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Compactification of Extra Dimensions

Superstring theory predicts (9+1) spacetime dimensions =⇒
6 must be undetectable!

Calabi-Yau compactifications

D-branes and gauge theories
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Orbifold Compactifications

Manifold of equivalence classes of orbits of a finite group
(quotient group)
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Describing Orbifold Actions

Most general Abelian action constructible from Zn1 × Zn2

Let g generate Zni ; action on C3 given by the following
representation:

diag

(
e

i2πa1
ni , e

i2πa2
ni , e

i2πa3
ni

)
Orbifold action encoded by (a1, a2, a3), with
a1 + a2 + a3 ≡ 0 (mod ni ).
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Describing Orbifold Actions

However, orbifold actions are not uniquely identified by a
single 3-tuple (scaling, permutation)

Example: C3/Z3 has two unique actions given by: (0, 1, 2)
and (1, 1, 1). The former has action diag(1, ζ, ζ2) for ζ3 = 1,
whereas the second has action diag(ζ, ζ, ζ).
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Toric Diagrams and Orbifolds

A toric Calabi-Yau orbifold can be represented by a lattice
polytope

Lattice polytopes correspond to the same physical orbifold if
and only if they are related to each other by a GL(n,Z)
transformation

Diffeomorphism invariance of Polyakov string action

The area, volume, etc. of the lattice polytope equals the order
of the orbifold group.
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Hermite Normal Forms and Sublattices

Theorem: every integer-valued 2× 2 matrix is the product of a
matrix in GL(2,Z) and a Hermite normal form:

H =

(
a11 a12
0 a22

)
, a12 < a22

Physically unique toric diagrams can thus be identified with
Hermite normal forms

Hermite normal forms ⇐⇒ sublattices

Given a lattice basis Λ = {v1, v2, . . .}, HΛ yields sublattice
Can also be obtained from counting lattice points contained in
scaled toric diagrams
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Example: C3/Z3 Orbifolds
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Sublattice Enumeration with Burnside’s Lemma

Let g in the permutation representation of G be composed of α1

1-cycles, α2 2-cycles, up to αk k-cycles. We can write:

ζg = xα1
1 xα2

2 . . . xαk
k

The cycle index of a group G is obtained by averaging the ζg :

ZG =
1

|G |
∑
g

ζg =
1

|G |
∑
α

c(α1, . . . , αk)xα1
1 . . . xαk

k

where c(α1, . . . , αk) denotes the degeneracy of each cycle
structure and the sum is taken over cycle structures.
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Sublattice Enumeration with Burnside’s Lemma

Burnside’s Lemma: The number N(G ) of orbits of G under the
group action on X is given by the size of the fixed sets Fg under
each element g ∈ G :

N(G ) =
1

|G |
∑
g∈G
|Fg |

G symmetry group of toric diagram, X set of sublattices

Number of inequivalent sublattices of index n ⇐⇒ number
of orbits of G on X

Only need one g ∈ G for each cycle structure (conjugacy
class)
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Motivation for Platonic Solids

ADE classification of discrete subgroups of SU(2):

An: binary cyclic group of order 2n
Dn: binary dihedral group of order 4n
E6: binary tetrahedral group of order 24
E7: binary octahedral group of order 48
E8: binary icosahedral group of order 120

Unique set of quivers with only finitely many isomorphism
classes of indecomposable representations

Connection to quiver gauge theories: quivers represent matter
content of gauge theory for D-branes on orbifolds, where
nodes ⇐⇒ factors of the gauge group and links ⇐⇒ fields
in particular representations
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Tetrahedral Symmetries

Symmetry group given by S4
Permutation action on vertices
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Tetrahedron Data

ZS4 =
1

24

(
x41 + 6x21x2 + 3x22 + 8x1x3 + 6x4

)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
x41

1 7 13 35 31 91 57 155 130 217 133 455 183 399 403 651

f
x21 x2

1 3 5 11 7 15 9 31 18 21 13 55 15 27 35 75

f
x22

1 3 5 11 7 15 9 31 18 21 13 55 15 27 35 75

fx1x3 1 1 1 2 1 1 3 2 4 1 1 2 3 3 1 3

f
x14

1 1 1 3 3 1 1 5 2 3 1 3 3 1 3 7

f 1 2 3 7 5 10 7 20 14 18 11 41 15 28 31 58

Table 1: Number of sublattices of index n invariant under representative
symmetries from each conjugacy class of S4.
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Analytic Sublattice Enumeration

Multiplicative sequences: f (nm) = f (n)f (m) for n,m coprime.

Multiplicative sequences form a group under Dirichlet
convolution:

f (n) = (g ∗ h)(n) =
∑
m|n

g(m)h
( n

m

)
where the notation m|n means that the sum runs over all the
divisors m of n.
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Analytic Sublattice Enumeration

Define the unit, number, and square sequences:

u = {1, 1, 1, . . .}
N = {1, 2, 3, . . .}
N2 = {1, 4, 9, . . .}

The Dirichlet characters χk,n of modulus k and index n form an
Abelian group of order ϕ(k):

χ1,1 = u

χ2,1 = {1, 0, . . .}
χ3,1 = {1, 1, 0, . . .}
χ3,2 = {1,−1, 0, . . .}
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Tetrahedron Analytics

fx41
= u ∗ N ∗ N2

fx21 x12
= {1,−1, 0, 4} ∗ u ∗ u ∗ N

fx22
= {1,−1, 0, 4} ∗ u ∗ u ∗ N

fx11 x13
= {1, 0,−1, 0, 0, 0, 0, 0, 3} ∗ u ∗ u ∗ χ3,2

fx14
= {1,−1, 0, 2} ∗ u ∗ u ∗ χ4,2
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Tetrahedron Numbers

Figure 1: Scatter plot of the number of invariant sublattices of index n
for the tetrahedral lattice. Primes are given in purple. The blue line
corresponds to n2/24.
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Cubic Symmetries

Symmetry group given by S4 × Z2

One copy for each embedded tetrahedron
Permutation representation describes action on four space
diagonals
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Cube Data

ZS4×Z2 =
1

24

(
x4+1 + 6x21x

1+
2 + 3x2+2 + 8x11x

1+
3 + 6x1+4

)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

f
x4+1

1 7 13 35 31 91 57 155 130 217 133 455 183 399 403 651 307 910

f
x21 x

1+
2

1 3 5 11 7 15 9 31 18 21 13 55 15 27 35 75 19 54

f
x2+2

1 7 5 23 7 35 9 59 18 49 13 115 15 63 35 135 19 126

f
x11 x

1+
3

1 1 1 2 1 1 3 2 4 1 1 2 3 3 1 3 1 4

f
x1+4

1 3 1 5 3 3 1 7 2 9 1 5 3 3 3 9 3 6

f 1 3 3 9 5 13 7 24 14 23 11 49 15 33 31 66 21 70

Table 2: Number of sublattices of index n invariant under representative
symmetries from each conjugacy class of S4 × Z2.
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Cube Analytics

f
x4+1

= u ∗ N ∗ N2

f
x21 x

1+
2

= {1,−1, 0, 4} ∗ u ∗ u ∗ N

f
x2+2

= {1, 3} ∗ u ∗ u ∗ N

f
x11 x

1+
3

= {1, 0,−1, 0, 0, 0, 0, 0, 3} ∗ u ∗ u ∗ χ3,2

f
x1+4

= {1, 1} ∗ u ∗ u ∗ χ4,2
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Cube Numbers

Figure 2: Scatter plot of the number of invariant sublattices of index n
for the cubic lattice. Primes are given in purple. The blue line
corresponds to n2/24.
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Dodecahedral Symmetries

A5 × Z2 symmetry with permutation action on five embedded
cubes

ZA5×Z2 =
1

60

(
x51 + 12x15 + 12x1′5 + 20x + 15x

)
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Problems with Dodecahedron Analysis

Crystallographic restriction in 3D prevents 5-fold lattice
symmetry

Largest 3D space group of order 48

Embedding in higher dimensions
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Alternative Route: Projective Geometry

Surprising correspondence between symmetry groups of lattice
polytopes and projective groups over finite fields:

S3 ' PGL(2,F2)

S4 ' PGL(2,F3)

A5 ' PGL(2,F4)

Rephrase invariant sublattice question in terms of projective
spaces
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Summary and Future Work

Number of inequivalent orbifolds on a variety of spaces
counted by symmetry analysis

Toric diagrams with symmetries of S3, D4, D6, S4, S4 × Z2

Projective geometry or higher-dimensional embedding
methods

Representations of Lie algebras, orbifold enumeration, and
quiver gauge theories
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