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Compactification of Extra Dimensions

@ Superstring theory predicts (9+1) spacetime dimensions —
6 must be undetectable!

o Calabi-Yau compactifications

@ D-branes and gauge theories
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Orbifold Compactifications

@ Manifold of equivalence classes of orbits of a finite group

(quotient group)
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Describing Orbifold Actions

@ Most general Abelian action constructible from Z,, x Zp,

o Let g generate Z,,; action on C3 given by the following

representation:
i2may i2man i2maz
diag e " ,e " ,e "

@ Orbifold action encoded by (a1, az, a3), with
a1+ ax + a3 =0 (mod ny).
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Describing Orbifold Actions

@ However, orbifold actions are not uniquely identified by a
single 3-tuple (scaling, permutation)

o Example: C3/Z3 has two unique actions given by: (0, 1,2)
and (1,1,1). The former has action diag(1, ¢, ¢?) for ¢3 =1,
whereas the second has action diag(¢, ¢, ¢).
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Toric Diagrams and Orbifolds

@ A toric Calabi-Yau orbifold can be represented by a lattice
polytope

@ Lattice polytopes correspond to the same physical orbifold if
and only if they are related to each other by a GL(n,Z)
transformation

e Diffeomorphism invariance of Polyakov string action

@ The area, volume, etc. of the lattice polytope equals the order
of the orbifold group.
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Hermite Normal Forms and Sublattices

Theorem: every integer-valued 2 X 2 matrix is the product of a
matrix in GL(2,Z) and a Hermite normal form:

a1 a2

H = a;p < a

( 0 322> ) 12 22

@ Physically unique toric diagrams can thus be identified with
Hermite normal forms

@ Hermite normal forms <= sublattices

o Given a lattice basis A = {vy, v, ...}, HA yields sublattice
o Can also be obtained from counting lattice points contained in
scaled toric diagrams
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Example: C3/Z3 Orbifolds
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Sublattice Enumeration with Burnside's Lemma

Let g in the permutation representation of G be composed of a3
1-cycles, ap 2-cycles, up to ay k-cycles. We can write:

The cycle index of a group G is obtained by averaging the (,:
1 1 o o
ZG = ﬁZCg = @ZC(Q]_,...,CM[()X]_ cee Xy
g «

where c(aq, ..., ak) denotes the degeneracy of each cycle
structure and the sum is taken over cycle structures.
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Sublattice Enumeration with Burnside's Lemma

Burnside’s Lemma: The number N(G) of orbits of G under the
group action on X is given by the size of the fixed sets F under
each element g € G:

,G,ZIFI

geai

@ G symmetry group of toric diagram, X set of sublattices

@ Number of inequivalent sublattices of index n <= number
of orbits of G on X

@ Only need one g € G for each cycle structure (conjugacy
class)
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Motivation for Platonic Solids

e ADE classification of discrete subgroups of SU(2):
e A,: binary cyclic group of order 2n
e D,: binary dihedral group of order 4n
o Eg: binary tetrahedral group of order 24
e E7: binary octahedral group of order 48
o Eg: binary icosahedral group of order 120
@ Unique set of quivers with only finitely many isomorphism
classes of indecomposable representations
e Connection to quiver gauge theories: quivers represent matter
content of gauge theory for D-branes on orbifolds, where
nodes <= factors of the gauge group and links <= fields
in particular representations
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Tetrahedral Symmetries

@ Symmetry group given by 54
e Permutation action on vertices

x12x5% X1 xs
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Tetrahedron Data

1
Zs, = o (xf' + 6x12x2 + 3x22 + 8x1x3 + 6X4)

n 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
fxf 1 7 13 35 31 91 57 155 130 217 133 455 183 399 403 651
fxlgxz 13 5 11 7 15 9 31 18 21 13 55 15 27 35 75
fX22 1 3 5 11 7 15 9 31 18 21 13 55 15 27 35 75
fX;XS 111 2 1 1 3 2 4 1 1 2 3 3 1 3
fx‘;i 111 3 3 1 1 5 2 3 1 3 3 1 3 7

f 12 3 7 5 10 7 20 14 18 11 41 15 28 31 58

Table 1: Number of sublattices of index n invariant under representative
symmetries from each conjugacy class of S,.
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Analytic Sublattice Enumeration

e Multiplicative sequences: f(nm) = f(n)f(m) for n, m coprime.
@ Multiplicative sequences form a group under Dirichlet
convolution:

f(n) = (g  h)(n Zg h(-)

where the notation m|n means that the sum runs over all the
divisors m of n.
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Analytic Sublattice Enumeration

Define the unit, number, and square sequences:

v={1,1,1,...}
N=1{1,2,3,..}
N? ={1,4,9,...}

The Dirichlet characters x , of modulus k and index n form an
Abelian group of order ¢(k):

X1,1=U

x21 ={1,0,...}
x31=1{1,1,0,...}
x32 =1{1,-1,0,...}
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Tetrahedron Analytics

ﬂ(fyk = ux N x N?
fX12‘X21 ={1,-1,0,4} xuxux N
fX22‘ ={1,-1,0,4} xuxux N
fr = {1,0,-1,0,0,0,0,0,3} # u# u* y32

X1 X3

fxi‘:{l,—l,0,2}>ku*u>kx472
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Tetrahedron Numbers
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Figure 1: Scatter plot of the number of invariant sublattices of index n
for the tetrahedral lattice. Primes are given in purple. The blue line
corresponds to n?/24.
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Cubic Symmetries

@ Symmetry group given by S4 X Zy
e One copy for each embedded tetrahedron
e Permutation representation describes action on four space

diagonals
s
Sa e o
I
-
xit x* 2

3

2 1+
X1X2 x}x%*’
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Zs,x7, = % T+ 6xixt + 33T +8xixgT +6x "
n 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
fgﬂ 1 7 13 35 31 91 57 155 130 217 133 455 183 399 403 651 307 910
:;’]sz“ 13 5 11 7 15 9 31 18 21 13 55 15 27 35 75 19 54
fg& 17 5 23 7 35 9 59 18 49 13 115 15 63 35 135 19 126
@3“ 111 2 1 1 3 2 4 1 1 2 3 3 1 3 1 4
fgﬂ 131 5 3 3 1 7 2 9 1 5 3 3 3 9 3 6
f 13 3 9 5 13 7 24 14 23 11 49 15 33 31 66 21 70

Table 2: Number of sublattices of index n invariant under representative
symmetries from each conjugacy class of 54 X Z,.
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Cube Analytics

fx?+ —ux Nx N2
f H—{l —1,0,4} xuxux N
2+—{1 3fxusxuxN
fX?X§+ = {1,0,-1,0,0,0,0,0,3} * u u * x3

H—{l 1} % ux us*xa2
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Cube Numbers
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Figure 2: Scatter plot of the number of invariant sublattices of index n
for the cubic lattice. Primes are given in purple. The blue line
corresponds to n?/24.
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Dodecahedral Symmetries

@ As X Zp symmetry with permutation action on five embedded
cubes

1
Zpgxz, = 50 (Xir’ + 12X§ + 12X§’ + 20x + 15x>
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Problems with Dodecahedron Analysis

@ Crystallographic restriction in 3D prevents 5-fold lattice
symmetry

@ Largest 3D space group of order 43

@ Embedding in higher dimensions
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Alternative Route: Projective Geometry

@ Surprising correspondence between symmetry groups of lattice
polytopes and projective groups over finite fields:

S3 ~ PGL(2,F>)
54 ~ PGL(Q, F3)
A5 =~ PGL(2, IF4)

@ Rephrase invariant sublattice question in terms of projective
spaces
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Summary and Future Work

@ Number of inequivalent orbifolds on a variety of spaces
counted by symmetry analysis

e Toric diagrams with symmetries of S3, D4, Dg, S4, Sy X Zo

@ Projective geometry or higher-dimensional embedding
methods

@ Representations of Lie algebras, orbifold enumeration, and
quiver gauge theories
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