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1. Introduction. We study solutions of the equation ϕ(n) = ϕ(n+ 1),
where ϕ denotes Euler’s function. Let S = {n ∈ N : ϕ(n) = ϕ(n + 1)} =
{1, 3, 15, . . . } and let S(x) denote the number of n ∈ S not exceeding x.
In 1936, Erdős [4] proved that S has asymptotic density zero. In 1987, Erdős
et al. [5, Theorem 2] proved that S(x) < x/e

3√log x for all sufficiently large x.
The cube root of log x was improved recently to the square root by Ya-
mada [11].

It is still not known if there are infinitely many solutions. However, it is
conjectured in [5] that S(x) > x1−ε for all ε > 0 and x > Cε.

From the upper bound results for S(x) it follows that the reciprocal sum
is finite. As with Brun’s constant, where one attempts to get good estimates
for the reciprocal sum of primes p with p+ 2 also prime, it is a challenge to
get good estimates for the reciprocal sum of members of S. It is shown in [1]
that the reciprocal sum is less than 441702 and conjectured that the value
is less than 2. We improve the upper bound.

Theorem 1.1. We have ∑
n∈S

1

n
< 7.8358.

The proof makes use of the exact computation of S up to 1013. Beyond
that point, an averaging argument is employed to greatly limit the possibil-
ities for the odd member of {n, n+ 1} for n ∈ S. Indeed, for n ∈ S we have
ϕ(n)/n ≈ ϕ(n+1)/(n+1), and the even member has this ratio at most 1/2.
The averaging argument shows that only a small density of odd numbers n
have ϕ(n)/n so small.
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To be sure, even if a set has a very small density, if that density is positive,
then the reciprocal sum will be infinite. So averaging arguments can take us
only so far. Several new techniques are used to deal with the large range,
n > e150. These include methods suggested by Patrick Letendre, and similar
to the methods employed by Yamada [11]. We use several techniques from [7]
on the distribution of numbers with no large prime factors. Most helpful is
a new paper of Bennett et al. [2] on numerically explicit estimates for the
distribution of primes in residue classes.

2. Notation and preliminary lemmas. We split the sum into three
intervals, with cutoffs at 1013 and X0 = e150. We let exp(x) and log x denote
the natural exponential and logarithmic functions. We let x denote a real
number, m and n positive integers, p, q, r prime numbers, P (n) the largest
prime factor of n, and π(x) the prime counting function.

We state several preliminary lemmas that will be used in the proof of
Theorem 1.1. We will use the bounds [9, (3.5), (3.6)] of Rosser and Schoenfeld
and [3, Cor. 5.2, Thm. 5.6] of Dusart for the prime counting function and
prime harmonic sum.

Lemma 2.1. For all x > 1, we have

π(x) <
1.25506x

log x
,

π(x) ≤ x

log x

(
1 +

1.2762

log x

)
,

π(x) ≤ x

log x

(
1 +

1

log x
+

2.53816

log2 x

)
.

For all x ≥ 17, we have π(x) > x/log x.

Lemma 2.2. For all x ≥ 2278383, we have∣∣∣∣∑
p≤x

1

p
− (log log x+B)

∣∣∣∣ ≤ 0.2

log3 x
,

where B = 0.2614972128 . . . denotes the Mertens constant.

Let π(x;m, a) = |{p ≤ x : p ≡ a (mod m)}|.
Lemma 2.3. For m < C < D, we have∑

C<p≤D
p≡a (m)

1

p
<

2

ϕ(m)

(
log log(D/m)− log log(C/m) +

1

log(D/m)

)
.

Lemma 2.3 follows directly from the Brun–Titchmarsh theorem by partial
summation; see for instance [7, Lem. 2.8]. A more elementary result that can
complement Lemma 2.3 is the following.
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Lemma 2.4. Suppose that m is a positive integer coprime to 6. Then∑
p≤398m
p≡1 (m)

1

p
<

2.0156

m
.

Proof. Since m is odd, the primes in the sum are the primes in the set
{2m+1, 4m+1, . . . , 396m+1}. If m ≡ 1 (mod 3) then the numbers 2jm+1
with j ≡ 1 (mod 3) are divisible by 3, and if m ≡ 2 (mod 3), the numbers
2jm+ 1 with j ≡ 2 (mod 3) are divisible by 3. Thus, the sum above is

≤ 1

m

∑
j≤198
j 6≡1 (3)

1

2j
or ≤ 1

m

∑
j≤198
j 6≡2 (3)

1

2j
.

The second sum here is larger than the first, and smaller than 2.0156.

Corollary 2.5. For r > 3 prime and x > 398r, we have∑
p≤x

p≡1 (r)

1

p
≤ 2

r − 1

(
log log(x/r)− 0.78169 +

1

log(x/r)

)
.

The corollary follows from Lemmas 2.3 and 2.4 since −log log 398 +
2.0156/2 < −0.78169. We will also use the following inequality.

Lemma 2.6. For a positive integer m ≤ 1200 and x > 50m2, we have∑
50m2<p≤x
p≡1 (m)

1

p

<
1

ϕ(m)

(
log log x− log log(50m2)− 1.5

log x
+

2.5

log2 x
+

1.5

log(50m2)

)
.

Proof. This follows from a partial summation argument and the following
new result (see [2, Cor. 1.6]): under the hypotheses of the lemma,

x

ϕ(m) log x
< π(x;m, 1) <

x

ϕ(m) log x

(
1 +

2.5

log x

)
.

We also use the following bound [7, Lemma 2.7].

Lemma 2.7. For all y > 1, we have∑
p>y

1

p2
<

1

y log y
.

Corollary 2.8. For all y ≥ 6241, we have∑
pa>y
a≥2

1

pa
<

2.4
√
y log y

.
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Proof. A computer check using the bound∑
pa>y
a≥2

1

pa
=
∑
p≥2

1

p(p− 1)
−
∑
pa≤y
a≥2

1

pa
< 0.773157−

∑
pa≤y
a≥2

1

pa

shows that the claim holds for 6241 ≤ y < 108. Assume y ≥ 108. We split
the sum into two cases, p > √y and p ≤ √y. We bound the first case as∑

p>
√
y

pa>y, a≥2

1

pa
=
∑
p>
√
y

∑
a≥2

1

pa
=
∑
p>
√
y

1

p(p− 1)
<

√
y

√
y − 1

∑
p>
√
y

1

p2

<
2

√
y log y

(
1 +

1
√
y − 1

)
,

using Lemma 2.7. We next address the second case. For p ≤ √y let ap be
the least integer such that pap > y. We have∑

p≤√y
pa>y, a≥3

1

pa
=
∑
p≤√y

1

pap
1

1− 1/p
.

We consider two cases, ap = 3 and ap > 3. For the first case, we have∑
p≤√y
p3>y

1

p3
1

1− 1/p
<

y1/3

y1/3 − 1

∑
p>y1/3

1

p3
.

By partial summation and Lemma 2.1,∑
p>y1/3

1

p3
= −π(y

1/3)

y
+

∞�

y1/3

3π(t)

t4
dt <

2.4356

y2/3 log y
<

0.1131
√
y log y

.

For the second case, we have∑
p≤y1/3

1

y

1

1− 1/p
<

27.5742

y
+

101

100y
(π(y1/3)− 25) <

2.3242

y
+

0.1699
√
y log y

.

Combining these bounds yields∑
pa>y
a≥2

1

pa
<

2.2878
√
y log y

for all y ≥ 108. This completes the proof of Corollary 2.8.

3. An averaging method. Let N(x) denote the number of odd n ≤ x
with ϕ(n)/n < 1/2.
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Proposition 3.1. We have N(x) < 0.017876x+670.515
√
x+5.4 for all

x > 0.

Proof. For a real number T ≥ 1, let gT denote the multiplicative function
supported on the squarefree numbers such that gT (p) = (p/(p − 1))T − 1.
Thus, ∑

d|n

gT (d) = (n/ϕ(n))T .

Noting that 323323 is the product of all primes from 7 to 19, we partition
the odd numbers n such that ϕ(n)/n < 1/2 into four classes:

(1) gcd(n, 6) = 1,
(2) gcd(n, 30) = 3,
(3) gcd(n, 30) = 15 and gcd(n, 323323) = 1,
(4) gcd(n, 30) = 15 and gcd(n, 323323) > 1.

Let Bi(x) denote the number of n ≤ x in each case (i).
For any T ≥ 1,

B1(x) ≤
1

2T

∑
n≤x

(n,6)=1

(
n

ϕ(n)

)T
=

1

2T

∑
n≤x

(n,6)=1

∑
d|n

gT (d).

Changing the order of summation, we obtain

B1(x) ≤
(
1

2

)T ∑
d≤x

(d,6)=1

gT (d)

(
x

3d
+

2

3

)
,

using the bound |{n ≤ t : gcd(n, 6) = 1}| ≤ t/3 + 2/3. Thus,

B1(x) ≤ x
(

1

3 · 2T
∑

(d,6)=1

gT (d)

d

)
+

2

3 · 2T
∑
d≤x

(d,6)=1

gT (d).

Let S1 and S2 denote the first and second terms. We have∑
(d,6)=1

gT (d)

d
=
∏
p≥5

(
1 +

gT (p)

p

)
= exp

(∑
p≥5

log

(
1 +

gT (p)

p

))
.

We choose T to be 69. Computing the sum for p < 109 and then majorizing
the tail using Lemmas 2.1 or 2.2, we get∑

p≥5
log

(
1 +

gT (p)

p

)
< 34.3844.

Thus, S1 < (4.84 · 10−7)x.
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We next turn to S2. By Rankin’s trick,∑
d≤x

(d,6)=1

gT (d) ≤
√
x
∑
d≤x

(d,6)=1

gT (d)√
d
≤
√
x
∏
p≥5

(
1 +

gT (p)√
p

)

=
√
x exp

(∑
p≥5

log

(
1 +

gT (p)√
p

))
.

Splitting the sum at 109 as before, we compute∑
p≥5

log

(
1 +

gT (p)√
p

)
< 49.1683,

so that S2 < 2.549
√
x. Thus B1(x) < (4.84 · 10−7)x+ 2.549

√
x.

We next bound B2(x). For a positive integer u, let

(3.1) fu(m) =
∏
p|m
p-u

p

p− 1

and let gT,u be the multiplicative function supported on the squarefree num-
bers coprime to u such that gT,u(p) = gT (p) for p - u. Then∑

d|m

gT,u(d) = fu(m)T .

Thus,

B2(x) ≤
1

2T

∑
n≤x

(n,30)=3

(
n

ϕ(n)

)T
=

(
3

4

)T ∑
m≤x/3

(m,10)=1

f3(m)T

and so, using the bound |{n ≤ t : gcd(n, 10) = 1}| ≤ 2t/5 + 4/5, we get

B2(x) ≤
(
3

4

)T ∑
m≤x/3

(m,10)=1

∑
d|m

gT,3(d) ≤
(
3

4

)T ∑
d≤x/3

(d,10)=1

gT,3(d)

(
2x

15d
+

4

5

)

<

(
2

15

(
3

4

)T ∑
(d,10)=1

gT,3(d)

d

)
x+

4

5

(
3

4

)T ∑
d≤x/3

(d,10)=1

gT,3(d).

Let S′1 and S′2 denote the left and right terms, respectively. Then∑
(d,10)=1

gT,3(d)

d
=
∏
p≥7

(
1 +

gT,3(p)

p

)
= exp

(∑
p≥7

log

(
1 +

gT,3(p)

p

))
.
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We choose T = 29, and as before we split the sum at 109, getting∑
p≥7

log

(
1 +

gT,3(p)

p

)
< 4.85969.

This gives S′1 < 0.004095x. By Rankin’s method, we have∑
d≤x/3

(d,10)=1

gT,3(d) ≤
√
x

3

∏
p≥7

(
1 +

gT,3(p)√
p

)

=

√
x

3
exp

(∑
p≥7

log

(
1 +

gT,3(p)√
p

))
.

Splitting the sum at 109 as above, we obtain S′2 < 6.765
√
x, so that B2(x) <

0.004095x+ 6.765
√
x.

We next turn to B3(x). Noting that the product of the primes to 19 is
9699690, we have

B3(x) <
1

2T

∑
n≤x

(n,9699690)=15

(
n

ϕ(n)

)T
=

(
15

16

)T ∑
n≤x/15

(n,646646)=1

f15(n)
T .

Note that
∑

d |n gT,15(d) = f15(n)
T and ϕ(646646) = 207360. One finds via

a computer search among numbers to 646646 that for any t > 0, the number
of d ≤ t coprime to 646646 is at most 207360t/646646 + 5.525. We deduce
as above that B3(x) is less than

207360

646646

(
15

16

)T x
15

∏
p≥23

(
1 +

gT,15(p)

p

)
+ 5.525

(
15

16

)T√ x

15

∏
p≥23

(
1 +

gT,15(p)√
p

)
.

Taking T = 72 and estimating the products as above, we find that B3(x) <
0.00182x+ 661.201

√
x.

Finally, we obtain an upper bound for B4(x). The conditions that
gcd(n, 30) = 15 and gcd(n, 323323) > 1 put n in one of 115963 residue
classes modulo 9699690. We find the optimal bound

B4(x) ≤
115963

9699690
x+

204775

38038
< 0.01196x+ 5.3835

by a computer search to 9699690.
Combining our bounds for Bi(x) proves the proposition.

Remark. After work of Schoenberg [10] we know the density δ of num-
bers n with ϕ(n)/n < 1/2 exists, and the second author of this paper has
calculated [6] that its value lies in the interval (0.51120, 0.51176). Since every
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even number that is not a power of 2 satisfies this inequality, we find that
δ − 1/2 is the density of odd n with ϕ(n)/n < 1/2, that is, the density of
the numbers counted by N(x). We see that the bound of 0.017876 in Propo-
sition 3.1 is not too far off from the asymptotically best possible estimate.

Proposition 3.2. Let M(x) denote the number of odd m ≤ x such that
ϕ(m)/m < 0.5001. Then M(x) < 0.01794x+ 680.18

√
x+ 5.4 for all x > 0.

Moreover, for all x > 0 and D > 0, we have

M(D + x)−M(D) < 0.01794x+ 1360.36
√
D + x+ 10.8.

The proof of Proposition 3.2 is nearly identical to that of Proposition 3.1
with the following changes. For the first assertion, the factor of 1/2T is
replaced with 0.5001T . For the second assertion, the factor of

√
x is replaced

with
√
D + x. For example, in the case that m is coprime to 6, and D = 0,

we get the bound

(3.2) (4.91 · 10−7)x+ 2.5844
√
x,

which can be compared with our estimate for B1(x) in the proof of Propo-
sition 3.1. Also, we replace the bound for case (1) by

|{n ∈ (D,D + x] : gcd(n, 6) = 1}| ≤ x/3 + 4/3,

where the constant term is doubled due to the periodicity and symmetry of
gcd(n, 6) as well as the right-continuity of |{n ≤ x : gcd(n, 6) = 1}| − x/3,
and similarly for cases (2)–(4). This change does not affect the constant in
the main term but each of the constants of lower order will be twice that
of M(x).

We will also use the following proposition.

Proposition 3.3. Suppose that n is odd with ϕ(n)/n < 1/2, p |n with
p > 5000 and s |n + 1 with s > 1 and s coprime to 30030. The number of
n ≤ t with these properties is at most

0.02194
t

ps
+ 225

√
t

ps
+ 23.36

√
t

p
+ 38.

This estimate holds equally if the roles of n and n+ 1 are reversed.

Proof of Proposition 3.3. The proof parallels that of Proposition 3.1, and
in particular we have the same four cases. But here we replace “323323” with
“1001”.

Write n = mp; as ϕ(n)/n < 1/2, we have ϕ(m)/m < 1/2 + ε, where
ε = 10−4. We first count the number of choices for n ≤ t with gcd(n, 6) = 1.
This is at most the number of m ≤ t/p coprime to 6, with ϕ(m)/m < 1/2+ε
and mp ≡ −1 (mod s). Let b be an integer with bp ≡ −1 (mod s), so that
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m ≡ b (mod s). Then

N1 :=
∑
m≤t/p

gcd(m,6)=1
m≡b (s)

ϕ(m)/m<1/2+ε

1 ≤
(
1

2
+ ε

)T ∑
m≤t/p

gcd(m,6)=1
m≡b (s)

(m/ϕ(m))T .

Since
∑

d|m gT (d) = (m/ϕ(m))T , we have

N1 ≤
(
1

2
+ ε

)T ∑
d≤t/p

gcd(d,6s)=1

gT (d)
∑

k≤t/(pd)
gcd(k,6)=1
k≡bd−1 (s)

1.

If d > t/(ps), then k < s, so there is at most one k in the inner sum, and
the contribution to the expression is at most

(3.3) N1,1 :=

(
1

2
+ ε

)T ∑
d≤t/p

gcd(d,6)=1

gT (d).

The remaining part is at most

N1,2 :=

(
1

2
+ ε

)T ∑
d≤t/(ps)

gcd(d,6s)=1

gT (d)
∑

k≤t/(pd)
gcd(k,6)=1
k≡bd−1 (s)

1.

The inner sum on k is at most t/(3psd) + 4, using an inclusion-exclusion on
the four divisors of 6. (The “+4” can be improved here, but this is unimpor-
tant.) Thus,

N1,2 ≤
(
1

2
+ ε

)T ∑
d≤t/(ps)

gcd(d,6)=1

gT (d)

(
t

3psd
+ 4

)

=

(
1

2
+ ε

)T t

3ps

∑
d≤t/(ps)

gcd(d,6)=1

gT (d)

d
+ 4

(
1

2
+ ε

)T ∑
d≤t/(ps)

gcd(d,6)=1

gT (d).

With this expression and (3.3) we have three sums to estimate. We take
T = 69. We have(

1

2
+ ε

)T t

3ps

∑
d≤t/(ps)

gcd(d,6)=1

gT (d)

d
< 4.91 · 10−7 t

ps
.
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Also,

4

(
1

2
+ ε

)T ∑
d≤t/(ps)

gcd(d,6)=1

gT (d) ≤ 4

√
t

ps

(
1

2
+ ε

)T ∑
gcd(d,6)=1

gT (d)√
d

< 15.51

√
t

ps
.

Similarly,

N1,1 ≤
√
t

p

(
1

2
+ ε

)T ∑
gcd(d,6)=1

gT (d)√
d

< 3.88

√
t

p
.

Summing up, we have

N1 ≤ 4.91 · 10−7 t
ps

+ 15.51

√
t

ps
+ 3.88

√
t

p
.

We next consider

N2 :=
∑
m≤t/p

gcd(m,30)=3
m≡b (s)

ϕ(m)/m<1/2+ε

1 ≤
(
3

4
+

3ε

2

)T ∑
m≤t/(3p)

gcd(m,10)=1
m≡b′ (s)

f3(m)T .

Then, as with N1, we have

N2 ≤
(
3

4
+

3ε

2

)T( ∑
d≤t/(3p)

gcd(d,10)=1

gT,3(d) +
∑

d≤t/(3ps)
gcd(d,10)=1

gT,3(d)

(
2

5

t

3psd
+ 4

))
.

Choosing T = 29, we get

N2 ≤ 0.00412
t

ps
+ 34.02

√
t

ps
+ 8.51

√
t

p
.

We also have

N3 :=
∑
m≤t/p

gcd(m,30030)=15
m≡b (s)

ϕ(m)/m<1/2+ε

1 ≤
(
15

16
+

15ε

8

)T ∑
m≤t/(15p)

gcd(m,2002)=1
m≡b′ (s)

f15(m)T .

We introduce gT,15 and note that the number of integers to t/(15pd) coprime
to 2002 and in a residue class modulo s is at most 24t/(1001psd) + 16. So
N3 is at most(

15

16
+

15ε

8

)T( ∑
d≤t/(15p)
(d,2002)=1

gT,15(d) +
∑

d≤t/(15ps)
(d,2002)=1

gT,15(d)

(
24t

1001psd
+ 16

))
.

Choosing T = 36, we get

N3 ≤ 0.00846
t

ps
+ 175.47

√
t

ps
+ 10.97

√
t

p
.
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We next consider the case when gcd(n, 30) = 15 and gcd(n, 1001) > 1.
In this case, the number of integers n ≤ t is at most

1

30
· 281
1001

t

ps
+ 38.

Putting our estimates together, we complete the proof.

4. Proof of Theorem 1.1. Recall that X0 = e150. We partition so-
lutions of ϕ(n) = ϕ(n + 1) into a small range n ≤ 1013, middle range
1013 < n < X0, and large range n > X0.

4.1. The small range, n ≤ 1013. By computation using an exhaustive
list of all 10755 solutions up to 1013 (see [8]) we have∑

n∈S
n≤1013

1

n
= 1.432488 . . . .

4.2. The middle range, 1013 < n ≤ X0. It is shown in [1, Prop. 2.2]
that for solutions to ϕ(n) = ϕ(n+1) larger than 232, the odd member of the
pair, say n, satisfies ϕ(n)/n < 1/2. It then follows via partial summation and
doubling the estimate in Proposition 3.1 (to allow for the possibility that an
odd number n may be in two pairs of numbers with equal ϕ-values) that∑

n∈S
1013<n≤X0

1

n
=
S(X0)− S(1013)

X0
+

X0�

1013

S(t)− S(1013)
t2

dt < 4.3293.

However, we can do a little better, as follows.
Consider odd numbers n > 1013 divisible by 105. These are part of case

(4) in the proof of Proposition 3.1 and according to the accounting there, the
number of them in [1, x] is at most x/210+1. However, the number of these
with ϕ(n) = ϕ(m) and with m = n± 1 is considerably smaller. Note that m
is even and ϕ(m)/m ≤ (1 + 1/m)ϕ(105)/105. Further, m ≡ ±1 (mod 105).
Fix a = ±1 and let B(x) denote the number of such numbers m ≤ x with
m ≡ a (mod 105). Since ϕ(105)/105 = 16/35 and letting ε = 10−13, for any
T > 0 we have

B(x) =
∑
m≤x
2|m

m≡a (105)
ϕ(m)/m< 16

35
(1+ε)

1 ≤
(
16

35
(1 + ε)

)T ∑
m≤x
2|m

m≡a (105)

(
m

ϕ(m)

)T

≤
(
32

35
+ ε

)T ∑
l≤x/2

l≡b (105)

f2(l)
T ,
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where b is such that 2b ≡ a (mod 105). Thus,

B(x) ≤
(
32

35
+ ε

)T ∑
d≤x/2

(d,105)=1

gT,2(d)
∑

k≤x/(2d)
k≡bd−1 (105)

1.

The inner sum is at most x/(210d) + 1, so that

B(x) ≤
(
32

35
+ ε

)T ∑
d≤x/2

(d,105)=1

gT,2(d)
x

210d
+

(
32

35
+ ε

)T ∑
d≤x/2

(d,105)=1

gT,2(d).

Choosing T = 18 and using the methods of Section 3, we have

(4.1) B(x) ≤ 0.002578x+ 7.7
√
x.

Subtracting x/210− 1/2 from the estimate in Proposition 3.1, adding in the
estimate in (4.1), and doubling, we have

S(x)− S(1013) ≤ 0.031385x+ 1360
√
x+ 11.3.

Therefore,

(4.2)
∑
n∈S

1013<n≤X0

1

n
≤ 3.8006.

4.3. The large range, n > X0. Here is the plan for the proof. Let
n ∈ S. We show that, but for a small number of exceptions, P (n) and
P (n + 1) are large and neither n nor n + 1 is divisible by a large proper
power of a prime. We then deal with the situation when the largest prime
q dividing n(n + 1) is very large (approximately, > n0.3). Here we consider
the two cases: P (q − 1) is large and P (q − 1) is small. Finally, we have the
situation when q is not so large. Here we concentrate on the odd member of
the pair, doubling our estimate since we do not know which of n, n + 1 is
odd. The advantage to us of working with the odd member is that we can
bring in Proposition 3.3 to help with the estimate.

Let Ik = (ek, ek+1) and Sk = Ik ∩ S. Let αk = 3.5 for 150 ≤ k < 400
and αk = 4 for k ≥ 400. Let βk = 4 for 150 ≤ k < 200, βk = 4.5 for
200 ≤ k < 400, and βk = 5 for k ≥ 400. Let

xk = ek/bαk log kc, x′k = e0.3k, zk = e
√
k/βk , z′k = e0.7

√
k.

Also, let

x′ = x′(t) = x′blog tc, z′ = z′(t) = z′blog tc.
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Define the following sets of natural numbers:

Ck0 = {n ∈ Sk : qa |n(n+ 1) for some a ≥ 2, where qa > xk or q > z′k},
Ck1 = {n ∈ Sk : ω(n) or ω(n+ 1) ≥ αk logblog nc},
Ck2 = Sk \ (Ck0 ∪ Ck1 ).

We will use the convention Ci =
⋃
k≥150 Cki .

We first bound the contribution to the reciprocal sum from C0.

Proposition 4.1. We have∑
n∈C0

1

n
< 0.2516.

Proof. We handle the case when qa |n and double the estimate to allow
for the parallel case qa |n + 1. Let Tk = {qa : a ≥ 2, qa > xk}. By [7,
Lem. 2.2], we have∑

k≥150

∑
ek<n≤ek+1

∃s∈Tk: s|n

1

n
≤
∑
k≥150

∑
s∈Tk
s≤ek+1

1

s
+
∑
k≥150

∑
s∈Tk
s≤ek+1

1

ek
.

The right sum is∑
k≥150

1

ek

∑
s∈Tk
s≤ek+1

1 ≤
∑
k≥150

e(k+1)/2

ek
=

1

(
√
e− 1)e74

< 2 · 10−32.

Here we used [7, inequality (3.7) in the proof of Prop. 3.3] to bound the
number of proper prime powers up to t as less than t1/2 for t ≥ 200. For the
left sum, we use Corollary 2.8 to bound∑

k≥150

∑
s∈Tk

1

s
≤
∑
k≥150

2.4
√
xk log xk

.

Computing the sum directly to k = 108 and bounding the remaining sum
with an integral, we see this expression is less than 0.12345 + 0.00155 =
0.12500, the two numbers coming from the ranges 150 ≤ k ≤ 399 and
k ≥ 400, respectively.

We proceed in the same way, but now use Lemma 2.7 and T ′k={q2 :q>z′k}.
The reciprocal sum is bounded above by∑

k≥150

∑
ek<n≤ek+1

∃s∈T ′k: s|n

1

n
≤
∑
k≥150

∑
s∈T ′k
s≤ek+1

1

s
+
∑
k≥150

∑
s∈T ′k
s≤ek+1

1

ek
.

By Lemma 2.7, we compute that this expression is smaller than 0.00079.
Noting that 2(0.12500 + 0.00079) < 0.2516 completes the proof.
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Proposition 4.2. We have∑
n∈C1

1

n
< 0.1430.

Proof. As before, we treat the case of n, doubling the estimate to account
for the case of n+ 1. Following [7, Prop. 3.2], we have τ5(n) ≥ 5ω(n), where
τ5(n) denotes the number of ordered factorizations of n into five positive
integers. By [7, Lem. 2.5] we have∑

e150<n<e400

ω(n)≥3.5 logblognc

1

n
=

∑
151≤k≤400

∑
ek−1<n<ek

ω(n)≥3.5 log(k−1)

1

n

≤
∑

151≤k≤400
5−3.5 log(k−1)

∑
n<ek

τ5(n)

n

≤
∑

151≤k≤400

1

120

(k + 5)5

(k − 1)3.5 log 5
< 0.07006.

Note that this sum, if extended to infinity, diverges. However, if we change
3.5 to 4, the sum converges, and we have∑

n>e400

ω(n)≥4 logblognc

1

n
≤
∑
k≥401

1

120

(k + 5)5

(k − 1)4 log 5
< 0.00142.

As 2(0.07006 + 0.00142) < 0.1430, the proof is complete.

For n ∈ Ck2 , we may assume that ω(n) < αk logblog nc, since n /∈ C1.
Therefore, the largest prime power dividing n exceeds n1/bαk logblogncc >
ek/bαk log kc. It follows that this prime exactly divides n since n /∈ C0, so that
P (n) > xk and P (n) ‖n. These conclusions hold as well for n+ 1.

We use the notation q = P (n(n+ 1)) and p = P (n). We define

Ck3 = {n ∈ Ck2 : q > x′k, P (q − 1) ≤ z′k},
Ck4 = {n ∈ Ck2 : q > x′k, P (q − 1) > z′k},
Ck5 = {n ∈ Ck2 \ (C3 ∪ C4) : P (p− 1) ≤ zk},
Ck6 = {n ∈ Ck2 \ (C3 ∪ C4) : P (p− 1) > zk}.

We continue with the convention Ci =
⋃
k≥150 Cki .

Proposition 4.3. We have∑
n∈C3

1

n
< 0.2543.

Proof. Write the one of n, n+ 1 which is a multiple of q as qm. We will
sum 1/(qm) and double the estimate to allow for the ambiguity of whether
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q |n or q |n + 1. We first consider the case that q > e0.45k. Let S(x, y)
denote the reciprocal sum of those integers j > x with P (j) ≤ y. By [7,
Lem. 2.2, 2.10],∑

k≥150

∑
q>e0.45k

P (q−1)≤z′k

1

q

∑
ek/q<m<ek+1/q

1

m
≤
∑
k≥150

1

2
S

(
e0.45k − 1

2
, z′k

)
(1 + e/2)

< 0.00063(1 + e/2),

noting that q − 1 is even. Also, we bound∑
k≥150

∑
x′k<q<e

0.45k

P (q−1)≤z′k

1

q

∑
ek/q<m<ek+1/q

1

m
≤
∑
k≥150

1

2
S

(
x′k − 1

2
, z′k

)
(1 + e−0.55k)

< 0.12564.

Here we used [7, Lem. 2.10] to sum over k ≥ 300, obtaining a bound of
0.00801, and [7, Lem. 2.9] with sk = log(e0.2uk log uk)/log z

′
k to sum over

150 ≤ k ≤ 299, obtaining a bound of 0.11763. Combining and doubling, we
complete the proof of Proposition 4.3.

Proposition 4.4. We have∑
n∈C4

1

n
< 0.8542.

Proof. Let n ∈ C4. Since n /∈ C2, and since r = P (q − 1) |ϕ(n) and
r > z′blognc, there are primes p, p′ with q = max{p, p′}, p ‖n, p′ ‖n + 1 and
p ≡ p′ ≡ 1 (mod r). Writing n = pm and n+1 = p′m′, we have pm+1 = p′m′

and (p− 1)ϕ(m) = (p′ − 1)ϕ(m′). Thus,

p′(m′ϕ(m)−mϕ(m′)) = (m+ 1)ϕ(m)−mϕ(m′).

If the left side were zero, observe that since gcd(m,m′) = 1, we would have
m |ϕ(m) and m′ |ϕ(m′), so that m = m′ = 1. But this does not occur for
n > 1, so the left side is not zero. Therefore p′ (and also p) are fixed by the
ordered pair (m,m′), so that n is completely determined by (m,m′).

Let A(t) = {n ≤ t : n ∈ C4} and let yk = kek
√
z′k/20 and y = yblog tc.

Then
A(t) = A1(t) ∪ A2(t),

where

A1(t) = {n ∈ A(t) : pp′ ≤ y} and A2(t) = {n ∈ A(t) : pp′ > y}.

Let Ai(t) denote the cardinality of Ai(t), i = 1, 2. The system of congruences
n ≡ 0 (mod p), n + 1 ≡ 0 (mod p′) has a unique solution n modulo pp′ by
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the Chinese remainder theorem. Thus,

(4.3) A1(t) ≤
∑
r>z′

∑
pp′≤y

max{p,p′}>x′
p≡p′≡1 (r)

(
t

pp′
+ 1

)
.

For a prime r > z′ let

vr =
∑
pp′≤y

max{p,p′}>x′
p≡p′≡1 (r)

t

pp′
.

Let x′′ = x′0.4 = e0.12blog tc. Consider the case when r > x′′. We have∑
r>x′′

vr ≤
∑
r>x′′

t

( ∑
j<t/(2r)

1

2jr

)2

<
∑
r>x′′

t

(2r)2
(
log(t/(2r)) + 1

)2
≤
∑
r>x′′

t

(2r)2
(
log(t/(2x′′)) + 1

)2 ≤ t
(
log(t/(2x′′)) + 1

)2
4x′′ log x′′

,

using Lemma 2.7. Applying partial summation shows that the contribution
to the reciprocal sum is < 5 · 10−5. Now assume that r ∈ (z′, x′′]. Then

(4.4) vr ≤ 2
∑

x′<p<y/(2r)
p≡1 (r)

∑
p′≤y/x′
p′≡1 (r)

t

pp′
,

doubled because we assume p > x′. By Lemma 2.3 and Corollary 2.5 we
have ∑

x′<p≤y/2r
p≡1 (r)

1

p
≤ s1(r)

r
,

∑
p′≤y/x′
p′≡1 (r)

1

p′
≤ s2(r)

r
,

where

s1(r) =
2r

r − 1

(
log log

y

(2r)2
− log log

x′

2r
+

1

log(y/(2r)2)

)
,

s2(r) =
2r

r − 1

(
log log

y

2rx′
− 0.78169 +

1

log(y/(2rx′))

)
.

We assemble these estimates into (4.4). Note that s1(r)s2(r) is increasing
in the variable r for z′ < r ≤ x′′. Let x′′k = x′′(ek) = e0.12k. Via partial
summation, the reciprocal sum in this case is at most

2
∑
k≥150

∑
z′k<r≤x

′′
k

s1(r)s2(r)

r2
≤ 2

∑
k≥150

∑
r>z′k

s1(x
′′
k)s2(x

′′
k)

r2
≤
∑
k≥150

2s1(x
′′
k)s2(x

′′
k)

z′k log z
′
k

,
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using Lemma 2.7. We see that the contribution to the reciprocal sum for
r ∈ (z′, x′′] is less than 0.04665.

We next estimate the sum of the error term coming from 1 in (4.3).
This is

(4.5) 2
∑
r>z′

∑
p′<y/x′

p′≡1 (r)

∑
x′<p≤y/p′
p≡1 (r)

1.

If we write p = 2ar+1, p′ = 2br+1, the contribution from r > x′′ is at most

2
∑
r>x′′

∑
ab≤y/(4r2)

1 ≤
∑
r>x′′

y

2r2

(
log

y

4r2
+ 1

)
<
y
(
log(y/(4x′′2)) + 1

)
2x′′ log x′′

,

by Lemma 2.7 and the elementary estimate that the number of pairs a, b with
ab ≤ x is at most x log x + x. Dividing our expression by t and integrating
from X0 to ∞, we get less than 0.00030.

So now we assume that z′ < r ≤ x′′. Using the Brun–Titchmarsh in-
equality, we deduce that the inner sum in (4.5) is at most 2(y/p′)/((r − 1)
× log(y/(p′r))). Note that 2r + 1, 4r + 1 cannot both be prime, since one
of them is divisible by 3. Thus, the contribution to (4.5) when p′ ≤ 6r is at
most∑
z′<r≤x′′

4y

(2r + 1)(r−1) log
(
y/((2r + 1)r)

) < 2y

log(y/(2x′′2))

(
1 +

1

z′

)∑
r>z′

1

r2
.

By Lemma 2.7 again and partial summation, the contribution to the recip-
rocal sum in this case is less than 0.01432. We now assume that p′ > 6r
in (4.5). We find that for a given r, the expression is at most

8y

r2
r2

(r − 1)2
(A+B),

where A = 1/(log(y/(x′r)) log(x′/r)) and

B =
1

log(y/r2)

(
log log(y/(x′r))− log log(x′/r)− log log 6+log log(y/(6r2))

)
.

Observing that (1 + 1/(r − 1))2(A + B) is increasing in r on (z′, x′′], using
partial summation and Lemma 2.7 we deduce that the contribution to the
reciprocal sum is less than 0.33245.

We next consider an upper bound for A2(t). If n ∈ A2(t) then pp′ > y,
and since pp′mm′ = n(n+ 1) ≤ t(t+ 1), we have

mm′ < t(t+ 1)/y = 20t(t+ 1)/(kek
√
z′k) = w = w(t), say.

Further, one ofm,m′ is odd and the other is even; assumem is odd andm′ is
even; we double our estimate to take into account the other possibility. There
are two cases: 3 |m and 3 - m. Let A2,1(t) denote the set of such ordered pairs
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(m,m′) when 3 |m, and A2,2(t) the set of such pairs with 3 - m. Let A2,i(t)
denote their cardinalities for i = 1, 2, respectively. Since the pair (m,m′)
fixes p and p′ (and therefore n), we have

A2(t) = A2,1(t) +A2,2(t).

Note that p ≥ 2r+1 > 2z′+1 > 5000 since p ≡ 1 (mod r) and r > z′. Thus,
ϕ(m)/m < 0.5001, so we may apply the averaging argument in Proposi-
tion 3.2. Since m,m′ are coprime,

A2,1(t) ≤ 2
∑
m≤w

gcd(m,6)=3
ϕ(m)/m<0.5001

∑
m′≤w/m

2|m′
3-m′

1 ≤ 2

3

∑
m≤w

gcd(m,6)=3
ϕ(m)/m<0.5001

(
w

m
+ 2

)
,

A2,2(t) ≤ 2
∑
m≤w

gcd(m,6)=1
ϕ(m)/m<0.5001

∑
m′≤w/m

2|m′

1 ≤
∑
m≤w

gcd(m,6)=1
ϕ(m)/m<0.5001

w

m
.

Letting M1(x) be the number of m ≤ x with gcd(m, 6) = 1 and ϕ(m)/m <
0.5001 and noting that the first such m is m1 := 37182145, we deduce from
(3.2) and partial summation that

∑
m≤w

gcd(m,6)=1
ϕ(m)/m<0.5001

1

m
=
M1(w)

w
+

w�

m1

M1(x)

x2
dx

≤ 5 · 10−7 + 5 · 10−7(logw − logm1) +
2 · 2.6
√
m1

< 5 · 10−7 logw + 8.6 · 10−4.

For the sum of w/m + 2 for m ≤ w, gcd(m, 6) = 3, and ϕ(m)/m <
0.5001, we use Proposition 3.2, and relax the condition gcd(m, 6) = 3 to
gcd(m, 2) = 1. Computing directly the sum of 1/m to 1010 shows that an
upper bound for the sum is 0.21322. Thus,∑

m≤w
gcd(m,2)=1

ϕ(m)/m<0.5001

1

m
< 0.01794 logw − 0.172656.

Further, using w ≥ 2 · 1062 and Proposition 3.2, we infer that the number of
integers m in the sum is at most 0.01795w. Thus,

A2(t) < 0.0119605w logw − 0.09031w.
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The contribution to the reciprocal sum from this term is at most
∞�

X0

1

t2
A2(t) dt <

∑
k≥150

ek+1�

ek

1

t2
(0.0119605w logw − 0.09031w) dt < 0.46042.

Combining these bounds, we complete the proof of Proposition 4.4.

Proposition 4.5. We have∑
n∈C5

1

n
< 0.2790.

Proof. Assume that n ∈ C5 and write n = pm. We also assume that n
is odd. The case when n is even is completely parallel, so we double our
estimates to reflect this case. We bound the reciprocal sum for xk < p ≤ x′k
and r = P (p− 1) ≤ zk by∑

k≥150

∑
xk<p≤x′k
P (p−1)≤zk

1

p

∑
ek/p<m<ek+1/p

m odd, ϕ(m)/m<0.5001

1

m
,

noting that ϕ(m)/m < p/(2(p − 1)) < 0.5001 for p > x150. We first bound
the inner sum. Recall that M(x) = |{m ≤ x : 2 - m, ϕ(m)/m < 0.5001}|.
Let D = ek/p. By partial summation,∑

ek/p<m<ek+1/p
m odd, ϕ(m)/m<0.5001

1

m
=
M(De)

De
− M(D)

D
+

De�

D

M(t)

t2
dt.

Let a = 0.01794, b = 1360.36, c = 10.8. By Proposition 3.2,

M(De)

De
<
M(D) + a(e− 1)D + b

√
De+ c

De
and

De�

D

M(t)

t2
dt <

M(D)

D
− M(D)

De
+
a

e
− 2b√

De
+

2b√
D
− c

De
+

c

D
.

Combining terms, we see that the sum over m is less than 0.01795.
Turning to the sum over p, we first bound this sum over k ≥ 2000. Using

the notation of [7, Lem. 2.10] and observing that p− 1 is even, we have∑
k≥2000

∑
p>xk

P (p−1)≤zk

1

p
≤ 1

2

∑
k≥2000

S

(
xk − 1

2
, zk

)

<
1

2

∑
k≥2000

25e(1+ε)uk(2log(uk log uk)/log zk − 1)−1

(uk log uk)uk
< 0.04598,
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where ε = 2.3 · 10−8 and uk = log((xk − 1)/2)/log zk. Here we computed
the sum over 2000 ≤ k ≤ 108 directly and then compared the remaining
series to an integral. Using the first inequality of [7, Lem. 2.9] with sk =
log(eγuk log uk)/log zk and noting that p− 1 is even, we have∑

1500≤k≤1999

∑
p>xk

P (p−1)≤zk

1

p
≤ 1

2

∑
1500≤k≤1999

S

(
xk − 1

2
, zk

)
< 0.010329.

We next sum over 1000 ≤ k ≤ 1499, 700 ≤ k ≤ 999, 556 ≤ k ≤ 699,
with parameters sk = log(ecuk log uk)/log zk, c = 0.5, 0.45, 0.4, to obtain the
bounds 0.120102, 0.643079, 1.211382, respectively.

Finally, for the interval 150 ≤ k ≤ 555, we directly evaluate the sum of
reciprocals of even zk-smooth numbers p−1 > xk−1 as follows. The sum of
reciprocals of all even zk-smooth numbers is equal to

∏
3≤p≤zk

p
p−1 . For each

150 ≤ k ≤ 555 we subtract from this quantity the sum of reciprocals of even
zk-smooth numbers not exceeding xk − 1. Summing over 150 ≤ k ≤ 199,
200 ≤ k ≤ 399, 400 ≤ k ≤ 555, we obtain the bounds 3.439039, 1.941653,
0.35777, respectively.

Summing these bounds, multiplying by 0.01795, and doubling, we com-
plete the proof of Proposition 4.5.

Proposition 4.6. We have∑
n∈C6

1

n
< 0.8206.

Proof. We assume that n is odd and double the bound, noting that a
symmetric argument applies to the case of n+1 odd. Recall that p = P (n).
There is a prime r > zblognc such that r | p− 1, and thus r |ϕ(n) = ϕ(n+1).
Either r2 |n+1 or there is a prime p′ |n+1 with p′ ≡ 1 (mod r). In this proof
we let the letter s denote either r2 or p′. Since n /∈ C0, C4, we have s ≤ x′blognc.
Consider the counting function of such n ≤ t. Noting that p, p′, r2 < t0.3 and
applying Proposition 3.3, we find that the counting function is bounded
above by ∑

r>z

∑
x<p≤x′
p≡1 (r)

∑
s≤x′

(
0.02194t

ps
+ 225

√
t

ps
+ 23.36

√
t

p
+ 38

)
,

where x = xblog tc, z = zblog tc, and s runs over primes p′ ≡ 1 (mod r) or
s = r2. For t ≥ X0 and p, s ≤ x′ ≤ t0.3, we have

23.36

√
t

p
+ 38 < 23.37

√
t

p
, 0.02194

t

ps
+ 225

√
t

ps
< 0.02195

t

ps
.
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Decoupling the possibilities for s, we see that our counting function is ma-
jorized by S1 + S2, where

S1 =
∑
r>z

∑
x<p≤x′
p≡1 (r)

(
0.02195t

pr2
+ 23.37

√
t

p

)
,

S2 =
∑
r>z

∑
x<p≤x′
p≡1 (r)

∑
p′≤x′
p′≡1 (r)

(
0.02195t

pp′
+ 23.37

√
t

p

)
.

We can make a further consolidation in S1, since n /∈ C0 implies that r < z′.
Thus, for t > X0, we have

S1 <
∑
r>z

∑
x<p≤x′
p≡1 (r)

0.02196t

pr2
.

We use Lemma 2.3 to sum 1/p, Lemma 2.7 to sum 1/r2, and we majorize
1/(r−1) (from Lemma 2.3) by 1/(z−1). After partial summation to extract
the reciprocal sum from the counting function, we have a contribution of at
most

2(0.00206 + 0.00328 + 0.00085) = 0.01238

to the reciprocal sum. (The three terms correspond to the three expressions
for zk.)

We now turn to S2. Via partial summation, the reciprocal sum of integers
counted by S2 is bounded by∑

k≥150

∑
r>zk

∑
xk<p≤x′k
p≡1 (r)

∑
p′≤x′k
p′≡1 (r)

(
0.02195

pp′
+ 23.37e−k/2

1
√
p

)
.

For the the term involving 1/(pp′), let

P (k, r) =
∑

xk<p≤x′k
p≡1 (r)

1

p
, Q(k, r) =

∑
p′≤x′k
p′≡1 (r)

1

p′
.

We split up the range for the variables k, r into three regions:

• k ≥ 1258,
• 150 ≤ k ≤ 1257, r ≥ 1201,
• 150 ≤ k ≤ 1257, r < 1201.

In the first region, for each k we segment the interval of primes r > zk
into intervals (100j−1zk, 100

jzk] for j such that 100jzk < 100x
1/2
k . In each

of these intervals we use Lemma 2.3 to bound P (k, r) and Corollary 2.5
to bound Q(k, r). In doing this, note that our bound for r2P (k, r)Q(k, r)
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is increasing in r on each interval, so we replace r in the expression with
the upper bound of the interval, and then use Lemma 2.7 to bound the
sum of 1/r2 in each interval. After applying partial summation, multiplying
by 0.02195, and doubling, we get a contribution of less than 0.09481 to
the reciprocal sum. For larger values of r we replace P (k, r) with Q(k, r)
and allow p′ to run up to 1000x′k, thus allowing the use of Corollary 2.5
(since we may assume that r < x′k). Since log log(1000x′k/(2r))− 0.78169 +
1/log(1000x′k/(2r)) is decreasing in r, we can replace r in this expression
with x

1/2
k , and then use Lemma 2.7. We find that the contribution to the

reciprocal sum is less than 2.2 · 10−9.
For the second region we proceed as follows. For r at most the 105th prime

we handle each pair k, r individually, using Corollary 2.5 to bound Q(k, r),
and a hybrid of Lemma 2.3 and Corollary 2.5 to bound P (k, r) (the negative
term in these two results is replaced with − log log(max{8.892, xk/(2r)})).
For larger values of r we proceed as in the first region, using now that r is
at least the 100001-st prime, to get an estimate for each k. We then sum
over k. In all, our estimate in this range is less than

(0.946473 + 3.937063 + 0.004758)2 · 0.02195 < 0.21460,

the three terms corresponding to k < 400, k ≥ 400, and r large.
For the third region, we use Lemma 2.6. Write P (k, r) = P1(k, r) +

P2(k, r) and Q(k, r) = Q1(k.r) +Q2(k, r), where

P1(k, r) =
∑

xk<p≤50r2
p≡1 (r)

1

p
, P2(k, r) =

∑
max{xk,50r2}<p≤x′k

p≡1 (r)

1

p
,

Q1(k, r) =
∑

p′≤50r2
p′≡1 (r)

1

p′
, Q2(k, r) =

∑
50r2<p′≤x′k
p′≡1 (r)

1

p′
.

Since r < 1201 and k ≤ 1257, we can compute P1 and Q1 directly, and
as mentioned, we use Lemma 2.6 for the remaining sums. We find that the
contribution to the reciprocal sum is at most

2(0.04007 + 0.11131 + 0.09799) = 0.49874.

To complete the proof, we deal with∑
k≥150

∑
r>zk

23.37e−k/2
∑

xk<p≤x′k
p≡1 (r)

∑
p′≤x′k
p′≡1 (r)

1
√
p
.



On the equation ϕ(n) = ϕ(n+ 1) 23

Using the Brun–Titchmarsh inequality and partial summation, we have∑
xk<p≤x′k
p≡1 (r)

1
√
p
<

2
√
x′k

(r − 1) log(x′k/r)
+

√
r

r − 1
li(
√
x′k/r),

where li is the logarithmic integral function. Splitting the sum on r at e
√
k,

we have the contribution here smaller than

2(2.2 · 10−5 + 9 · 10−7 + 4 · 10−12 + 10−6) < 5 · 10−5,
where the first three terms correspond to the changing choices for zk and the
last term corresponds to the case that r > e

√
k.

Adding the various contributions, we find that the reciprocal sum is
smaller than

0.01238 + 0.09481 + 0.21460 + 0.49874 + 5 · 10−5 < 0.8206.

In sum, the large range bound for the reciprocal sum is

0.2516 + 0.1430 + 0.2543 + 0.8542 + 0.2790 + 0.8206 = 2.6027.

Combining the bounds from the small, middle, and large ranges we conclude
that ∑

n∈S

1

n
< 1.4325 + 3.8006 + 2.6027 = 7.8358.
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Abstract (will appear on the journal’s web site only)
We consider solutions of the equation ϕ(n) = ϕ(n+ 1), where ϕ denotes

Euler’s function. Improving on previous work, we show that the reciprocal
sum over all such n is less than 8.
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