the saving equilibrium depicted in Figure 3, constructed with the same param-
eter values. Note that the equilibrium price is one throughout the Safe Zone and then declines
in the Crisis Zone. �is nonlinearity in the price schedule is re�ected in the government’s value
function. �e payo� to saving out of the Crisis Zone is the high price at the boundary of the Safe
Zone.19

Interestingly, across the two equilibria, the government borrows when prices are low (spreads
are high), while it saves when prices are high (spreads are low). �e important element of the
price schedule is not the level, but the incentives or disincentives to borrow. In the saving equi-
librium, the price schedule declines steeply once the government enters the Crisis Zone. In the
borrowing equilibrium, the price schedule is �at at the boundary of the Safe Zone. In this way, the
self-ful�lling dynamics we uncover in this paper provide an alternative view of the “gambling for
redemption” hypothesis that explains the debt accumulation of debt-distressed European coun-

19Note that because qS (b) ≥ qB (b) for all b ∈ BS ∩BB and BB ⊆ BS , the government always prefers to face the
saving equilibrium price schedule.
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tries during the debt crises (see Conesa and Kehoe, 2017). In our model, low debt prices and debt
accumulation both arise endogenously.

Note that the multiplicity in the model is dynamic in that it depends on expectations of future
equilibrium behavior. In particular, the equilibria are supported by di�erent expectations about
whether the government will borrow or save, and whether bond prices will be the risk-free price
or something lower. �e underlying tension is between the incentive to dilute long-term bond-
holders versus the incentive to economize on rollover costs. Which e�ect dominates in equilib-
rium depends on beliefs in a non-trivial part of the parameter space. Moreover, these competing
forces highlight why maturity plays a central role in the existence of multiple equilibria.

For the limiting case of arbitrarily large C , we can state a simple condition that determines
when it is possible for both equilibria to be supported:

Proposition 7. If the parameters satisfy the following condition:

1 + ρ

(
V −V
y − ρV

)
>

λ

ρ − r > r

(
V −V
y − ρV

)
, (26)

there exists anM and a non-empty interval ∆ ⊂ [0,∞), such that for all C > M and all δ ∈ ∆, both
the borrowing and saving equilibria exist.

�e second inequality in (26) guarantees that the saving allocation is e�cient for arbitrarily
large C . We know from Proposition 6 that this is a necessary condition and su�cient for high
enough δ for the saving equilibrium to exist.

�e �rst inequality in (26) guarantees the existence of the borrowing equilibrium, for any
�nite δ , when C becomes arbitrarily large. When C becomes arbitrarily large, the price of the
bond converges to q throughout the Safe Zone, as the rate at which the government exits the
Safe Zone becomes arbitrarily fast. �e �rst inequality veri�es that the government prefers to
borrow into the Crisis Zone when facing a price close to q for all debt levels in the Safe Zone.

�is proposition shows that multiplicity is an endemic feature of this model when the gov-
ernment is impatient and there are deadweight losses from default.20 �at is,

Corollary 1. If ρ > r and y > ρV , there always exists a triplet {δ , λ,C} such that both savings and
borrowing equilibria exist.

20In a discrete time version of the environment, we computed the model by backward induction assuming a �nite
horizon,T , and then le�ingT become very large. Holding constant the underlying parameters, such a procedure can
converge to either a saving or borrowing equilibrium, depending on the maturity chosen. Hence, taking the limit of
a �nite horizon economy cannot be used to consistently select a particular type of equilibria.
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6 �ird-Party Policies

�e existence of multiple equilibria raises the question of whether a deep-pocketed third party,
such as the IMF or ECB, could induce market participants to play the preferred equilibrium. In the
rollover crisis model of Cole and Kehoe (2000), a price �oor would eliminate the crisis equilibrium.
Similarly, in a Calvo-style crisis, a price �oor (or a cap on spreads) would also eliminate the bad
equilibrium. More importantly, such a policy would require no resources along the equilibrium
path, as long as they were credible o� equilibrium.

A natural policy question in our framework is how to prevent coordination on the borrowing
equilibrium when saving is e�cient. Debt forgiveness does not select a particular equilibrium
because both equilibria co-exist at low debt levels. Hence, in the borrowing equilibrium, debt
forgiveness provides only a temporary reduction in debt levels, as in the debt-overhang model of
Aguiar and Amador (2011). Similarly, a price �oor does not eliminate the ine�cient equilibrium.
In particular, with a lower bound on prices greater than q, the borrowing equilibrium remains an
equilibrium and the government would borrow up to its borrowing limit at the be�er price. �e
policy not only would fail, but also would cost resources along the equilibrium path.

More formally, consider a parameterization such that both saving and borrowing equilibria
exist, with subscripts B and S denoting the respective equilibrium objects, as before. �is param-
eterization is the natural launching point for policy intervention.

�e intervention we study involves a third party that is willing to purchase government bonds
at a priceq? as long asb ≤ b?. �is combines a price �oor with a quantity restriction. To highlight
the role of the price �oor versus the quantity restriction, we consider two polar cases. In our
�rst scenario, let b? = bB . �at is, the quantity restriction is not tighter than the endogenous
borrowing limit in the borrowing equilibrium. �e second scenario sets b? = bS . �is is a tight
quantity restriction, designed such that interventions potentially involve only risk-free debt.

Let the superscript P indicate equilibrium objects in the presence of the third-party policy.
�e break-even condition for foreigners is

qP (b) = sup
T≥0

{∫ T

0
e−(r+δ )t−

∫ t
0 ΛP (bP (s))ds(r + δ )dt + e−(r+δ )T1[bP (T )≤b?]q?

}
, (27)

where bP (s) denotes the equilibrium evolution of bonds, starting from b, under the third-party
policy. �e equation captures that an investor considers the best among all possible hold-and-
sell strategies: a�er purchasing the bonds, the investor can hold them up to any timeT , at which
point, if the total debt remains below b?, the investor has the option to sell them to the third party
for a price of q?. Note that the assumption that all the investors are identical means we do not
need to consider the strategies where one investor sells to another.
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Given the price schedule, the problem of the government continues to be characterized by the
HJB (17). As a result, in any equilibrium, there will be a Safe Zone and a Crisis Zone, demarcated
by {bP ,bP }, with V P (bP ) = V and V P (bP ) = V .

As in the analysis without the third party, we will consider two equilibrium conjectures: a
borrowing one and a saving one. Similarly to our benchmark analysis, in a conjectured borrowing
equilibrium, starting from a debt level in the Safe Zone, the debt eventually reaches the Crisis
Zone. In a conjectured saving equilibrium, the Safe Zone is an absorbing state.

Consider �rst the case whereb? = bB . In this case, the policy does not eliminate the borrowing
equilibrium. But if it is generous enough (that is, if q? is high enough), then it eliminates the
saving equilibrium:

Proposition 8 (Loose quantity restriction). Assume the inequalities in Proposition 7 are satis�ed
and bB > bS . Suppose q

? ∈ (q, 1] and b? = bB , and let C be su�ciently large. �en,

(i) �ere always exists a borrowing equilibrium. �at is, there is an equilibrium where CP (b) = C
for all b < b?. In this equilibrium, the third party incurs losses.

(ii) �ere is a q̃ < 1 such that for all q? > q̃, the saving equilibrium does not exist.

A be�er policy is to impose a tighter quantity restriction, that is, b? = bS . In this case, the
policy selects the saving equilibrium for high enough q?:

Proposition 9 (Tight quantity restriction). Assume the inequalities in Proposition 7 are satis�ed.
Suppose q? ∈ [q, 1] and b? = bS . �en,

(i) �e saving equilibrium is always an equilibrium. �e third party incurs zero losses.

(ii) �ere is a q̂ < 1 such that for all q? > q̂, the borrowing equilibrium does not exist.

�e propositions above show that a price �oor policy has very di�erent implications, depend-
ing on the quantity restriction that accompanies it. If the quantity restriction is loose, a generous
price �oor ends up incentivizing borrowing and generates losses for the third party. However,
if the quantity restriction is tight enough, a generous price �oor eliminates the sub-optimal bor-
rowing equilibria, and no resources are lost by the third party on equilibrium. In fact, in the la�er
case, the third party never needs to purchase debt in equilibrium.

Recall that the multiplicity re�ects the trade-o� between saving for a be�er price versus the
desire to borrow due to impatience. With a price �oor absent a tight quantity restriction, the
third party reduces the incentive to save. �e saving equilibrium is supported by the gap between
prices in the Safe Zone and princes in the Crisis Zone as well as the need to roll over bonds. A
generous price �oor in the Crisis Zone eliminates the price di�erential that incentivizes saving
in equilibrium.
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Rewarding the government for saving, or punishing them for borrowing, is a policy that can
induce the saving equilibrium. A borrowing limit at the boundary of the Safe Zone, which is
tighter than the endogenous limit, would be e�ective. However, such a policy raises the question
of how to enforce the limit if the initial debt is beyond it. �ird-party purchases conditional on
�scal austerity are reminiscent of policies pursued in the European debt crisis as well as many
IMF programs. However, the events in Europe and elsewhere re�ect the di�culties of enforcing
explicit debt limits. Unfortunately, in the Eaton-Gersovitz framework studied in this paper, there
is no e�ective policy that does not involve a similar type of o�-equilibrium commitment to punish
overborrowing.

Finally, note that a tight quantity restriction policy may not be e�ective if delayed too long. In
particular, once b > bI , the saving equilibrium is no longer distinguishable from the borrowing
equilibrium, and thus policy interventions will fail to be e�ective once debt has reached su�-
ciently high levels. �is highlights that interventions during debt crises may need to be quick to
be successful, and policies that “kick the can down the road” may eventually fail. �is same point
about delay, although in a di�erent environment, was emphasized by Lorenzoni and Werning
(2013).

7 Multiplicity in a �antitative Model

Our previous analysis emphasized transparency in order to identify and analyze the economic
forces that generate ine�ciencies and lead to multiplicity. Of course, this required several sim-
plifying assumptions. In this section, we relax these assumptions and show that the insights of
the theory extend to richer environments, such as those used in quantitative analyses.21

Towards this end, we use the state-of-the-art sovereign debt model of Cha�erjee and Eyigun-
gor (2012) – henceforth CE12 – which features discrete time, concave utility for the government,
endowment risk, non-linear default punishment, as well as the possibility of re-accessing �nan-
cial markets a�er default. In this section, we demonstrate that such an environment is prone to
the multiplicity identi�ed by our analytical framework.

Because we hew very closely to the benchmark CE12 speci�cation, we relegate most details
of the set up and its computation to Appendix E. We �ag here the one change we make to the
environment. CE12 calibrate their model to Argentina. �ey estimate an AR(1) endowment pro-
cess and approximate this using a discrete Markov chain. We augment the endowment process
by including a “rare disaster” state. �is proves useful in computing the two equilibria. It also
has empirical validity given the work of Barro and Ursa (2008), Barro (2011), and has recently

21Stangebye (2018) discusses the role of concavity of utility and re-entry dynamics in generating multiplicity in a
similar environment.
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been introduced in the sovereign debt context by Ayres et al. (2015), Rebelo et al. (2019), and
Paluszynski (2019).

Speci�cally, the endowment yt follows a discretized AR(1) process during “normal” times,
but with constant probability πdis switches to a disaster state ydis . Once in the disaster state, it
recovers with probability πrec , at which point it resumes following the normal AR(1) process.
Following Barro and Ursa (2008), we set πdis to be 0.97%, and ydis to be 0.20 log points below
the mean of the normal AR(1) process. Barro and Ursa (2008) estimates the average length of
a disaster to be 3.5 years, and hence we set πrec = 7.14% in our quarterly model. We adjust
the auto-correlation parameter and innovation variance underlying the normal AR(1) process to
match the auto-correlation and volatility of GDP targeted by CE12.

�e addition of the disaster state also involves choosing the fraction of endowment lost due to
default in that state. We assume that 4.5% of the disaster endowment state is lost while in default
status. We shall discuss that choice in detail below. For the remainder of the endowment process,
we use the default cost speci�ed in CE12.

Other than the enriched endowment state vector and the associated additional default cost, the
remaining details and parameter values are identical to CE12. In particular, we set the benchmark
expected maturity to 20 quarters. �e quarterly risk-free interest is 1% and the government’s
quarterly discount factor is 0.954. �e remainder of the parameters are reported in the appendix.

�e model features (at least) two equilibria at CE12’s calibrated expected maturity of 20 quar-
ters. Mirroring our analytical model, one equilibrium is a “saving” equilibrium, in which an
indebted government saves in order to a�ain a risk-free price. For the same parameterization,
we compute a “borrowing” equilibrium, in which the ergodic distribution features high debt and
recurrent default. �e policy functions and associated price schedules are depicted in Appendix
E Figures E.1 and E.2. �e appendix also contains business cycle moments for both equilibria.

As in the analytical model, the quantitative saving equilibrium features an absorbing “Safe
Zone.” �at is, there exists a threshold bS such that if b ≤ bS , the government never defaults and
faces risk-free prices. As is standard in quantitative default models with non-contingent bonds,
the government’s incentive to default is greatest when the endowment is lowest. �us, bS is
de�ned by the debt level at which the government is indi�erent between default and repayment
when the endowment is in the disaster state. In our benchmark calibration, the market value
of bS is 1.16, relative to an average (quarterly) endowment of 1.01 and a disaster endowment of
0.84. As in the analytical model, there is a region of debt levels above this threshold in which
the government saves (conditional on positive endowment realizations and no default) in order
to exit the Crisis Zone.

In the borrowing equilibrium, the government borrows into the Crisis Zone and eventually
defaults. �is equilibrium displays the familiar pa�ern from the quantitative literature in that
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starting from zero debt, the government leverages up and then eventually defaults with proba-
bility one. �e ergodic mean of the face value of debt-to-GDP ratio is 0.96. For reference, CE12
achieve an average ratio of 0.70 in their benchmark simulation. �e remaining ergodic moments
of the borrowing equilibrium are also mostly in line with those of CE12.

Proposition 7 established that there is a non-trivial interval of maturity for which multiple
equilibria can be supported. In the quantitative version, we successfully computed a saving equi-
librium for maturities ranging from 1 to 33 quarters. �e borrowing equilibrium can be computed
for maturities as short as 9 quarters. �us, Proposition 7 has quantitative bite – there is a quanti-
tatively signi�cant range of maturities for which multiple equilibria exist.

Proposition 7 also emphasized the role of the deadweight costs of default in generating a
saving equilibrium. To map our default cost choice into a deadweight cost, recall that the the
market value of debt at bS is 1.16. At this debt level and in the disaster state, the government is
indi�erent between repayment and default, while the lenders lose 1.16 in expected present value.
Hence, the market value of the threshold represents the surplus lost by default at bS in state ydis .
�is is equivalent to a loss of 1.17% of the expected present value of the government’s endowment
starting from the disaster state (which is 99.34).

Whether this is empirically reasonable is di�cult to determine, as we need to compare the
post-default endowment process to the counter-factual process if the government had not de-
faulted. One recent a�empt to measure this is Hébert and Schreger (2017), which uses the be-
havior of Argentine equities on US exchanges around news events relating to litigation involving
hold-out creditors. �eir estimates suggest that an unanticipated default generates a decline in
market value of equity of 45 percent. �us, the one percent of the expected present value of GDP
is not unreasonably large.

�e standard approach in the quantitative literature is to indirectly calibrate the default costs
in order to generate signi�cant borrowing combined with frequent default. �e outcome is typ-
ically a very small cost in the low-endowment states that encourages default, combined with a
disproportionately larger cost in high-endowment states in order to sustain borrowing during
booms. For example, if we use CE12’s functional form and extend it to our disaster state, we
compute a deadweight cost (that is, the market value of debt that makes the government indi�er-
ent between default or not) of 0.70, or sixty percent of our benchmark number. At this low cost,
a saving equilibrium cannot be sustained even with one-period bonds. Hence, the competitive
equilibrium will not support an absorbing Safe Zone at any maturity. �e lowest cost for which
we found both a saving and borrowing equilibrium at some maturity is 0.88.

�ese experiments reveal two important lessons for quantitative sovereign debt models. One
is that multiplicity is possible in such models for a wide range of empirically relevant maturities,
as long as default costs are not too small. �e second is that the practice of calibrating nonlinear
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default costs in order to match debt and default frequencies in the data may naturally lead to
environments in which an absorbing Safe Zone is not constrained e�cient, and hence a saving
equilibrium may be unlikely to exist. However, such low default costs are not directly tied to em-
pirical evidence and this practice may provide an incomplete picture regarding the vulnerability
to self-ful�lling dilution.

8 Relationship to Other Sources of Multiplicity

We conclude with some comments on the relationship of our analysis to alternative models of
multiplicity. �e core driving force behind the multiplicity is the feedback between the price
schedule and the government’s debt-issuance policy function. In particular, the incentives em-
bedded in equilibrium prices to alter the outstanding stock of debt before legacy bonds mature.
It is useful to contrast this mechanism with other environments that feature multiplicity.

�e source of multiplicity studied above is distinct from the canonical Calvo (1988) multiplic-
ity. A useful way to view the Calvo multiplicity is through the feasibility of debt trajectories.
�at is, the mechanical link via the budget set between low prices of bond issuances today and
high debt burdens tomorrow. In the two-period model of Calvo (1988), today’s bond prices (or
the implied interest rate) determine the debt burden tomorrow, given the requirement to raise a
certain amount of revenue in the initial period. Lorenzoni and Werning (2013) (henceforth, LW)
explore how to extend this mechanism to a fully dynamic model.

LW emphasize that, in practice, governments have limited �exibility to alter �scal policy at
high frequencies. Most of their analysis therefore assumes the government follows a �scal rule.
However, they show that there is a natural counterpart to a �scal rule in an environment with
a fully optimizing government. In particular, they consider a government making optimal debt
decisions subject to a minimum threshold for spending (which in their case arises naturally from
the non-negativity of spending).

LW multiplicity turns on whether the government is able to reduce its debt when facing low
bond prices. In particular, they consider a situation where the bond price may be low enough
that it is not feasible for the government to reduce debt. As a result, the government optimally
chooses to accumulate debt instead, justifying the low bond prices. Importantly, they show how
such a feasibility constraint on expenditure can generate multiplicity even though it does not
bind on the equilibrium path – once the governments decides to borrow, its expenditures are
not constrained by the lower bound. But, as noted by LW, the potentially binding constraint is
necessary to generate the multiplicity they study.

It is useful to highlight how the LW multiplicity di�ers from the one in our analysis. �e
equivalent of a minimum spending threshold in our environment is the consumption lower bound
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C . In our equilibria, we assume that this lower bound does not bind.22 Moreover, even when
facing the “borrowing” equilibrium prices, we implicitly assume that it is always feasible but not
optimal for the government to save towards the Safe Zone.

�is begs the question of whether the LW multiplicity arises if the consumption lower bound
C is high enough. To answer this, let us now a�empt to construct the LW multiplicity in our
environment. First, consider parameters, includingC , such that the saving equilibrium exists. To
construct an alternative LW “borrowing” equilibrium, suppose that there exists a b0 ∈ (bS ,bB)
such that reducing the debt is not feasible at the borrowing equilibrium prices, q.23 �at is,

C > y − (r + δ (1 − q))b0. (28)

�is condition implies that, at a price of q and b ≥ b0, even if the government were to set its
consumption to its lower bound, debt still strictly increases. Such a restriction is used by LW to
sustain an alternative equilibrium for high enough debt levels: given that the government cannot
reduce debt, it is now willing to follow the borrowing equilibrium prescription and accumulate
debt until bB (justifying the price of q).

However, in our environment, such an equilibrium cannot exist. To see this, if equation (28)
holds, Assumption 1 (iv) implies that b0 > bB .24 �e reason is that if Ûb ≤ 0 is not feasible at q
and b = b0, then Ûb > 0 for all b > b0, including the upper-bound bB , violating the equilibrium
conditions.25

Interestingly, while imposing a tight lower bound on consumption in our environment does
not generate the equilibrium studied by LW, it can produce a roll-over crisis a la Cole and Kehoe
(2000) (henceforth CK). Consider again a situation in which savings is an equilibrium. We ask
the question of whether we can also sustain an equilibrium where the bond price switches from
the savings equilibrium price to a price of zero within a subset of the domain (bS ,bS ).

We conjecture the following “failed-auction” equilibrium: there exists a b0 ∈ (bS ,bS ) and an
equilibrium price q such that q(b) = 0 for b > b0, and q(b) = qS (b) otherwise, where qS is the
saving equilibrium price schedule. Note that this implies VS (b0) > V .

22We introduced a lower bound on consumption only to have a well de�ned policy for the e�cient allocation.
23Note that, the savings equilibrium is not necessarily a�ected by the lower bound. �at is, it could be the case

that reducing the debt remains feasible at high prices. A su�cient condition in our case is that Ĉ(b) = y − (r + δ (1 −
q̂(b))b + q̂(b) Ûb > C for b ∈ (bS ,b0), where Ûb is given by equation (36) in the appendix.

24A remaining issue is what would happen if we were to drop Assumption 1 (iv) from our requirements. In that
case, in the borrowing allocation, the maximal amount of debt, bB that could be feasibly sustained in a borrowing
equilibrium is such that C = y − (r + δ (1 − q))bB . Inequality (28) still implies b0 > bB .

25Di�erently from us, LW assume that there is a positive recovery rate upon default and impose an upper-bound
on debt, at which point, a renegotiation between creditors and the government is automatically triggered. �is
upper-bound guarantees that debt does not grow without bound in the “bad” equilibrium, even if it cannot be kept
stationary absent renegotiation.
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First, supposeC < y−(r+δ )b forb ∈ (bS ,bS ). �is implies that it is feasible for the government
to reduce debt by paying coupons and maturing bonds. Now consider a b in the neighborhood
above b0. �e government has the option to reduce debt to b0 by paying o� maturing bonds. �e
value of this strategy is arbitrarily close to VS (b0) as b ↓ b0. As VS (b0) > V , the government will
not �nd it optimal to default in this neighborhood, invalidating zero as an equilibrium price. With
no lower bound on consumption, the government can always act as its own lender of last resort
in case of a rollover crisis, eliminating the CK multiplicity.

Alternatively, continuing the premise that the saving equilibrium exists, suppose C satis�es
the constraint (28) for a b0 ∈ (bS ,bS ).26 For b > b0, there is no feasible option for the government
other than default. �is follows from the fact that (28) implies the government cannot pay o� its
coupon and maturing principal payments at b = b0 when the price is q > 0; hence, it cannot do
so at b > b0 when facing a zero price. �us, the government must default, validating the zero
price in equilibrium.27

In summary, the di�erence between the equilibria we study and those of Calvo, CK, and LW
re�ect di�erent views with regards to �scal policy. �is paper emphasizes the lack of constraints
on �scal policy, bringing limited commitment to future �scal paths to the fore of the analysis.
Calvo, CK, and LW emphasize the limitations of �scal policy when responding to low bond prices.
Both views are complementary, and highlight the potential fragility of sovereign debt markets to
changes in lender expectations.

9 Conclusion

�is paper shows that debt dilution generates multiplicity in a standard sovereign debt frame-
work. In particular, the extent of dilution in equilibrium depends on self-ful�lling expectations
of future prices and future �scal policy. A relatively impatient government, an intermediate debt
maturity, and deadweight losses from default provide the conditions for multiplicity of equilibria.
Importantly, these are common features of observed debt markets as well as the recent quantita-
tive models proposed in the literature.

�e framework presented above is designed for analytical clarity and thus involves some
special assumptions. However, the mechanism at work is robust to including endowment �uctu-

26Note that this implies from Assumption 1 (iv) that b0 > bB .
27In a discrete time environment, with one period bonds, the di�erence between the uniqueness in the Eaton-

Gerstovitz model (Auclert and Rognlie, 2016, Aguiar and Amador, 2019) and the multiplicity in the Cole and Kehoe
(1996) model is explained in terms of the timing within a period. In Eaton-Gersovitz, the government commits to
default or not before issuing the new bonds. In Cole-Kehoe, the government �rst issues the new bonds, then decides
to default or not. In continuous time, with long duration bonds, this within-period distinction is not relevant. �is
section highlights that, if there is a consumption lower bound, roll-over crises can indeed co-exist with the type of
multiplicity we identify in the continuous-time Eaton-Gersovitz framework.
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ations and risk aversion, which, while bringing the model closer to empirical debt markets, does
not eliminate the self-ful�lling debt dilution identi�ed in the tractable model. One can easily
construct simple numerical examples of multiplicity with these elements. �e quantitative model
analyzed by Stangebye (2015) also appears to be driven by a mechanism similar to that studied
in this paper. Indeed, the fact that the Eaton-Gersovitz model is vulnerable to dilution is at the
heart of the recent quantitative literature that a�empts to match empirical sovereign debt crises.
We show that the same force leads to indeterminacy. �e fact that multiplicity stems from the
incentives to dilute places novel restrictions on e�ective third-party interventions.
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Appendix A Closed-Form Expressions and Derivations
In this appendix, we provide closed-form expressions for the solutions to the planning problem as well as
equilibrium objects. We also include some notes on the underlying derivations.

A.1 �e E�cient Borrowing Allocation
�e conjectured policy function for consumption in the borrowing allocation is given in (5). As V is a
stationary point, we immediately have:

P?
B (V ) =

y −C?(V )
r + λ

.

Given this boundary condition and the consumption policy function, we solve the ODE (P) to obtain:

(i) For v ∈ [V ,V ]:

P?
B (v) ≡

1
r + λ

[
y −C + (C + λV − (ρ + λ)v)

r+λ
ρ+λ

(C + λV − (ρ + λ)V )
r−ρ
ρ+λ

]
.

(ii) For v ∈ (V ,Vmax ]:

P?
B (v) ≡

1
r

[
y −C + (C − y + rP?

B (V ))
(C − ρv) rρ
(C − ρV ) rρ

]
.

A.2 E�cient Saving
For the e�cient saving allocation, the conjecture is that the Safe Zone is an absorbing state. In particular,
V is a stationary point, which pins down P?

S (V ) = (y − ρV )/r . Given this boundary condition and the
policy function (9), we solve (P) for the Safe Zone to obtain:

P?
S (v) ≡

1
r

[
y −C +

(
C − ρV

) ρ−r
ρ

(
C − ρv

) r
ρ
]

for v ∈ [V ,Vmax ]. (29)

For the saving region of the Crisis Zone, consumption is at its lower bound,C . Solving (P) forv ∈ [V ,V ),
using P?

S (V ) from above as a boundary condition, we obtain the planner’s value under saving:

P̂(v) ≡ 1
r + λ

y −C + (C − y + (r + λ)P?
S (V ))

(
C + λV − (ρ + λ)v

C − ρV

) r+λ
ρ+λ  . (30)

Per equation (12), P?
S (v) in the Crisis Zone is the maximum of P̂ and P?

B . Straightforward di�erentiation
indicate that P̂ and P?

B cross at most once.

A.3 �e Borrowing Equilibrium
In the Crisis Zone (bB ,bB], qB(b) = q. Turning to the Safe Zone, recall that the conjectured consumption
policy function in the borrowing equilibrium is the same as the planner’s borrowing policy, (5). With this
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policy and the boundary qB(bB) = q, the solution to (20) is de�ned implicitly by:(
1 − qB(b)

1 − q

) r
r+δ

=
C − y + rqB(b)b
C − y + rqbB

. (31)

For each b ∈ [0,bB), there is a unique solution for qB(b) ∈ [q, 1]. Recall that for b < 0, we have qB(b) = 1
regardless of the government’s policies.28

�e government’s value in the borrowing equilibrium is obtained by inverting P?
B . Speci�cally:

VB(b) =


1
ρ

(
C − (C − ρV )

(
C−y+rqB (b)b
C−y+rqbB

) ρ
r
)

for b ∈ [−a,bB]

1
ρ+λ

©­«C + λV −
(
C−y+(r+λ)qb

) ρ+λ
r+λ(

C−y+(r+λ)qbB
) ρ−r
r+λ

ª®¬ for b ∈ (bB ,bB],
(32)

where a ≡ (C − y)/r is the maximal net in�ows that can be consumed by the government.

A.4 �e Saving Equilibrium
�e saving equilibrium objects in the Safe Zone is straightforward: because it is an absorbing region, there
is no risk of default starting fromb ≤ bS . Hence, the price is one, qS (b) = 1 and the values and consumption
are equivalent to their e�cient counterparts. �at is, inverting P?

S we obtain:

VS (b) = ρ−1 ©­«C − (C − ρV )
(
C − y + rb
C − y + rbS

) ρ
r ª®¬ for b ∈ [−a,bS ] (33)

where bS ≡ (y − ρV )/r . �e consumption policy is C for b < bS , and ρV at bS .
Turning to the Crisis Zone, we begin with the saving region. Let {V̂ , Ĉ, q̂} denote the conjectured

equilibrium objects in the saving region of the Crisis Zone. In the saving region, we have to deviate
from the prescription of the e�cient allocation. �e reason is that the e�cient savings policy, which sets
consumption at its lower bound C , cannot be sustained in a competitive equilibrium. �at is, the e�cient
savings rate is not privately optimal in an equilibrium with long-term bonds.

We conjecture instead that the government saves by consuming at an interior optimum.29 When con-
sumption is interior, the linearity of the government’s objective function in (17) implies that it is indi�erent
across alternative consumption choices, including the consumption level that sets Ûb = 0. Hence, the gov-
ernment must be indi�erent between the equilibrium consumption strategy and its associated stationary

28 Note that there may be a discontinuity in qB at b = 0. Recall that at points of discontinuity, we impose that debt
buybacks occur at a price of one in the neighborhood around a discontinuity. �is restriction eliminates the technical
complication of the government a�empting to issue debt at one price and near-simultaneously repurchasing at a
lower price in an a�empt to exploit this discontinuity. �e restriction we impose ensures that the choice set is convex
despite the discontinuity in price, and hence the government has no motive to “mix” by moving consumption back
and forth while keeping debt at the point of discontinuity.

29�roughout the following analysis, we assume C is su�ciently low that an interior consumption choice is fea-
sible.
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value:30

V̂ (b) ≡ y − [r + δ (1 − q̂(b))]b + λV
ρ + λ

. (34)

From the �rst-order condition in (17), interior consumption requires V̂ ′(b) = −q̂(b). Using this, di�er-
entiating (34), and solving the resulting ODE with q̂(bS ) = 1 as a boundary condition yields

q̂(b) ≡
r + δ +

(
b
bS

)− ρ+λ+δδ (λ + ρ − r )
ρ + λ + δ

. (35)

�e lenders’ break-even condition (19) requires q̂′(b) Ûb = (r + δ + λ)q̂(b) − (r + δ ). Hence, we can solve for
the conjectured debt dynamics:

Ûb = −δb ©­«
q̂(b) − q

q̂(b) − q + (ρ−r )q̂(b)r+δ+λ

ª®¬ ≡ f (b). (36)

Using (16), we obtain the associated consumption:

Ĉ(b) ≡ y − [r + δ (1 − q̂(b))]b + q̂(b)f (b). (37)

�e borrowing region of the Crisis Zone is also an absorbing state and corresponds to the equilibrium
discussed in the previous subsection. Note that in this region, the price is q. In the Crisis Zone, VS (b) =
max〈V̂ (b),VB(b)〉. As before, b I is the intersection point of these two alternatives. If no such b I ∈ [bS ,bB]
exists, we set it to bS . �e value of bS is such that VS (bS ) = V , and we de�ne BS ≡ [−a,bS ].31

�e saving equilibrium value in the Crisis Zone is therefore:

VS (b) ≡
{
V̂ (b) for b ∈ (bS ,b I ]
VB(b) for b ∈ (b I ,bS ];

(38)

and the consumption policy is

CS (b) ≡
{
Ĉ(b) for b ∈ (bS ,b I ]
CB(b) for b ∈ (b I ,bS ].

(39)

30�e fact that the government’s value is equal to the stationary value while consumption is interior is discussed
in Tourre (2017) and DeMarzo et al. (2018). �e authors give an interpretation of a durable monopolist in the spirit
of the Coase conjecture.

31 If b I < bB , then qS is discontinuous at b I , which is the case depicted in Figure 3. As previously discussed when
stating the government’s problem, and echoed in footnote 28, we rule out the government issuing at qS (b I ) and then
immediately repurchasing at limb′↓b I qS (b ′) < qS (b I ) in an a�empt to set Ûb = 0 by alternating between issuing and
repurchasing. Let us also note that the multiplicity result we obtain later on does not hinge on this particular issue:
it is possible to obtain parameter values such that b I = bS and for which multiple equilibria coexist.
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�e equilibrium price schedule is:

qS (b) ≡


1 for b ∈ [−a,bS ]
q̂(b) for b ∈ [bS ,b I ]
q for b ∈ (b I ,bS ];

(40)

Appendix B Additional Results
In this appendix, we state state four results. �e �rst two allows us to provide a characterization of a
solution to the planner’s problem. �e next two are the same results for the government’s problem in a
competitive equilibrium.

�e value function P?(v) has the following standard properties:

Lemma B.1. �e solution to the planner’s problem, P?(v), is bounded and Lipschitz continuous.

Proof. �e proof is in Appendix C. �

Lemma B.1 states that P? is bounded and Lipschitz continuous, and hence di�erentiable almost every-
where. However, there may be isolated points of non-di�erentiability. At such points, P? satis�es (P) in
the viscosity sense. In particular:

Proposition B.1. Suppose a bounded, Lipschitz continuous function p(v) with domain V has the following
properties:

(i) p satis�es (P) at all points of di�erentiability;

(ii) If limv↑V p ′(v) > limv↓V p ′(v) and limv↑V p ′(v) ≥ −1, then p(V ) = (y − ρV )/r ;

(iii) At a point of non-di�erentiability ṽ , V , we have limv↑ṽ p ′(v) < limv↓ṽ p ′(v);
(iv) If p ′(V ) < −1, then p(V ) = (y − ρV + λ(V −V ))/(r + λ);32 and

(v) p ′(Vmax ) ≤ −1;

then p(v) = P?(v).

Proof. �e proof is in the Online Appendix. �

�e �rst condition of the proposition ensures that the candidate value function satis�es the HJB wher-
ever it is smooth. �e second condition concerns the case when V is a locally stable stationary point; this
will be relevant when we consider an e�cient “saving allocation” de�ned below. �e third condition states
that any other point of non-di�erentiability has a “convex” kink. �e �nal two conditions are su�cient to
ensure that v remains in V.

�e counterpart to Lemma B.1 for the equilibrium value function is:

Lemma B.2. In any competitive equilibrium such that q(b) ∈ [q, 1] for b ∈ B = [−a,b], V is bounded,
strictly decreasing, and Lipschitz continuous onB.

Proof. �e proof is in Appendix C. �

32For the endpoints of V, we interpret p ′(V ) ≡ limv↓V p ′(v) and p ′(Vmax ) ≡ limv↑Vmax p
′(v).
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�e counterpart to Proposition B.1 for the government’s equilibrium problem (17) is:

Proposition B.2. Consider the government’s problem given a compact debt domain B and a price schedule
q : B → [q, 1] that has a (bounded) derivative at almost all points in B. If a strictly decreasing, Lipschitz

continuous function v : B → [V ,C/ρ] has the following properties:
(i) v satis�es (17) at all points of di�erentiability;

(ii) If limb↑b v ′(b) > limb↓b v ′(b), then ρv(b) = ρV = y − [r + δ (1 − q(b))]b;

(iii) At a point of non-di�erentiability b̃ , b, we have limb↑b̃ v
′(b) < limb↓b̃ v

′(b);

(iv) ρv(−a) = C ; and
(v) (ρ + λ)v(b) = y − [r + δ (1 − q(b))]b + λV ;

then v(b) = V (b) is the government’s value function.

Proof. �e proof is in the Online Appendix. �

�e conditions listed in the proposition are similar to those from Proposition B.1. Namely, that the
value function satis�es the HJB equation with equality wherever smooth; there may be a local a�ractor
that corresponds to b if the government saves; other points of non-di�erentiability have convex kinks; and
the endpoints of the domain deliver the value of holding debt constant.33

Appendix C Proofs
�is appendix contains all proofs except those for Propositions B.1 and B.2, which are presented in the
Online Appendix, along with a discussion of viscosity solutions more generally.

C.1 Proof of Lemma 1
Proof. To generate a contradiction, suppose there is an e�cient allocation {c,T }, with T < ∞. Note from
(1) we have V (T , c) = V . To see this, suppose instead that V (T , c) > V ; that is,

V (T , c) = sup
T ′≥t

∫ T ′

T
e−(ρ+λ)(s−T )c(s)ds + e−(ρ+λ)(T ′−T )V + λ

∫ T ′

T
e−(ρ+λ)(s−T )max〈V (s, c),V 〉ds

> V .

Hence, there exists a T ′ > T such that∫ T ′

T
e−(ρ+λ)(s−T )c(s)ds + e−(ρ+λ)(T ′−T )V + λ

∫ T ′

T
e−(ρ+λ)(s−T )max〈V (s, c),V 〉ds > V .

33Condition (v), at b, is stronger than necessary, as the key requirement is that Ûb ≤ 0 at the upper bound on debt;
however, in the equilibria described below, the stronger condition is always satis�ed.
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�is implies at time t < T ,∫ T

t
e−(ρ+λ)(s−t )c(s)ds + e−(ρ+λ)(T−t )V + λ

∫ T

t
e−(ρ+λ)(s−t )max〈V (s, c),V 〉ds <∫ T ′

t
e−(ρ+λ)(s−t )c(s)ds + e−(ρ+λ)(T ′−t )V + λ

∫ T ′

t
e−(ρ+λ)(s−t )max〈V (s, c),V 〉ds .

Hence, T was never a sup of the original problem. �is establishes that V (T , c) = V .
Now consider an alternative allocation (c̃,∞). �e alternative consumption allocation equals c for

t < T , but di�ers for t ≥ T . We choose c̃(t) = (ρ + λ)V − λV < y for t ≥ T so that for all t ≥ T :

V (t , c̃) = c̃(t) + λV
ρ + λ

=
(ρ + λ)V − λV + λV

ρ + λ

= V .

�us, V (0; c) = V (0; c̃). Moreover, the alternative allocation delivers strictly more than zero to the lender
in expectation for t ≥ T as c̃(t) < y. As the government is indi�erent and the lender receives strictly more
in expected present value, the original allocation is not e�cient. �

C.2 Proof of Lemma B.1
Proof. Lemma 1 allows us to set T = ∞ in the planning problem (3) to obtain

P?(v) = sup
c∈C,

∫ ∞

0
e−

∫ t
0 r+1[v (s )<V ]λds [y − c(t)]dt (41)

subject to

{
v(0) = v
Ûv(t) = −c(t) + ρv(t) − 1[v(t )<V ]λ

[
V −v(t)

]
,

de�ned on the domain v ∈ V. P? is bounded above by (y −C)/r and below by (y −C)/r . To see that P?

is Lipschitz continuous in v , consider v1,v2 ∈ V, with v2 > v1. A feasible strategy starting from v(0) = v2
is to set consumption to C until v(t) = v1. Let ∆ denote the time v(t) reaches v1. Suppose v(t) > V for
t ∈ [0,∆1) and v(t) < V for t ∈ (∆1,∆]. Let ∆2 = ∆ − ∆1. If v2 < V , then ∆1 = 0 and if v1 > V , then ∆2 = 0.
�e dynamics of v(t) imply

e−ρ∆1 =
C − ρ max{v2,V }
C − ρ max{v1,V }

e−(ρ+λ)∆2 =
C + λV − (ρ + λ)min{v2,V }
C + λV − (ρ + λ)min{v1,V }

.

Using this, one can show that

1 − e−ρ∆1−(ρ+λ)∆2 ≤ L|v2 −v1 |, (42)

with L ≡ (ρ + λ)/(C − ρVmax ) ∈ (0,∞).
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As this is a feasible strategy for v2, integrating the objective function, we obtain

P?(v2) ≥ (y −C)
(

1 − e−r∆1

r
+
e−r∆1

(
1 − e−(r+λ)∆2

)
r + λ

)
+ e−r∆1−(r+λ)∆2P?(v1).

As y < C , we have

P?(v2) ≥ (y −C)
(
1 − e−r∆1−(r+λ)∆2

r

)
+ e−r∆1−(r+λ)∆2P?(v1),

which implies

P?(v1) − P?(v2) ≤
(
C − y
r
+ P?(v1)

) (
1 − e−r∆1−(r+λ)∆2

)
.

As P?(v1) ≤ (y −C)/r , we have

P?(v1) − P?(v2) ≤
(
C −C
r

) (
1 − e−r∆1−(r+λ)∆2

)
.

As C > C and ρ ≥ r , this implies

P?(v1) − P?(v2) ≤
(
C −C
r

) (
1 − e−ρ∆1−(ρ+λ)∆2

)
≤

(
C −C
r

)
L|v2 −v1 |,

where the second line uses (42). As v1 < v2, and hence P?(v1) ≥ P?(v2) as P? is the e�cient frontier, we
have

|P?(v1) − P?(v2)| ≤ K |v2 −v1 |,

where

K ≡
(
C −C
r

)
L =

(
C −C

C − ρVmax

) (
ρ + λ

r

)
.

Hence, P? is Lipschitz continuous with coe�cient K ∈ (0,∞). �

C.3 Proof of Proposition 1
Proof. We need to check the conditions of Proposition B.1. Note that P?

B is bounded, Lipschitz continuous,
and di�erentiable everywhere except V , where limv↑V P?′(v) < limv↓V P?′(v). �is inequality implies
that condition (ii) in the proposition is irrelevant. Condition (iii) of Proposition B.1 is satis�ed trivially.
Condition (iv) is satis�ed by construction.

At points of di�erentiability, the �rst-order condition for consumption requires P?′
B (v) ≤ −1 for c = C

to be optimal. Starting withv ∈ [V ,V ), di�erentiating the candidate function yields P?′
B (v) ≤ −1. HenceC
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is optimal, and P?
B satis�es the HJB on this domain. Turning to v > V , note that P?

B (v) is concave on this
domain. �us, if limv↓V P?′

B (v) ≤ −1, then P?′
B (v) ≤ −1 for v ∈ (V ,Vmax ]. We have

lim
v↓V

P?′
B (v) = −

C − y + rP?
B (V )

C − ρV
.

�is quantity is less than −1 when rP?
B (V ) ≥ y − ρV . �is is the condition stated in the proposition. �is

condition is necessary and su�cient for P?
B to satisfy the HJB on (V ,Vmax ). Moreover, it is su�cient to

ensure that condition (v) of Proposition B.1 is satis�ed. �

C.4 Proof of Proposition 2
Proof. �e proposed solution P?

S is di�erentiable everywhere saveV andv I . AtV we have limv↑V P?′
S (v) ≥

−1 ≥ limv↓V P?′
S . Hence, condition (ii) of Proposition B.1 is relevant and is satis�ed by the candidate value

function. P?
S satis�es condition (iii) at v I as it features a convex kink by construction. Condition (iv) is

also satis�ed by construction.
On the domainv ∈ (V ,Vmax ], we have P?′

S (v) ≤ −1, and hence P?
S satis�es the HJB as well as condition

(v) of Proposition B.1.
Turning to v < V , we now show that P?

S (V ) ≥ P?
B (V ) is necessary and su�cient for P?

S to satisfy the
conditions of Proposition B.1.

For su�ciency, suppose that P?
S (V ) ≥ P?

B (V ). Let X ≡ {v ∈ [V ,V )|P?
S (v) ≥ P?

B (v)} = [max{v I ,V },V ).
On the domain X , P?

S (v) = P̂(v). One can show that P̂ ′(v) ≥ −1 if and only if P̂(v) ≥ (y − (ρ + λ)v +
λV )/(r + λ). As the la�er term is the value associated with se�ing Ûv = 0, the inequality is satis�ed as
P̂(v) ≥ P?

B (v) ≥ (y − (ρ + λ)v + λV )/(r + λ). Hence c = C is optimal on X , and the HJB is satis�ed. If
P̂(V ) ≥ P?

B (V ), then X = [V ,V ), and hence the HJB is satis�ed on the whole domain V. If instead there
exists v I > V , then the HJB is satis�ed for v < v I from Proposition 1.

For necessity, suppose instead that P?
S (V ) < P?

B (V ). Comparison of the slopes implies that as long
as P?

S (v) < P?
B (v) for v ∈ [V ,V ), then P?′

S (v) < P?′
B (v), and the two lines will never cross. Moreover,

P?′
B (v) ≤ −1, and hence P?′

S (v) < −1. �is implies that c = C is strictly sub-optimal and the HJB is
violated. �

C.5 Proof of Lemma B.2
Proof. �e boundedness of V follows directly from C/ρ ≥ V (b) ≥ V for any b ∈ B.

To see that V is strictly decreasing, suppose b1 > b2 for b1,b2 ∈ B. If b2 = −a ≡ (y − C)/ρ, then
V (b2) = C/ρ > V (b1), where the la�er inequality follows from the budget set at b1 > b2. Now consider the
following policy starting from b2 ∈ (−a,b1): Set c = C until b(t) = b1. As

Ûb(t) = c + (r + δ )b(t) − y
q(b(t)) − δb,

and C > y − rb ≥ y − [r + δ (1 − q(b))]b for b ≥ b2, we have Ûb(t) > 0. Let t̃ ∈ (0,∞) denote when b(t) = b1.
As it is feasible for the government to follow this policy and not default while doing so, we have

V (b2) ≥
∫ t̃

0
Cdt + e−ρt̃V (b1) =

(
1 − eρt̃

) C
ρ
+ e−ρt̃V (b1).
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Subtracting V (b1) from both sides yields:

V (b2) −V (b1) ≥
(
1 − eρt̃

) (
C

ρ
−V (b1)

)
> 0.

For continuity, we proceed in a similar fashion. Starting from b1, consider the policy of se�ing c = C

until b(t) = b2. Let t∗ denote the time where b(t) = b2. Given that C < y − (r + δ )b ≤ y − (r + δ )b(t) and
q(b(t)) ∈ [q, 1], t∗ < ∞. Moreover, the same statements imply that

b2 − b1 ≥
∫ t ∗

0

(
C + rb(t) − y) dt ≥ ∫ t ∗

0

(
C + rb − y

)
dt =

(
C + rb − y

)
t∗,

where the �rst inequality follows from q(b) ≤ 1.

�e above implies that t∗ ≥ L|b1 − b2 |, with L ≡
(
y − rb −C

)−1
∈ (0,∞).

As this is a feasible strategy, we have

V (b1) ≥
∫ t ∗

0
e−ρtCdt + e−ρt

∗
V (b2) = (1 − e−ρt ∗)

C

ρ
+ e−ρt

∗
V (b2),

where the inequality in the �rst line also re�ects that the right-hand side is the value assuming the gov-
ernment never defaults, which is weakly below the optimal default policy. Subtracting V (b2) from both
sides and rearranging, we have

V (b2) −V (b1) ≤ (1 − e−ρt ∗)
(
V (b2) −

C

ρ

)
.

Using the fact that C/ρ > V (b) ≥ V > C/ρ and 1 − e−ρt ∗ ≤ t∗, we have

0 < V (b2) −V (b1) ≤ t∗
(
V (b2) −

C

ρ

)
≤ L

(
C −C
ρ

)
|b1 − b2 |.

Hence, |V (b2) −V (b1)| ≤ K |b2 − b1 | with K ≡ L
(
C −C

)
/ρ ∈ (0,∞). �

C.6 Proof of Proposition 3
Proof. By construction, the price schedule qB is consistent with the lenders’ break-even condition, given
the conjectured government policy. �e remaining step is to verify if and when the government’s policy
is optimal given the conjectured qB . Hence, to prove the proposition, we need to establish thatVB satis�es
the conditions of Proposition B.2 if and only if (22) holds.

For C to be optimal for all b < bB , the �rst-order condition for the HJB requires 1 +V ′B(b)/qB(b) ≥ 0
wherever V ′B(b) exists. �us, if V ′B(b) ≥ −qB(b), then c = C is optimal. Recalling that VB was constructed
by assuming that the Hamiltonian is maximized at c = C , then V ′B(b) ≥ −qB(b) is both necessary and
su�cient to verify that the HJB is satis�ed at points of di�erentiability.

We proceed to show that (22) is equivalent to V ′B(b) ≥ −qB(b) at points of di�erentiability.
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For b < 0, we have

ρVB(b) = C − (C − ρVB(0))
(
C + rb − y
C − y

) ρ
r

.

Note thatVB is concave on this domain. ForC to be optimal, it is therefore su�cient that limb↑0V ′B(b) ≥ −1.
�is will be true if and only if ρVB(0) ≥ y. Hence, the condition in equation (22) evaluated at b = 0 is
necessary and su�cient for the HJB to hold for b ∈ (−a, 0). For b = −a = (y−C)/ρ, we haveVB(−a) = C/ρ,
which is condition (iv) in Proposition B.2.

For b ∈ (0,bB], from the lenders’ break-even condition, in the Safe Zone, we have (r + δ )qB(b) =
q′B(b) Ûb = q′B(b)

(
C + [r + δ (1 − qB(b))]b − y

)
. Di�erentiating VB in (32) and using this expression to sub-

stitute for q′B(b), we have for b ∈ (0,bB]

V ′B(b) = −qB(b)
(

C − ρVB(b)
C − [r + δ (1 − qB(b))]b − y

)
.

Hence, for b ∈ (0,bB], the HJB is satis�ed if and only if ρVB(b) ≥ y − [r + δ (1 − qB(b))]b, which is the
condition in equation (22).

For b ∈ (bB ,bB], we have qB(b) = q and

(ρ + λ)VB(b) = C + λV −
(
C + λV − (ρ + λ)V

) ©­«
C − y + (r + λ)qb
C − y + (r + λ)qbB

ª®¬
ρ+λ
r+λ

.

Note thatVB(b) is concave in b, hence we need to check the condition at b → bB . We have for b ∈ (bB ,bB]

V ′B(b) ≥ −
C + λV − (ρ + λ)V
C − y + (r + λ)qbB

= −1,

where the �nal equality uses the de�nition of bB ; hence, for this region the optimality condition always
holds.

By construction, for b = bB , condition (v) of Proposition B.1 is satis�ed.
Note that asVB(bB) = V , the derivative ofVB is continuous atbB . �e only point of non-di�erentiability

isb = 0. In particular, note that limb↓0V ′B(b) = − limb↓0 qB(b)(C−ρVB(0))(C−y). Hence, if limb↓0 qB(b) < 1,
then there is a convex kink at b = 0. �is is consistent with condition (iii) in Proposition B.2.

Hence, the conditions of Proposition B.2 hold if and only if (22) holds. �

C.7 Proof of Proposition 4
Proof. �ere are three claims in the proposition:

Part (i). If a borrowing allocation is e�cient, it must dominate the stationary allocation, hence

rP?
B (v) ≥ y − ρV
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for any V ≥ V . From the expressions for P?
B and VB , this implies that:

VB(b) ≥
y − rqB(b)b

ρ

=
y − rqB (b)

r+δ (1−qB (b)) (r + δ (1 − qB(b)))b
ρ

≥ y − (r + δ (1 − qB(b)))b
ρ

for all b ∈ [0,bB],

where the last inequality follows from rqB(b) ≤ r + δ (1 − qB(b)) for all δ ≥ 0, qB(b) ≤ 1 and b ≥ 0. And
thus condition (22) is satis�ed.

Part (ii). For b ∈ [0,bB], Condition (22) becomes

ρVB(b) − (y − (r + δ )b + δqB(b)b) ≥ 0.

Now, from the price equation (31), we have(
1 − qB(b)

1 − q

) r
r+δ

=
C − y + rp
C − y + rp

, (43)

where p ≡ P?
B (V ) = qbB . From this expression, we can de�ne qB(b) = F (δ ,p), holding the other parameters

constant. Recall that condition (22) is restricted to b ∈ [0,bB]; hence, the domain of interest for p is [0,p],
which is independent of δ . We shall use the fact that

∂F (δ ,p)
∂δ

=
1 − F (δ ,p)

r + δ

(
q + ln

( 1 − q
1 − F (δ ,p)

))
, (44)

keeping in mind that q = (r + δ )/(r + δ + λ) and hence varies with δ .
Let V?

B denote the inverse of P?
B . Recall that VB(b) = V?

B (qB(b)b). Condition (22) can be wri�en:

G(δ ,p) ≡ ρV?
B (p) − y + (r + δ )p/F (δ ,p) − δp ≥ 0.

Taking the derivative with respect to δ , we have that:

∂G(δ ,p)
∂δ

=
p

F (δ ,p) − p −
(r + δ )p
F (δ ,p)2

∂F (δ ,p)
∂δ

=
p

F (δ ,p)

(
1 − F (δ ,p) − (r + δ )

F (δ ,p)
∂F (δ ,p)
∂δ

)
=
p(1 − F (δ ,p))

F (δ ,p)2
(
F (δ ,p) − (r + δ )

(1 − F (δ ,p))
∂F (δ ,p)
∂δ

)
=
p(1 − F (δ ,p))

F (δ ,p)2
(
F (δ ,p) − q − ln

( 1 − q
1 − F (δ ,p)

))
.
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Note that ∂G/∂δ ≤ 0 if

F (δ ,p) − q − ln
( 1 − q
1 − F (δ ,p)

)
≤ 0.

For p = p, F (δ ,p) = q, and this term is zero. Moreover, this expression is increasing in p as ∂F/∂p < 0.
Hence, ∂G(δ ,p)/∂δ ≤ 0 for p ∈ [0,p]. �us, if G(δ0,p) ≥ 0, then G(δ ,p) ≥ 0 for δ ∈ [0,δ0].

Part (iii). �e fact that saving is e�cient implies

y − ρV
r

> P?
B (V ) = qbB ,

where the last equality follows from the de�nition of bB . By continuity, there exists a V0 > V such that

y − ρV0

r
> P?

B (V0) ≡ p0 < p,

where the last inequality follows from the fact that P?
B is strictly decreasing. As V0 = V

?
B (p0) by de�nition

of V?
B as the inverse of P?

B , this is equivalent to

ρV?
B (p0) < y − rp0.

Evaluated at p = p0, condition (22) is

G(δ ,p0) = ρV?
B (p0) − y +

rp0

F (δ ,p0) + p0δ

(
1

F (δ ,p0) − 1
)
≥ 0. (45)

Note that limδ→∞ q = 1, and hence F (δ ,p) ≥ q also converges to 1. Hence, ρV?
B (p0) − y + rp0/F (δ ,p0) →

ρV?
B (p0)−y+rp0 < 0. We now show that the last term in (45) converges to zero; that is, δ (1−F (δ ,p0)) → 0.

From the de�nition of F in (43), we have

δ (1 − F (δ ,p0)) = λδ

r + δ + λ

©­­­­­­«
C − y + rp0

C − y + rp︸        ︷︷        ︸
<1

ª®®®®®®¬

r+δ
r

.

As the ratio raised to the power (r + δ )/r is strictly less than one as p0 < p, the right-hand side goes to
zero as δ → ∞. Hence, there exists a δ1 such that for all δ > δ1, G(δ ,p0) < 0, violating the condition for
the borrowing equilibrium.

�

C.8 Proof of Proposition 5
Proof. We proceed to show the necessity and su�ciency parts of the proposition independently.

�e “only if” part. Toward a contradiction, suppose that VS (bS ) < VB(bS ) (or equivalently bB > bS ),
and the conjectured saving equilibrium is indeed an equilibrium. First, note that qS (b) ∈ [q, 1], as the
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government defaults only with the arrival of V D = V .
By construction, V̂ (bS ) = VS (bS ) = V . As VS is strictly decreasing, we have VS (bB) < V = VB(bB).

Hence, VS and VB do not intersect in [bS ,bB], and b I > bS , and VS (bB) = V̂ (bB).
We also have for b ≥ bB : V̂ ′(b) = −qS (b) ≤ −q ≤ V ′B(b), where the la�er inequality uses a property

of the borrowing allocation value function (shown in the proof of Proposition 3). �is implies that V̂ (b) <
VB(b) for all b ≥ bB , and there is no point of intersection to generate b I andVS = V̂ for all b ∈ [bS ,bS ]. Now
at bS , we must have (as an equilibrium requirement) that V̂ (bS ) = V < VB(bS ), where the la�er inequality
follows from the fact that V̂ < VB on this domain. �us, bS < bB . However, we have

(ρ + λ)V = y − [r + δ (1 − q)]bB + λV
< y − [r + δ (1 − q)]bS + λV
≤ y − [r + δ (1 − qS (bS )]bS + λV
= (ρ + λ)V̂ (bS ) = (ρ + λ)V ,

where the �rst line uses the de�nition of bB ; the second line uses bB > bS ; the third uses qS (b) ≥ q; and
the �nal two equalities use the fact that V̂ (b) is the stationary value at price qS and the de�nition of bS ,
respectively. Hence, we have generated a contradiction.

�e “if” part. We �rst verify thatVS satis�es the conditions of Proposition B.2 and establish that qS is
a valid equilibrium price schedule.

First, consider the government’s problem.
Condition (iv) and (v) of Proposition B.2 are satis�ed by construction. For b = bS , condition (ii) of

Proposition B.2 applies and is satis�ed by construction.
For b < bS , the conjectured value function is di�erentiable. For the HJB to hold with c = C given that

qS (b) = 1 in this region, we requireV ′S (b) ≥ −qS (b) = −1. On this domain,VS (b) = V?
S (b), where the la�er

is the inverse of the e�cient solution P?
S . As P?′

S (v) ≤ −1, we have V ′S (b) ≥ −1 = −qS (b). Hence, c = C is
indeed optimal, and the HJB holds with equality.

For b ∈ (bS ,b I ), VS (b) = V̂ (b), and thus VS is di�erentiable and satis�es the HJB with equality by
construction. Note that if qS (b) ≥ q (something we check below), then Ûb ≤ 0 in (bS ,b I ) by equation (16)
(consistent with the equilibrium conjecture that the government is saving in this region). �is implies that
CS (b) = Ĉ(b) ≤ C , and thus the conjectured policy function is a valid one (recall that we are assuming that
C is su�ciently low and can thus be ignored as a constraint).

For b ∈ (b I ,bS ), VS (b) = VB(b) and di�erentiability of VB implies that VS is di�erentiable. �e proof of
Proposition 3 establishes that the HJB holds with equality in this domain, given that qS (b) = q.

�is con�rms that condition (i) of Proposition B.2 holds.
Ifb I ∈ (bS ,bS ),VS (b I ) = VB(b I ), and there is a potential point of non-di�erentiability atb I . IfqS (b I ) ≥ q

(something that we check below), we have that this kink is convex. �us, condition (iii) of Proposition B.2
holds.

Hence, given the conjectured qS , the value function is a viscosity solution to the government’s HJB
equation.

Next, let us consider the price function. �e only thing le� to check is thatqS (b) ∈ [q, 1] forb ∈ (bS ,b I ),
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where b I ∈ (bB ,bB). In this region, qS (b) ≤ 1 by equation (35). In addition,

(ρ + λ)VS (b) = y −
[
r + δ (1 − qS (b))

]
b + λV

≥ (ρ + λ)VB(b)
≥ y − [

r + δ (1 − q)]b + λV ,
where the �rst equality and second inequality follow from the equilibrium construction on b ∈ (bS ,b I ).
�e last inequality follows from the construction ofVB(b) for b ∈ (bB ,bB). Comparison of the �rst and last
lines establishes that qS (b) ≥ q. �

C.9 Proof of Proposition 6
Proof. �e fact that the e�ciency of saving is a necessary condition for a saving equilibrium is established
in the text. Turning to equation (25), multiply both sides of equation (24) by q to obtain the following
necessary and su�cient condition:

qP?
S (V ) ≥ qbB = P?

B (V ).

Using q = (r + δ )/(r + δ + λ) and the fact that P?
S (V ) > P?

B (V ), we solve for δ to obtain

δ ≥ λP?
B (V )

P?
S (V ) − P?

B (V )
− r = (r + λ)P

?
B (V ) − rP?

S (V )
P?
S (V ) − P?

B (V )
≥ 0,

where the last inequality is strict when ρ > r , as seen in the de�nition of P?
B . �us, this is a necessary and

su�cient condition for the saving equilibrium, proving the proposition. �

C.10 Proof of Proposition 7
Proof. Note that P?

B (v) is increasing in C . Hence,

P?
B (V ) ≤ lim

C→∞
P?
B (V )

=
y − ρV + (ρ − r )(V −V )

r + λ

=
rP?

S (V ) + (ρ − r )(V −V )
r + λ

.

�en a su�cient condition for saving to be strictly e�cient is

P?
S (V ) >

rP?
S (V ) + (ρ − r )(V −V )

r + λ
,

or

λ

ρ − r >
r (V −V )
y − ρV

,

which is the last inequality in the proposition.
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Similarly,

P?
S (V ) − P?

B (V ) ≥
λP?

S (V ) − (ρ − r )(V −V )
r + λ

,

and

λP?
B (V )

P?
S (V ) − P?

B (V )
− r ≤

λ
(
rP?

S (V ) + (ρ − r )(V −V )
)

λP?
S (V ) − (ρ − r )(V −V )

− r

=
(r + λ)(ρ − r )(V −V )

λP?
S (V ) − (ρ − r )(V −V )

≡ δ .

From Proposition 6, a su�cient condition for a saving equilibrium, given that saving is e�cient, is that δ
is greater than δ . Note that δ is strictly positive and independent of C .

For the borrowing equilibrium, we need to show that the condition in equation (22) is satis�ed as C
becomes arbitrarily large. Speci�cally, �x any δ = δ > δ . De�ne

A(b) ≡ ρVB(b) − (y − [r + δ (1 − qB(b))]b),

where A implicitly depends on C and δ . Note by condition (22) in Proposition 3 that if A(b) > 0 on
[0,bB] ⊇ [0,bB], then a borrowing equilibrium exists.

To establish the properties of A(b) as C →∞, �rst note that bB is independent of C . In addition,

lim
C→∞

VB(b) = V + q(bB − b),

where we use the fact that qB(b) → q for b ∈ [0,bB] asC →∞. As the point-wise limit is continuous in b,
and by Lemma B.2VB(b) is monotonic givenC , the convergence is uniform on the compact set [0,bB] (see
�eorem A of Buchanan and Hildebrandt (1908)).

Similarly, for b ∈ [0,bB],

lim
C→∞
{y − [r + δ (1 − qB(b))]b} = y − [r + δ (1 − q)]b = y − (r + λ)qb .

Again, the convergence is uniform by the same logic.
Hence, A(b) converges uniformly on [0,bB] to

A(b) ≡ lim
C→∞

A(b) = ρV + ρq(bB − b) − (y − (r + λ)qb).

We now establish that A(b) > 0 for b ∈ [0,bB]. �e linearity of A(b) in b implies that if the inequality
holds for b = 0 and b = bB , it is satis�ed for all intermediate points. For b = 0, we have

A(0) = ρV + ρqbB − y

=
(ρ − r − λ)(y − ρV ) + ρλ(V −V )

r + λ

=
(ρ − r − λ)(y − ρV ) + (ρ − r )ρ(V −V )

r + λ
> 0,
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where the second line uses the de�nition of qbB and the �nal inequality uses the condition in the propo-
sition. Similarly,

A(bB) = ρV − (y − (r + λ)qb)
= λ(V −V ) > 0.

Hence, minb ∈[0,bB ]A(b) = min{A(0),A(b)} > 0.
As A → A uniformly on [0,bB], for every ϵ > 0, there exists an M such that for all C > M , we have

A(b) > A(b) − ϵ for b ∈ [0,bB]. Se�ing ϵ < minb ∈[0,bB ]A(b), we have A(b) > 0 for all b ∈ [0,bB] and
C > M . By Proposition 3, this is su�cient to establish the existence of a borrowing equilibrium for δ = δ
when C > M . By part (ii) of Proposition 4, we have a borrowing equilibrium for all δ ∈ [0,δ ].

Combining results, there exists a non-empty interval ∆ ≡ [δ ,δ ] and M such that for all C > M and
δ ∈ ∆, both saving and borrowing equilibria coexist. �

C.11 Proof of Proposition 8
Proof. We �rst sketch out the borrowing equilibrium under the assumed policy. Let {V P

B ,q
P
B} denote the

equilibrium policy and price functions. �e conjectured policy is for the government to borrow to bB ,
which is the endogenous limit in the borrowing equilibrium absent the policy. From (27), it is optimal
for the bondholders to sell their bonds at price q∗ > q as soon as b = bPB , where the la�er is de�ned by
V P (bPB) = V . �at is, bondholders sell their bonds to the third party as soon as debt enters the Crisis Zone.
We have

V P
B (bB) =

y − [r + δ (1 − q∗)]bB + λV
ρ + λ

= V +
δ (q∗ − q)bB

ρ + λ
.

�e last term re�ects that the government rolls over debt at q∗ rather than q once it reaches the borrowing
limit. �e expression assumes that the government defaults upon the arrival of V . To see that this is
optimal, note that the alternative of never defaulting yields the value

y − [r + δ (1 − q∗)]bB
ρ

≤ y − rbB
ρ

<
y − rbS

ρ
= V .

Facing qPB(b) = q∗ in the Crisis Zone, the government’s value can be obtained from the HJB, and it is
straightforward to verify that the �rst-order condition for c = C holds on this domain. As q∗ > q, bPB > bB ,
where the la�er is the benchmark borrowing equilibrium’s threshold for the Safe Zone. Note as well that
q∗ > q implies that the third party takes a loss in expectation in the Crisis Zone.

For b ∈ [0,bP ], bondholders purchase debt at price qPB(b) and collect r plus maturing principal until
b = bPB , at which point they sell at q∗. �e equilibrium is recovered by solving the system of di�erential
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equations:

ρV P
B (b) = C +V P ′

B (b) Ûb
(r + δ )qPB(b) = r + δ + qP ′B (b) Ûb

Ûb = C + (r + δ )b − y
qPB(b)

− δb,

with the boundary conditions V P
B (bPB) = V and qPB(bPB) = q∗. Note that these equations are identical to

those in the benchmark borrowing equilibrium except that the boundary condition bPB > bB and q∗ > q.
As is the case in the benchmark equilibrium, a necessary and su�cient condition forV P

B to be a solution
to the government’s problem when facing qPB is

V P
B (b) ≥

y − [r + δ (1 − qPB(b))]b
ρ

,

for all b ∈ [0,bB]. Following the same approach as in the proof of Proposition 7, we show that this
inequality holds as C →∞ uniformly over the full debt domain [0,bB].

As C →∞, we have for b ∈ [0,bB],

lim
C→∞

V P
B (b) = V P

B (bB) + q∗(bB − b)

lim
C→∞

y − [r + δ (1 − qPB(b))]b
ρ

=
y − [r + δ (1 − q∗)]b

ρ
.

Recall from the proof of Proposition 7, that

A(b) = V + q(bB − b) −
y − [r + δ (1 − q)]b

ρ
≥ 0

under the conditions of the proposition. Note that this implies

lim
C→∞

(
V P
B (b) −

y − [r + δ (1 − qPB(b))]b
ρ

)
= A(b) +

δ (q∗ − q)bB
ρ + λ

+ (q∗ − q)(bB − b) −
δ (q∗ − q)

ρ
b .

�is expression is linear in b, and hence it is su�cient to verify the inequality at the endpoints b = 0 and
b = bB . �e fact that A(0) > 0 and q∗ > q implies that the limit is strictly positive at b = 0. For b = bB , we
have

A(bB) −
δ (q∗ − q)bB

ρ + λ
−
δ (q∗ − q)

ρ
bB

=
y − [r + δ (1 − q)]bB + λV

ρ + λ
−
y − [r + δ (1 − q)]bB

ρ
+
δ (q∗ − q)bB

ρ + λ
−
δ (q∗ − q)

ρ
bB

=
−λ

ρ(ρ + λ)
(
y − [r + δ (1 − q∗)]bB − ρV

)
=

−λ
ρ(ρ + λ)

(
r (bS − bB) − δ (1 − q∗)bB

)
> 0,

where the last inequality uses bB > bS . �is completes the proof of part (i).
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For part (ii), the saving equilibrium requires V P
B (bS ) ≤ V . As C →∞,

V P
B (bS ) = V P

B (bB) + q∗(bB − bS )

=
y − rbB + λV

ρ + λ
+ bB − bS − (1 − q∗)(bB − bS ) −

δ (1 − q∗)bB
ρ + λ

= V +
(ρ + λ − r )(bB − bS )

ρ + λ
− (1 − q∗)

(
bB − bS +

δbB
ρ + λ

)
.

As the second term is strictly positive, there exists a q̃ < 1 such that this expression exceeds V for q∗ > q̃,
hence violating the necessary condition for a saving equilibrium.

�

C.12 Proof of Proposition 9
Proof. For part (i), note that in the saving equilibrium undistorted by policy, qS (b) = 1 for b ≤ bS . Hence,
imposing a price �oor restricted to the Safe Zone does not alter the saving equilibrium, which exists by
Proposition 7. Hence, the price �oor is irrelevant under the saving equilibrium.

Using the notation introduced in the proof of Proposition 8, a necessary condition for the borrowing
equilibrium under the policy is for b ∈ [0,bPB]

V P
B (b) ≥

y − [r + δ (1 − qPB(b))]b
ρ

≥ y − [r + δ (1 − q∗)]b
ρ

.

Recall that in the construction of the borrowing equilibrium, bB is de�ned by solving the HJB assuming
qB(b) = q. Hence, V P

B (b) = VB(b) for b > bS , as the policy is restricted to b ∈ [0,bS ]. As VB(bS ) < V by the
inequality of Proposition 7, we have bPB < bS . For b = bPB , we have

V P
B (bPB) = V =

y − rbS
ρ

<
y − rbPB

ρ
,

where the �rst two equalities use the de�nitions of bPB and bS , respectively. Hence, there exists a q̂ < 1
such that

V P
B (bPB) <

y − [r + δ (1 − q∗)]bPB
ρ

,

for q∗ > q̂, violating the necessary condition for a borrowing equilibrium. �is proves part (ii).
�

Appendix D �e Hybrid Equilibrium
In this appendix, we present a third type of competitive equilibrium, which we label the “hybrid” equilib-
rium because it combines features of both borrowing and saving equilibria. In particular, the government
never saves, as in the borrowing equilibrium, but part of the Safe Zone is absorbing, as in the saving equi-
librium. �e main purpose of introducing the hybrid equilibrium is to show existence of a competitive
equilibrium; in particular, we prove that if neither the borrowing nor the saving equilibrium exists, then
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a hybrid equilibrium exists. �e equilibrium objects are depicted in Figure D.1 using the same parameters
as in Figures 1 and 3.

More formally, given VB in (32), de�ne the threshold

VB(bH ) =
y − rbH

ρ
, (46)

if such a threshold exists on the domain [0,bB] ∩ [0,bS ]. �e equilibrium conjecture is that for b ≤ bH ,
the government borrows up to bH and then remains there inde�nitely. �is behavior is similar to the
Safe Zone policy in the saving equilibrium, but the threshold bH may be strictly below bS . At bH , given
that VB(bH ) = (y − rbH )/ρ, the government is indi�erent to remaining at bH at risk-free prices versus
borrowing to the debt limit at the borrowing equilibrium price schedule. �e conjecture is that for b > bH ,
the government borrows. In a hybrid equilibrium, therefore, bH is a stationary point that is stable from
the le� but not the right.

For b < bH , we solve the government’s HJB assuming c = C to obtain a candidate VH on this domain,
using the boundary condition ρVH (bH )y − rbH . For b > bH , the hybrid equilibrium coincides with the
borrowing equilibrium. Se�ing bH ≡ bB , the hybrid equilibrium value function is therefore

VH (b) =

C−(C+rbH−y)

(
C+rb−y
C+rbH −y

) ρ
r

ρ for b ≤ bH

VB(b) for b ∈ (bH ,bH ].
(47)

�e associated price schedule is

qH (b) =
{

1 for b ≤ bH

qB(b) for b ∈ (bH ,bH ].
(48)

Finally, the policy function for consumption is

CH (b) =

C for b < bH

y − rbH for b = bH
CB for b ∈ (bH ,bH ].

(49)

We state the following:

Proposition D.3. Suppose neither the borrowing equilibrium nor the saving equilibrium exists. Speci�cally,
suppose that bS < bB and that there exists a b̂ ∈ [0,bB] such that ρVB(b̂) < y − [r + δ (1 − qB(b̂))]b̂. �en a
hybrid equilibrium exists.

Proof. �e conjectured price schedule qH is consistent with the lenders’ break-even condition given the
assumed government policy. �us, to establish the conditions of an equilibrium, it is su�cient to prove
that VH is a solution to the government’s HJB.

(i) For b ∈ [bS ,bB]: By premise, bB > bS . �is implies that ρVB(bS ) > V = y − rbS ≥ y − [r + δ (1 −
qB(bS ))]bS . For b > bS , we have ρV > y − rb. As VB ≥ V for b ≤ bB , we have VB(b) ≥ y − rb for b ∈
[bS ,bB]. From the proof of Proposition 3, this implies that VH (b) = VB(b) satis�es the government’s
HJB on this domain. �e proof of Proposition 3 extends this to b ∈ [bB ,bB] as well.

(ii) For b ≤ bS : Note that the premise implies there exists a b̂ ∈ [0,bB] such that ρVB(b̂) < y − [r + δ (1 −
qB(b̂))]b̂ ≤ y − rb̂. �e above established that ρVB(b) > y − rb for b ∈ [bS ,bB]. Hence, b̂ < bS . By
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continuity, there exists a bH ∈ (b̂,bS ) such that ρVB(bH ) = y − rbH . Note as well that this implies
V ′B(bH ) = limb↓bH V ′H (b) ≥ −r/ρ. From the expression forVH , we have limb↑bH VH (bH ) = −1 ≤ −r/ρ.
Hence, VH is either di�erentiable or has a convex kink at bH , satisfying the conditions for a solution
to the government’s HJB at bH . For b < bH , V ′H (b) ≥ −1, implying that the HJB is satis�ed on this
domain as well. Finally, VH (b) > V for b ≤ bH , rationalizing the government’s non-default on this
domain.

�

�is establishes that at least one of the three types of equilibria always exists. We note that the hybrid
may coexist with the other equilibria as well. In fact, as C → ∞, the condition for multiplicity presented
in Proposition 7 also implies the existence of a hybrid equilibrium.

Figure D.1: Hybrid Equilibrium
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Appendix E �e �antitative Model
In this appendix, we provide additional details on the quantitative exercise discussed in Section 7. As noted,
we follow Cha�erjee and Eyigungor (2012) closely, and therefore provide only the main components.

Time is discrete and the model is calibrated to quarterly frequency.
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Output process. A small open economy receives an endowment that is comprised of a persistent
process yt plus an iid shock mt . As in CE12, m is drawn from a truncated Normal with support [−m,m],
mean zero, and variance σ 2

m . We follow CE12 and set m = 0.006 and σm = 0.003. For the persistent
component, begin with the AR(1) process:

lnyt = (1 − ρ)µ + ρ lnyt−1 + εt ,

where ε has a mean-zero Normal distribution with variance σ 2
ε . We approximate this process with a 200-

element grid spanning 6 standard deviations following the standard methodology of Tauchen.
We augment this process by adding a “disaster state” ydis . �e transition probabilities to and from the

disaster state follow: Pr[yt+1 = ydis |yt , ydis ] = πdis and Pr[yt+1 , ydis |yt = ydis ] = πr ec . Conditional
on transitioning from disaster to non-disaster regimes, the non-disaster endowment is drawn from the
non-disaster grid assuming probabilities computed from a discretized Normal distribution with mean (1−
ρ)µ + ρydis and variance σ 2

ε . While in the disaster state, we setm = 0.
Following Barro and Ursa (2008), we set πdis to be 0.97%, and ydis to be 0.20 log points below the

conditional mean of the normal AR(1) process. Barro and Ursa (2008) estimates the average length of a
disaster to be 3.5 years, and hence we set πr ec = 7.14% in our quarterly model. µ is set to normalize the
unconditional mean of ln(yt ) to 0. We then select ρ and σε to ensure that the combined AR(1)-plus-disaster-
shock endowment process generates an autocorrelation coe�cient of 0.949 and an innovation variance of
0.027, which are the targets used by CE12 to replicate their Argentina GDP sample. �e resulting values
are ρ = 0.931 and σε = 0.0178. �e unconditional mean endowment is 1.03.

Default cost. �e persistent endowment process for a government in default status, yd , is given by:

ydt =

{
yt −max

{
0,d0yt + d1y

2
t
}

if yt , ydis
(1 − ddis )ydis otherwise.

�e �rst-line on the right-hand side concerns non-disaster states and is the functional form used by CE12;
we follow them by se�ing d0 = −0.188 and d1 = 0.246. �e second line concerns the disaster state, and, as
discussed in Section 7, ddis = 0.045. Following CE12 we assume the government exits default status with
constant hazard rate 0.0385. Following CE12, while in default, if yt , ydis , thenmt is drawn from its usual
process – the one exception being in the �rst period of default, in which casemt = −m for computational
reasons.

Government objective. �e government has a discount factor β = 0.95402 and utilityu(c) = c1−γ /(1−
γ ) with γ = 2. Again, we follow CE12 for the values of β and γ .

Bonds, coupons and maturity. Bonds mature with probability δ and pay a coupon κ every period
prior to maturity. In the benchmark, we follow CE12 and set δ = 1/20 and κ = 0.03. Lenders are risk-
neutral and are willing to borrow and lend at an expected net interest rate of r = 0.01. �e risk-free price
is therefore:

q? =
δ + (1 − δ )κ

r + δ
= 1.308.

Whenever we recompute the model with di�erent maturity, we adjust κ to keep q? at this value.
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Computation Algorithm. To compute the model, we let debt choices be on a discrete grid contained
on the interval [0, 1.89].34

�e computational algorithm for a saving equilibrium is motivated by our theoretical analysis. It begins
by conjecturing that there exists a Safe Zone, where the price is risk free; that is, a bS such that the
equilibrium price q(y,b) = q? for all b ≤ bS . For a candidate bS , we compute the value of repayment for
b ≤ bS imposing that debt remains below bS and the price is the risk-free price.

�is restricted government problem is solved using value function iteration. Let VS (b,y) denote the
associated value function. In a saving equilibrium, bS is the debt level that equates the value of repayment
to the value of default in the disaster state. Hence, let V D (ydis ) ≡ VS (bS ,ydis ), and associated with this
value of default is a punishment ddis in terms of lost endowment.

Given such value of bS , we solve the government’s problem on the rest of the domain b ∈ (bS ,b],
this time without restricting the choice set for b, and taking as given the previously obtained values and
(risk-free) prices for b ≤ bS . We follow the standard procedure of iterating on both values and prices
until convergence. �e �nal step is to check whether, given the equilibrium price schedule q computed for
the entire domain, the government prefers to remain in the Safe Zone. �is is done by recomputing the
government’s problem given the conjectured equilibrium q and verifying the value and price functions are
consistent with optimization and the lenders’ break-even constraint. �is completes the construction for
a candidate bS .

To compute the borrowing equilibrium, we follow the same algorithm of CE12.35

Results. Figure E.1 and E.2 show the debt policy and price functions for the computed equilibria. As
can be seen in Figure E.1, the Safe Zone in the saving equilibrium is larger than in the borrowing. �e
policy functions in the saving equilibrium are such that if we start in the Safe Zone, debt never exits the
Safe Zone. �e policy functions in the borrowing equilibrium are such that if we start in the Safe Zone,
debt will eventually leave it. Hence, just as in the theoretical analysis and shown in Figure E.2, the Safe
Zone in the saving equilibrium features a risk-free price, while the Safe Zone in the borrowing equilibrium
features a price strictly below the risk-free price, re�ecting the future risk of default.

Table E.1 reports the key business cycle moments for our two equilibria. To obtain these, we simu-
late the model 1, 000 times for 20, 000 periods. We discard the �rst 1, 000 periods of each sample. If the
government defaults in period t and regains access in period t + k , we discard simulated observations for
[t , t + k + 20]. �is is the same procedure used by CE12.

Repeating this numerical exercise for di�erent values of the maturity parameter, we con�rm that the
two equilibria exist for maturity values between 9 and 33 quarters (that is, for all δ ∈ {1/33, 1/32, .., 1/9}).

�e moments from the saving equilibrium re�ect that the Safe Zone is absorbing. Recall that the Safe
Zone has an upper threshold of 1.16, which is the same as the unconditional mean. �is re�ects the relative
impatience of the government with respect to the risk free interest rate.

�e moments from the borrowing equilibrium resemble those typically seen in the literature, such as
those reported in CE12. As noted in the text, the presence of a disaster state and the associated punishment
for default in that state support a higher mean debt-to-income ratio than CE12. One notable di�erence is
that spreads are positively correlated with the endowment, while in CE12 they are negatively correlated
(as they are in the data). �is re�ects that in our environment, this correlation is driven by the di�erence
in spreads between the normal endowment regime and the disaster state.36

34For the computation, we use 946 points for this grid, including the boundaries.
35Speci�cally, we initialize prices at zero and use a very high smoothing (> 0.95) parameter when updating.
36In the disaster state, the government defaults if the face value of debt is greater than 0.80, when the mean face

value in the simulation is 0.96. �us the disaster-state spread is either close to zero (when debt is low) or unde�ned
(when debt is high), generating a positive correlation between the spread and the endowment overall. When we
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Figure E.1: Simulation Results: Policy Functions
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(b) Borrowing Equilibrium

�e �gure depicts the debt policy functions for the computed saving and borrowing equilibrium. Each panel shows
the equilibrium borrowing policy functions as a function of the current debt level, b, for two values of the endowment
state: the mean of the AR1 process (solid), µ, and the disaster state, ydis (dashed). �e shaded area represents the
Safe Zone – the region of debt such that default does not occur this period for any realization of the endowment.
Each of the policy functions in both panels are averaged across potential realizations of the m shock conditional on
no-default. �e vertical portion of each policy function represents the point a�er which default is optimal in that
state for all realizations of them shock.

Figure E.2: Simulation Results: Price Functions
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�e �gure depicts the price functions for the computed saving and borrowing equilibrium. Each panel shows the
price functions as a function of the next period debt level, b ′, for two values of the endowment state: the mean of the
AR1 process (solid), µ, and the disaster state, ydis (dashed). �e shaded area represents the Safe Zone – the region of
debt such that default does not occur next period for any realization of the endowment.

condition on non-disaster states, the correlation between spreads and the endowment changes sign and is −0.2,

60



Table E.1: Business Cycle Moments for �antitative Model

Moment Saving Equilibrium Borrowing Equilibrium
E(r − r f ) 0 0.070
σ (r − r f ) 0 0.010
σ (log(c))/σ (log(y)) 1.01 1.07
σ (nx/y) 0.001 0.014
corr(nx/y, log(y)) -0.99 -0.15
corr(r − r f , log(y)) NA 0.23
corr(r − r f ,nx/y) NA 0.69
E(Face Value Debt/GDP) 0.88 0.96
E(Market Value Debt/GDP) 1.16 0.99
Default Frequency (�arterly) 0 0.016

Note: �e values of y and c refer to the levels of output (inclusive ofm) and consumption. Net exports (nx ) is de�ned
as y−c . All relevant moments use the annualized spreads, denoted by r −r f . �e operators E, σ and corr refer to the
mean, standard deviation, and correlation computed following the methodology of Cha�erjee and Eyigungor (2012).

closer to values discussed in CE12.
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