
Online Appendix

Appendix A Proofs

A.1 Derivation of equation (4)

The government’s problem is to choose B0 2 (�1, B] to maximize the expected end-of-period
value, where expectation is over the realization of ✏:

V1(s) = max
B0

(
F (��1�(s,B0))V R(s,B0) +

Z 1

��1�(s,B0)

⇥
V D(s,B0) + �✏

⇤
dF (✏)

)

= max
B0

(
V D(s,B0) + F (��1�(s,B0))�(s,B0) + �

Z 1

��1�(s,B0)
✏dF (✏)

)
.

Using integration by parts, we can re-write this as (4).

A.2 Proof of Proposition 1

Proof. Let us define H : [0, 1] ! R by

H(✏) ⌘u (Y �B + F (✏)qEG(B
0)B0)� u (Y + F (✏)qEG(B

0)B0)� �✏ (17)

+ �E[V (s0)|B0]� �V D.

Equation (13) is satisfied at ✏̃ if and only if H(✏̃) = 0. Note that ✏ only enters H via the functions u and
F , both of which are continuous. Hence, H is continuous. Premise (i) states that H(1) � 0. Premise (ii)
states that H(0)  0. By continuity there is at least one ✏ 2 [0, 1] such that H(✏) = 0. If H(1) > 0 and
H(0) < 0, then the ✏ that solves H(✏) = 0 must be strictly interior.

A.3 Proof of Proposition 2
Proof. For a given (Y,B,B0), let qEG denote qEG(B0). If qEG = 0, the only equilibrium price is zero. If
B0  0, the only equilibrium price is qEG = R�1, as assets always trade at the risk-free price. Thus the
proposition is trivially true for B0  0 and qEG = 0. Henceforward, assume qEGB0 > 0.
Define the function g : [0, 1] ! R by:

g(✏) ⌘ u (Y �B + F (✏)qEGB
0)� u (Y + F (✏)qEGB

0) + �E[V (s0)|B0]� �V D. (18)

Then H : [0, 1] ! R defined in equation (17) in the proof of Proposition 1 can be written as:

H(✏) ⌘g(✏)� �✏. (19)

Zero is an equilibrium if and only if H(0)  0; qEG is an equilibrium price if and only if H(1) � 0; and ✏̃
solve equation (13) if and only if H(✏̃) = 0. We consider the cases of B < 0, B = 0, and B > 0 in turn:
If B < 0: If B < 0, then g(✏) > 0 for all ✏ 2 [0, 1]. This uses the fact that �E[V (s0)|B0]��V D � 0. This
inequality follows from the fact that V (s) � maxB0B E[V D(s,B0)+�✏] � V D. As g is continuous on the
compact domain [0, 1], it achieves a minimum g ⌘ min✏2[0,1] g(✏) > 0. If � < g, then H(✏) = g(✏)� �✏ �
g � �✏ > �(1 � ✏) � 0. Hence, H(✏) > 0 for all ✏, and qEG(B0) is the only possible equilibrium price.
Thus, the proposition holds for B < 0 by setting K = g > 0.

If B = 0: If B = 0, then g(✏) = �E[V (s0)|B0] � �V D, which is independent of ✏. If g = 0, then
H(✏) = ��✏, and the only possible equilibrium price is 0 for any � > 0. If g > 0, then, letting K = g > 0,
for � < K, we have H(✏) = K � �✏ > 0. In this case, H(✏) � H(1) > 0 and the only possible price is
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qEG. Thus, the proposition holds for B = 0.
If B > 0: If B > 0, then concavity of u implies that g(✏) is strictly increasing in ✏. In particular,

g0(✏) = [u0 (Y �B + F (✏)qEGB
0)� u0 (Y + F (✏)qEGB

0)]F 0(✏)qEGB
0 > 0,

where the last inequality uses the fact that F 0(✏) � ↵ > 0 and qEGB0 > 0. Let

K ⌘ min
✏2[0,1]

[u0 (Y �B + F (✏)qEGB
0)� u0 (Y + F (✏)qEGB

0)] fqEGB
0 > 0,

where the minimum exists as u0 is a continuous function and is strictly positive given that g0(✏) > 0 for
all ✏ 2 [0, 1]. Then H 0(✏) = g0(✏) � � � K � �. If � < K, then H 0(✏) > 0. Hence there is at most
one ✏̃ such that H(✏̃) = 0. If H(0)  0  H(1), then {0, qEG, F (✏̃)qEG} are all equilibrium prices. If
H(1) > H(0) > 0, then only qEG is an equilibrium price. If H(0) < H(1) < 0, then only zero is an
equilibrium price. Thus, the proposition holds for B > 0.

A.4 Proof of Proposition 3

Proof. Using H defined by (17) in the proof of Proposition 1, we have q̃ = 0 satisfies (8) if H(0)  0;
q̃ = qEG(B0) if H(1) � 0; and q̃ 2 (0, qEG(B0)) if H(✏̃) = 0 for some ✏̃ 2 (0, 1). Define

h(x) ⌘ u(Y �B + x)� u(Y + x). (20)

We have

H 0(✏) = h0 (F (✏)qEG(B
0)B0)F 0(✏)qEG(B

0)B0 � �. (21)

By definition of h,

h0(x) = u0(Y �B + x)� u0(Y + x)

h00(x) = u00(Y �B + x)� u00(Y + x).

As B > 0 and u strictly concave, we have h0(x) > 0 for x � 0. If u00 is strictly increasing, then h00(x) < 0.
Hence, as ✏ increases, h0 (F (✏)qEG(B0)B0) strictly decreases and F 0(✏) weakly decreases. As both are
positive, their product decreases and H 0 is strictly decreasing. This establishes that there are at most
two roots to H; that is, there are at most two interior prices that satisfy (13). If H(0)  0, then q̃ = 0
satisfies (8), and there are at most three possible equilibrium prices, two of which being interior. If
H(0) > 0, then q̃ = 0 is not an equilibrium. As H(0) > 0 and H 0 strictly decreasing, there is at most one
interior solution ✏̃ to (13), with H 0(✏̃) < 0. If there is such a ✏̃ < 1, then H(1) < 0 and q̃ = F (✏̃)qEG(B0) is
the only equilibrium price. Otherwise, H(✏) � 0 for all ✏ 2 [0, 1], and q̃ = qEG(B0) is the only equilibrium
price.

A.5 Proof of Proposition 4

Proof. We first establish that E[V (s0)|B0] � V D+�E✏ for all B0. To see this, it is always feasible to issue
zero new debt and default with probability one on maturing debt:

V (s) � u(Y ) + �E✏+ �V D

= �E✏+ u(Y )� Eu(Y 0) + V D,

where the second line uses the fact that V D ⌘ Eu(Y 0)/(1��). Taking expectation over s0 for any B0  B,
we have

E[V (s0)|B0] � V D + �E✏. (22)
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From the definitions of V R
CK and V D

CK , we can re-write BCK as:

BCK(Y,B) ⌘
�
B0 2 [0, B] | u(Y �B)� u(Y ) + �E [V (s0)|B0]� �V D  0

 
. (23)

Equation (22) implies that if B0 2 BCK(Y,B), then

0 � u(Y �B)� u(Y ) + �E [V (s0)|B0]� �V D

� u(Y �B)� u(Y ) + ��E✏.

That is, (14) is a necessary condition for BCK 6= ;. To show that (14) is also a su�cient condition, suppose
(14) satisfied. For B0 larger than the natural borrowing limit (which we have assumed is strictly less than
B), repayment is infeasible for any endowment realization and default occurs with probability one. Hence,

there exists a B̃ 2 (0, B) such that E
h
V (s0)|B0 � B̃

i
= �E✏ + V D. Therefore, [B̃, B] ⇢ BCK(Y,B). As

[B̃, B] 6= ; when (14) holds, BCK is not empty.

A.6 Proof of Proposition 5

Proof. If q(s,B0
i) is interior for i = 1, 2, there exist respective ✏̃i that satisfy (13). As q(s,B0

i)/qEG(B0
i) =

F (✏̃i), and F is strictly increasing on its support, we have ✏̃1  ✏̃2. By (13), we also have:

V R(s,B0
i) = V D(s,B0

i) + �✏̃i,

for i = 1, 2. Using this, the expected payo↵ from B0
i at the time of auction can be written:

Emax
�
V R(s,B0

i), V
D(s,B0

i) + �✏̃
 

= Emax
�
V D(s,B0

i) + �✏̃i, V
D(s,B0

i) + �✏
 

= V D(s,B0
i) + �Emax {✏̃i, ✏} .

As q(s,B0
1)B

0
1  q(s,B0

2)B
0
2, we have V

D(s,B0
1)  V D(s,B0

2). This, plus the fact that ✏̃1  ✏̃2 implies that
B0

2 weakly dominates B0
1 as a debt choice. If either q(s,B0

1)B
0
1 < q(s,B0

2)B
0
2 or ✏̃1 < ✏̃2, the preference

for B0
2 is strict.

A.7 Proof of Proposition 6

Proof. Fix s and B0 < (1� �)B and let qEG denote qEG(s,B0). For q̃ 2 [0, qEG], define F̂ (q̃) by:

F̂ (q̃) ⌘

F

✓
1

�

⇥
u(Y � (r⇤ + �)B + q̃ ⇥ [B0 � (1� �)B])� u(Y + q̃ ⇥ [B0 � (1� �)B]) + �E [V (s0)|s,B0]� �EV D(s0)

⇤◆
.

A q̃ 2 [0, qEG] is an equilibrium price if and only if q̃/qEG = F̂ (q̃). Note that F̂ maps [0, qEG] into [0, 1],
is weakly decreasing (as B0 < (1 � �)B), and continuous. Hence, there exists one and only one q̃ that
satisfies the equilibrium condition.

A.8 Proof of Proposition 7
Proof. Since q(s,B0

i) are interior equilibrium prices for i = 1, 2, there exist thresholds ✏̃i 2 [0, 1] such
that:

V R(s,B0
i) = V D(s,B0

i) + �✏̃i, for i = 1, 2.
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Conditional on auctioning B0
i, the expected payo↵ is:

Z 1

0
max

�
V R(s,B0

i), V
D(s,B0

i) + �✏
 
dF (✏)

=

Z 1

0
max

�
V D(s,B0

i) + �✏̃i, V
D(s,B0

i) + �✏
 
dF (✏)

= V D(s,B0
i) + �

Z 1

0
max {✏̃i, ✏} dF (✏).

From condition (i) in the proposition statement, we have ✏̃1 � ✏̃2, with strict inequality if (i) is strict.
As the default value is increasing in net auction revenue, from premise (ii) in the proposition, we have
V D(s,B0

1) � V D(s,B0
2), with strict inequality if (ii) is strict. Thus, the expected value from auctioning

B0
1 is weakly greater than B0

2, and strictly if either (i) or (ii) is strict.

Proof. Since q(s,B0
i) are interior equilibrium prices for i = 1, 2, there exist thresholds ✏̃i 2 [0, 1] such

that:
V R(s,B0

i) = V D(s,B0
i) + �✏̃i, for i = 1, 2.

Conditional on auctioning B0
i, the expected payo↵ is:

Z 1

0
max

�
V R(s,B0

i), V
D(s,B0

i) + �✏
 
dF (✏)

=

Z 1

0
max

�
V D(s,B0

i) + �✏̃i, V
D(s,B0

i) + �✏
 
dF (✏)

= V D(s,B0
i) + �

Z 1

0
max {✏̃i, ✏} dF (✏).

From condition (i) in the proposition statement, we have ✏̃1 � ✏̃2, with strict inequality if (i) is strict.
As the default value is increasing in net auction revenue, from premise (ii) in the proposition, we have
V D(s,B0

1) � V D(s,B0
2), with strict inequality if (ii) is strict. Thus, the expected value from auctioning

B0
1 is weakly greater than B0

2, and strictly if either (i) or (ii) is strict.

Appendix B Mixed Strategy Equilibria: � = 0

In this appendix, we formalize the notion that as � ! 0, the equilibrium converges to a mixed-
strategy equilibrium in which the government randomizes over default or repayment. That is,
suppose the government’s decision at settlement is to pick a probability of repayment: p 2 [0, 1].
When facing a price q̃, the government’s best response is:

p = 1 if u(Y �B + q̃B0) + �E[V (s0)|B0] > u(Y + q̃B0) + �V D;

p = 0 if u(Y �B + q̃B0) + �E[V (s0)|B0] < u(Y + q̃B0) + �V D; and (24)

p 2 [0, 1] if u(Y �B + q̃B0) + �E[V (s0)|B0] = u(Y + q̃B0) + �V D.

Similarly, the lenders’ best response to an anticipated p at settlement is to bid q̃ = p ⇥ qEG at
auction. A mixed-strategy equilibrium price is a pair (p, q̃) that satisfies q̃ = pqEG and equation
(24). Following the steps behind Proposition 1, it is straightforward to see that if (p = 1, q̃ = qEG)
satisfies the first inequality in (24), and (p = 0, q̃ = 0) satisfies the second, then there is also a
unique p 2 (0, 1) with an interior q̃ = pqEG 2 (0, qEG) that satisfies the third line of (24).

Reminiscent of Harsanyi (1973) purification, the mixed strategy price is the limit of the pure-
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strategy interior price as � ! 0:

Proposition A.1. Given (Y,B,B0) with B0 > 0, suppose V R
EG(Y,B,B0) > V D

EG(Y,B
0) and V R

CK(Y,B,B0) <
V D
CK(Y ). Let �n be a monotone decreasing sequence converging to zero. Then there exists an integer

N < 1 and a sequence ✏̃n satisfying (13) for each �n for n > N . Moreover, p = limn!1 F (✏̃n)
and q̃ = limn!1 F (✏̃n)qEG(B0) exist and satisfy (24).

Proof. First, note that B 6= 0. To see this, when B = 0, we have

V R
EG(Y, 0, B

0)� V D
EG(Y ) = �

�
EV (s0)� V D

�
= V R

CK(Y, 0, B0)� V D
CK(Y ),

which is inconsistent with the inequalities in the proposition’s premise. Hence, we take B0 6= 0 in what
follows. As (Y,B,B0) is fixed throughout, we drop these arguments from the notation below. The premise
implies V R

EG > V R
CK , and hence it must be the case that qEG > 0.

Define h : [0, 1] ! R by:

h(x) ⌘ u(Y �B + xqEGB
0)� u(Y + xqEGB

0).

h represents the net current period flow utility from repayment over default when the price is xqEG. By
strict concavity of u and qEGB0 > 0, we have h0(x) ? 0 when B ? 0. The inequalities in the premise
imply:

h(1) + �
�
EV (s0)� V D

�
> 0 > h(0) + �

�
EV (s0)� V D

�
.

By continuity of h, there exists a p 2 [0, 1] such that h(p) + �
�
EV (s0)� V D

�
= 0. At price q̃ = pqEG,

the government is indi↵erent to defaulting or repaying when � = 0. At price q̃ and if the government
randomizes by defaulting with probability 1�p, the lenders break even. Hence, (q̃, p) is a mixed strategy
equilibrium.
Let K > 0 be defined as in Proposition 2. Let �̄ ⌘ V R

EG � V D
EG, which is strictly positive by the

proposition’s premise. Let N be defined by:

N ⌘ inf{n � 0|�n < min {�̄,K}} .

As the sequence �n is monotonically decreasing, for n > N , we have

V R
EG � V D

EG � �n > V R
EG � V D

EG � �̄ = 0,

and hence qEG is supportable as an equilibrium price. As V R
CK < V D

CK , zero is also an equilibrium price.
For each n > N and associated �n, by Proposition 2, there exists a unique ✏n such that equation (13)
holds. Define pn ⌘ F (✏n). From (13) and the fact that ✏̃n  1, we have

0  h(pn)� h(p) = �n✏̃n  �n.

Hence, as �n ! 0, h(pn)� h(p) ! 0. To establish convergence in the arguments of h, define

 ⌘ min
x2[0,1]

|h0(x)|.

As h0 is continuous and h0 is either strictly positive or negative for all x 2 [0, 1] given B 6= 0,  > 0 is
well defined. Note that by definition

h(pn)� h(p) � |pn � p|.

Hence, h(pn)� h(p) ! 0 implies |pn � p| ! 0.
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Appendix C Further Numerical Experiments

Several additional numerical experiments to further examine the implications of our model are
reported here.

C.1 Italy Calibration

Using real GDP from 1960Q1-2020Q3,32 we estimate the same process for endowment as reported
for Mexico in the text. The estimated parameters are: µg = 0.002, ⇢g = 0.579, �g = 0.008, and
�z = 0.0097.

For 2011, tax revenue net of social security contributions was 474,863 million euros which was
29.0% of GDP.33 The replication data provided by Bocola and Dovis (2016) reports that 373,000
million euros of debt was scheduled to come due in the year following 2011Q4. Debt payments as
a ratio of tax revenues net of social security contributions thus totaled 78.5% and the face value of
total debt securities relative to tax revenue was 334% (or 97% of GDP). 2011Q4 represented a debt
burden relative to tax revenue that is the 93rd percentile of the Bocola-Dovis dataset. We therefore
target debt payments of 78.5% of resources at the 93rd percentile of the model’s ergodic distribution
of debt. For the long-term model, to match the associated face value given a 3% coupon, we set
� = 0.0286, or a maturity of roughly three years (35 quarters).

With regard to sovereign spreads, for the period 1999Q1-2020Q4 the spread between Italian
and German five-year bonds had a standard deviation of 1.05%.34

We targeted the standard deviation of the spread and the ratio of debt payments to resources
at the 93rd percentile, assuming � = 0.95. For the one-period debt model, this requires d = 0.14
and the probability of the concerned regime of 0.4% per quarter; for the long-term bond model, it
requires d = 0.665 and a probability of the concerned regime of 0.3% per quarter.

The model’s moments are reported in Table 2. Italy has a less volatile output process, a higher
level of the debt payment coming due, and a lower volatility of the spread than Mexico. When we
calibrate the base model for both the one-period and long-term bond cases, we are able to hit these
targets. When we only have ⇢ = O beliefs, the default rate and the spread volatility essentially fall
to zero with one-period bonds. In the long-term bond case with ⇢ = O beliefs, the temptation to
engage in debt dillution leads to almost as many defaults but substantially less volatility relative to
the base case. Once again, the Cole-Kehoe version with one period debt and ⇢ 2 {O,P} generates
a lot more default in the one-period bond case, but not much volatility, and essentially no defaults
and no spread volatility with long-term bonds. All of these results mirror those found for Mexico.

C.2 Partial Retention of Auction Revenue

Beyond allowing for long-term debt, another aspect of capturing sovereign debt crises is getting
investor returns in default right. In Cole-Kehoe, it is assumed that the government can keep
all of the proceeds of an auction, while Eaton-Gersovitz e↵ectively assume that they can keep
none. Viewed in terms of a quarterly period length, with weekly auctions, both assumptions seem
extreme. This leads us to also consider the intermediate case with long-term debt where the
government gets to keep 1/2 of the auction proceeds in the event of default, the rest being split

32Italian data are from from OECD.stat (https://stats.oecd.org).
33Social security contributions were 211,637 million euros leading to total tax revenue of 686,500 million

euros.
34The German and Italian data are 5-year yields from Deutsche Bundesbank and Banca D’Italia, respec-

tively, as reported in Haver Analytics G10 summary statistics database.
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Table 2: Simulated Moments for Italy

93%ile Default
DebtPmt/Rev Frequency StDev(r � r

⇤)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

One-Period Bonds
Base, ⇢ 2 {O,C} 79% 0.1% 1.1% 1.11
Optimistic, ⇢ 2 {O} 79% 0.0% 0.0% 1.11
Cole-Kehoe, ⇢ 2 {O,P} 74% 2.1% 0.1% 1.07

Long-Term Bonds
Base, ⇢ 2 {O,C} 79% 0.9% 1.1% 1.41
Optimistic, ⇢ 2 {O} 80% 0.8% 0.5% 1.44
Cole-Kehoe, ⇢ 2 {O,P} 53% 0.0% 0.0% 1.50

Table 3: Long-Term Model Moments with Partial Retention

97%ile Default
DebtPmt/Rev Frequency StDev(r � r

⇤)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

Base, ⇢ 2 {O,C} 66% 5.8% 2.3% 1.51
Optimistic, ⇢ = O 67% 5.3% 1.1% 1.54
Cole-Kehoe, ⇢ 2 {O,P} 37% 0.0% 0.0% 1.41

pro-rata among the government’s creditors (old and new) under the assumption that the auction
revenue is not repatriated until all outstanding claims are settled. The assumption that bondholders
receive payments (if any) in proportion to the face value of their claims reflects the pari passu and
acceleration clauses typically included in sovereign bond contracts.

When we calibrate the model to our two Mexican moments, with maturity set to be same as
in the long-term case and with the retention set to 1/2, we find that d = 0.455 and concerned
probability of 0.25% quarterly. The results are reported in Table 3 and, strikingly, closely mirror
the results (for the 100% retention case) reported in the bottom panel of Table 1.

C.3 Larger Interim Shocks

To examine the sensitivity of our results a larger volatility of the interim shock �, we scale the
shock by a factor of 100 and recalculated the results at the original calibration for Mexico. The
results are virtually unchanged relative to our baseline for Mexico.

C.4 Alternate Timing Assumption: Eaton-Gersovitz

In this section, we explore model predictions for the Eaton-Gersovitz timing, namely, the assump-
tion that new debt can be issued only if old debt debt is paid o↵. This assumption e↵ectively
reverses the timing of the default decision and the auction. Since the shock to the default payo↵
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Table 4: Base Model Moments with Larger Interim Shocks

97%ile Default
DebtPmt/Rev Frequency StDev(r � r

⇤)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

Short-Term 64% 0.4% 2.3% 1.16
Long-Term 66% 5.3% 2.2% 1.51

comes before the auction it is no longer an intraperiod shock, and given its small variance, it can
be safely removed for the purpose of this exercise.

Table 5: Base Model Moments Under EG Timing

97%ile Default
DebtPmt/Rev Frequency StDev(r � r

⇤)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

Short-Term 254% 0.3% 0.1% 1.78
Long-Term 77% 2.1% 0.3% 1.22

The results, displayed in Table 5, show that in both the one-period and long-term debt cases,
debt payments (and debt levels) rise substantially; in the one-period case, it rises by nearly an order
of magnitude. The expansion in debt speaks to the importance of the commitment to use auction
revenue for repayment of inherited debt implicit in the EG timing. But, aside from this, both
default frequency and spread volatility fall to very low levels in the one-period debt case. While
long-term debt case generates a higher frequency of default, the volatility of spreads still remains
quite low. These findings are consistent with what the literature finds if nonlinear default costs
are ignored. Also, as shown in Aguiar et al. (2016), even allowing for the possibility of nonlinear
default costs cannot deliver the observed spread volatility for Mexico.
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