Lattice Polytopes and Orbifolds in Quiver Gauge Theories

Matt DeCross, MIT

Advisor: Prof. Amihay Hanany, Imperial College London

September 26, 2015

Matt DeCross Lattice Polytopes and Orbifolds

Compactification of Extra Dimensions

- Superstring theory predicts (9+1) spacetime dimensions 6 must be undetectable!
- Calabi-Yau compactifications
- D-branes and gauge theories

2/26

Orbifold Compactifications

• Mani*fold* of equivalence classes of *orbi*ts of a finite group (quotient group)

- Most general Abelian action constructible from $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$
- Let g generate Z_{n_i}; action on C³ given by the following representation:

$$\operatorname{diag}\left(e^{\frac{i2\pi a_1}{n_i}}, e^{\frac{i2\pi a_2}{n_i}}, e^{\frac{i2\pi a_3}{n_i}}\right)$$

• Orbifold action encoded by (a_1, a_2, a_3) , with $a_1 + a_2 + a_3 \equiv 0 \pmod{n_i}$.

- However, orbifold actions are not uniquely identified by a single 3-tuple (scaling, permutation)
- Example: C³/Z₃ has two unique actions given by: (0,1,2) and (1,1,1). The former has action diag(1, ζ, ζ²) for ζ³ = 1, whereas the second has action diag(ζ, ζ, ζ).

- A toric Calabi-Yau orbifold can be represented by a lattice polytope
- Lattice polytopes correspond to the same physical orbifold if and only if they are related to each other by a $\operatorname{GL}(n,\mathbb{Z})$ transformation
 - Diffeomorphism invariance of Polyakov string action
- The area, volume, etc. of the lattice polytope equals the order of the orbifold group.

Theorem: every integer-valued 2×2 matrix is the product of a matrix in $GL(2,\mathbb{Z})$ and a *Hermite normal form*:

$$H = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}, \qquad a_{12} < a_{22}$$

- Physically unique toric diagrams can thus be identified with Hermite normal forms
- Hermite normal forms \iff sublattices
 - Given a lattice basis $\Lambda = \{v_1, v_2, \ldots\}$, $H\Lambda$ yields sublattice
 - Can also be obtained from counting lattice points contained in scaled toric diagrams

Example: $\mathbb{C}^3/\mathbb{Z}_3$ Orbifolds

/⊒ > < ∃ >

Let g in the permutation representation of G be composed of α_1 1-cycles, α_2 2-cycles, up to α_k k-cycles. We can write:

$$\zeta_g = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_k^{\alpha_k}$$

The cycle index of a group G is obtained by averaging the ζ_g :

$$Z_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{g} \zeta_{g} = \frac{1}{|\mathcal{G}|} \sum_{\alpha} c(\alpha_{1}, \dots, \alpha_{k}) x_{1}^{\alpha_{1}} \dots x_{k}^{\alpha_{k}}$$

where $c(\alpha_1, \ldots, \alpha_k)$ denotes the degeneracy of each cycle structure and the sum is taken over cycle structures.

Burnside's Lemma: The number N(G) of orbits of G under the group action on X is given by the size of the fixed sets F_g under each element $g \in G$:

$$N(G) = \frac{1}{|G|} \sum_{g \in G} |F_g|$$

- G symmetry group of toric diagram, X set of sublattices
- Number of inequivalent sublattices of index n ↔ number of orbits of G on X
- Only need one $g \in G$ for each cycle structure (conjugacy class)

Motivation for Platonic Solids

- ADE classification of discrete subgroups of SU(2):
 - A_n: binary cyclic group of order 2n
 - D_n : binary dihedral group of order 4n
 - E₆: binary tetrahedral group of order 24
 - E7: binary octahedral group of order 48
 - E_8 : binary icosahedral group of order 120
- Unique set of quivers with only finitely many isomorphism classes of indecomposable representations
- Connection to quiver gauge theories: quivers represent matter content of gauge theory for D-branes on orbifolds, where nodes <i>factors of the gauge group and links <i>fields in particular representations

Tetrahedral Symmetries

- Symmetry group given by S_4
 - Permutation action on vertices

Tetrahedron Data

$$Z_{5_4} = \frac{1}{24} \left(x_1^4 + 6x_1^2x_2 + 3x_2^2 + 8x_1x_3 + 6x_4 \right)$$

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$f_{x_1^4}^{\scriptscriptstyle (2)}$	1	7	13	35	31	91	57	155	130	217	133	455	183	399	403	651
$f^{\scriptscriptstyle (2)}_{x_1^2 x_2}$	1	3	5	11	7	15	9	31	18	21	13	55	15	27	35	75
$f^{\scriptscriptstyle (2)}_{x^2_2}$	1	3	5	11	7	15	9	31	18	21	13	55	15	27	35	75
$f^{\vartriangle}_{x_1x_3}$	1	1	1	2	1	1	3	2	4	1	1	2	3	3	1	3
$f^{\triangle}_{x^1_4}$	1	1	1	3	3	1	1	5	2	3	1	3	3	1	3	7
f₫	1	2	3	7	5	10	7	20	14	18	11	41	15	28	31	58

Table 1: Number of sublattices of index n invariant under representative symmetries from each conjugacy class of S_4 .

- Multiplicative sequences: f(nm) = f(n)f(m) for n, m coprime.
- Multiplicative sequences form a group under *Dirichlet convolution*:

$$f(n) = (g * h)(n) = \sum_{m|n} g(m)h\left(\frac{n}{m}\right)$$

where the notation m|n means that the sum runs over all the divisors m of n.

Analytic Sublattice Enumeration

Define the unit, number, and square sequences:

$$u = \{1, 1, 1, \ldots\}$$
$$N = \{1, 2, 3, \ldots\}$$
$$N^2 = \{1, 4, 9, \ldots\}$$

The Dirichlet characters $\chi_{k,n}$ of modulus k and index n form an Abelian group of order $\varphi(k)$:

$$\chi_{1,1} = u$$

$$\chi_{2,1} = \{1, 0, \ldots\}$$

$$\chi_{3,1} = \{1, 1, 0, \ldots\}$$

$$\chi_{3,2} = \{1, -1, 0, \ldots\}$$

Tetrahedron Analytics

$$f_{x_1^4}^{\bigtriangleup} = u * N * N^2$$

$$f_{x_1^2 x_2^1}^{\bigcirc} = \{1, -1, 0, 4\} * u * u * N$$

$$f_{x_2^2} = \{1, -1, 0, 4\} * u * u * N$$

$$f_{x_1^1 x_3^1}^{\bigtriangleup} = \{1, 0, -1, 0, 0, 0, 0, 0, 3\} * u * u * \chi_{3,2}$$

$$f_{x_4^1}^{\bigcirc} = \{1, -1, 0, 2\} * u * u * \chi_{4,2}$$

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Tetrahedron Numbers

Figure 1: Scatter plot of the number of invariant sublattices of index *n* for the tetrahedral lattice. Primes are given in purple. The blue line corresponds to $n^2/24$.

Cubic Symmetries

- Symmetry group given by $S_4 imes \mathbb{Z}_2$
 - One copy for each embedded tetrahedron
 - Permutation representation describes action on four space diagonals

$$Z_{S_4 \times \mathbb{Z}_2} = \frac{1}{24} \left(x_1^{4+} + 6 x_1^2 x_2^{1+} + 3 x_2^{2+} + 8 x_1^1 x_3^{1+} + 6 x_4^{1+} \right)$$

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$f_{x_1^{4+}}^{\boxdot}$	1	7	13	35	31	91	57	155	130	217	133	455	183	399	403	651	307	910
$f^{\square}_{x_1^2 x_2^{1+}}$	1	3	5	11	7	15	9	31	18	21	13	55	15	27	35	75	19	54
$f_{x_2^{2+}}^{\square}$	1	7	5	23	7	35	9	59	18	49	13	115	15	63	35	135	19	126
$f^{\square}_{x_1^1x_3^{1+}}$	1	1	1	2	1	1	3	2	4	1	1	2	3	3	1	3	1	4
$f^{\bigcirc}_{x_4^{1+}}$	1	3	1	5	3	3	1	7	2	9	1	5	3	3	3	9	3	6
f□	1	3	3	9	5	13	7	24	14	23	11	49	15	33	31	66	21	70

Table 2: Number of sublattices of index *n* invariant under representative symmetries from each conjugacy class of $S_4 \times \mathbb{Z}_2$.

< ∃ →

Cube Analytics

$$f_{x_1^{4+}}^{\boxdot} = u * N * N^2$$

$$f_{x_1^2 x_2^{1+}}^{\square} = \{1, -1, 0, 4\} * u * u * N$$

$$f_{x_2^{2+}}^{\Box} = \{1,3\} * u * u * N$$

$$f_{x_1^1x_3^{1+}}^{\square} = \{1, 0, -1, 0, 0, 0, 0, 0, 3\} * u * u * \chi_{3,2}$$

$$f_{x_4^{1+}}^{\square} = \{1,1\} * u * u * \chi_{4,2}$$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Figure 2: Scatter plot of the number of invariant sublattices of index *n* for the cubic lattice. Primes are given in purple. The blue line corresponds to $n^2/24$.

Dodecahedral Symmetries

• $A_5\times \mathbb{Z}_2$ symmetry with permutation action on five embedded cubes

$$Z_{A_5 \times \mathbb{Z}_2} = \frac{1}{60} \left(x_1^5 + 12x_5^1 + 12x_5^{1\prime} + 20x + 15x \right)$$

- Crystallographic restriction in 3D prevents 5-fold lattice symmetry
- Largest 3D space group of order 48
- Embedding in higher dimensions

Alternative Route: Projective Geometry

• Surprising correspondence between symmetry groups of lattice polytopes and projective groups over finite fields:

 $S_3 \simeq \mathrm{PGL}(2, \mathbb{F}_2)$

 $S_4\simeq \mathrm{PGL}(2,\mathbb{F}_3)$

$$A_5 \simeq \mathrm{PGL}(2, \mathbb{F}_4)$$

• Rephrase invariant sublattice question in terms of projective spaces

- Number of inequivalent orbifolds on a variety of spaces counted by symmetry analysis
 - Toric diagrams with symmetries of S_3 , D_4 , D_6 , S_4 , $S_4 imes \mathbb{Z}_2$
- Projective geometry or higher-dimensional embedding methods
- Representations of Lie algebras, orbifold enumeration, and quiver gauge theories

- J. Davey, A. Hanany, and R.K. Seong. "An Introduction to Counting Orbifolds." http://arxiv.org/abs/1102.0015.
- J. Davey, A. Hanany, and R.K. Seong. "Counting Orbifolds." http://arxiv.org/pdf/1002.3609.pdf.
- S. Franco, A. Hanany, K.D. Kennaway, D. Vegh, and B. Wecht. "Brane Dimers and Quiver Gauge Theories." http://arxiv.org/abs/hep-th/0504110.
- A. Hanany, D. Orlando, and S. Reffert. "Sublattice Counting and Orbifolds." http://arxiv.org/pdf/1002.2981v1.pdf.
- A. Hanany and R.K. Seong. "Symmetries of Abelian Orbifolds." http://arxiv.org/abs/1009.3017.
- J. McKay. "Graphs, singularities and finite groups," Proc. Symp. Pure Math. 37, 183 (1980).

伺 ト く ヨ ト く ヨ ト