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Plants acquired mitochondrial linear
plasmids horizontally from fungi likely
during the conquest of land
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Abstract

Mitochondrial linear plasmids have been sporadically reported in fungi and plants. Yet, much remains obscure

about the diversity, distribution, and evolution of mitochondrial linear plasmids. Here, through phylogenomic
analyses across 7,163 cellular organisms (including 991 plants), we find that mitochondrial linear plasmids are widely
present in land plants and fungi. Phylogenetic analyses indicate that plants are likely to have acquired mitochondrial
linear plasmids horizontally from fungi before or during the conquest of terrestrial environments by plants. Gene con-
tent analyses show that mitochondrial linear plasmids harbor a highly dynamic and promiscuous repertoire of genes.
Our study refines the understanding of the origin and evolution of mitochondrial linear plasmids.
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plasmids

Main text

Transposable elements (TEs) comprise a major propor-
tion of the plant genomes, contributing substantially to
the evolution of their genome complexity. Among diverse
TEs, Polintons (also known as Mavericks) are unusual
large DNA transposons that have been thought to be pre-
sent widely in the genomes of animals and protists [1-3].
Typically, the Polinton genomes are flanked by terminal
inverted repeats (TIRs) and encode several conserved
proteins, including protein-primed family-B DNA poly-
merase (pPolB), retroviral-like (RVE) integrase, DNA
packaging ATPase, and maturation protease [3]. Moreo-
ver, many Polintons encode homologs of viral capsid
proteins, indicating that they might produce virions and
represent bona fide viruses [4]. Therefore, Polintons have
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been proposed to possess dual lifestyles as both transpo-
sons and viruses [3]. Interestingly, Polintons share a set
of conserved genes with a variety of mobile genetic ele-
ments that pertain to viruses, virophages, TEs, or plas-
mids, forming a highly complex evolutionary network
[3, 5]. Polintons, adenoviruses, bidnaviruses, virophages,
transpovirons, cytoplasmic linear plasmids, mitochon-
drial linear plasmids, and diverse phages (e.g., tectivi-
ruses) encode a common hallmark protein, namely pPolB
[3]. For convenience, we use Polinton-like mobile genetic
elements (Polin-MEs) to refer to these pPolB-encoding
mobile genetic elements.

Among Polin-MEs, mitochondrial linear plasmids
have been sporadically reported in fungi and plants,
but their origins remain largely mysterious [6, 7]. Here,
through phylogenomic analyses across 7,163 eukary-
otes, we found that plants are likely to have acquired
mitochondrial linear plasmids horizontally from fungi at
least before or during the conquest of terrestrial environ-
ments. Our phylogenomic analyses provide insights into
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the origin, evolution, and diversity of mitochondrial lin-
ear plasmids in plants.

Distribution of mitochondrial linear plasmids in plants
First, to explore the distribution of the mitochondrial
linear plasmids in plants, we used a combined similar-
ity search and phylogenetic analysis approach to identify
mitochondrial linear plasmids in a total of 991 represent-
ative plant species (including nuclear genomes and mito-
chondrial genomes) (Table S1). These plant species cover
the major diversity of plants, including 781 angiosperms,
15 gymnosperms, 4 hornworts, 8 liverworts, 19 mosses,
125 chlorophytes, 1 glaucophyte, and 19 rhodophytes
(Table S1). Mitochondrial linear plasmids were identi-
fied in nuclear genomes and/or mitochondrial genomes
of a limited range of green plants, including angiosperms,
gymnosperms, ferns, and liverworts (Fig. 1B), indicating
that mitochondrial linear plasmids are likely to be only
present in land plants.

Horizontal transfer of mitochondrial linear plasmids

from fungi to plants

To explore the potential source of plant mitochon-
drial linear plasmids, we used the combined simi-
larity search and phylogenetic analysis approach to
identify mitochondrial linear plasmids in the genomes
of 6,172 eukaryotes, including 77 Excavata species,
5,792 Amorphea species, 3 Haptista species, 295 SAR
(Stramenopila, Alveolata, and Rhizaria) species, and 5
Cryptista species (Fig. 1A) (Table S1). Mitochondrial
linear plasmids were identified in nuclear genomes and/
or mitochondrial genomes of a large number of fungi,
suggesting that horizontal transfer(s) of mitochondrial
linear plasmids might have taken place between fungi
and plants (Fig. 1A). Different from fungal retroplas-
mids that replicate via reverse transcription and encode
reverse transcriptases, mitochondrial linear plasmids
we identified here encode pPolB proteins. To further
explore the evolutionary relationships of mitochondrial
linear plasmids from plants and fungi, we performed
phylogenetic analyses based on pPolB, a hallmark pro-
tein for analyzing the relationship of Polin-MEs [3].

(See figure on next page.)
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Phylogenetic analyses of pPolB proteins clearly show
that mitochondrial linear plasmids from land plants
cluster together (UBoot=100%) and nest within the
diversity of the plasmids from fungi with robust sup-
port (Fig. 2 and Fig. S1). It should be noted that most
of the mitochondrial linear plasmid sequences from
liverworts and ferns were too short to be used for reli-
able phylogenetic analyses, and we used only one pPolB
protein from the mitochondrial genome of Marchantia
paleacea (Supplemental Data Set 1). Nevertheless, our
phylogenomic analyses support that plants are likely to
have acquired mitochondrial linear plasmids horizon-
tally from fungi.

We then closely interrogated the distribution of mito-
chondrial linear plasmids in fungi, and found that they
are widely distributed in the genomes of terrestrial
fungi, including Zygomycota, Mucoromycota, Basidi-
omycota, and Ascomycota (Fig. 1C). Interestingly,
fungal plasmids that are closely related to plant plas-
mids are from species of Mucoromycota (Mortierella-
les, Mucorales, and Endogonales) and Basidiomycota
(Microbotryales, Agaricales, Polyporales, and Russu-
lales) (Fig. 1C), many of which can establish symbiosis
with diverse plants, such as species within Agaricales,
Russulales, and Endogonales [8, 9]. Taken together, we
hypothesize that plants might have acquired mitochon-
drial linear plasmids horizontally from fungi probably
through symbioses such as mycorrhizal symbiosis.

Frequent host switching of mitochondrial linear plasmids
in plants

We observed that the phylogeny of mitochondrial lin-
ear plasmids (based on the pPolB proteins) is generally
incongruent with the phylogeny of their plant hosts.
Moreover, we compared the phylogeny of mitochon-
drial linear plasmids with that of their plant hosts.
Indeed, we found no statistically significant congru-
ence in phylogenies between plant mitochondrial lin-
ear plasmids and their hosts (Fig. S2, Table S2). These
results suggest that plant mitochondrial linear plasmids
might have undergone frequent host switching.

Fig. 1 Distribution of the mitochondrial linear plasmids in eukaryotes. A Distribution of the mitochondrial linear plasmids in major eukaryote
groups. Numbers indicate the numbers of species used. Closed and open green circles indicate the presence and absence of the mitochondrial
linear plasmids in the corresponding eukaryote groups, respectively. B Distribution of mitochondrial linear plasmids in plants. Numbers near plants
indicate the numbers of species used. Closed and open orange circles indicate the presence and absence of the mitochondrial linear plasmids

in the corresponding plant groups, respectively. Numbers in the circles represent the number of species with mitochondrial linear plasmids. C
Distribution of mitochondrial linear plasmids in fungi. Numbers near fungi indicate the numbers of species used. Closed and open blue circles
indicate the presence and absence of the mitochondrial linear plasmids in the corresponding fungal groups, respectively. Numbers in the circles

represent the number of species with mitochondrial linear plasmids
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Fig. 2 Phylogenetic relationship among representative mitochondrial linear plasmids from plants and fungi. Mitochondrial linear plasmids

from fungal and plant nuclear genomes are labeled with circles and rectangles, and are highlighted in purple and blue, respectively. Mitochondrial
linear plasmids were identified in mitochondrial genomes are labeled with triangles. Representative pPolB proteins are labeled in pink stars. Branch
support values are given near the selected nodes
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Dynamic evolution of mitochondrial linear plasmid
genome architectures

To explore the diversity and evolution of gene con-
tents within mitochondrial linear plasmids, we iden-
tified a total of 95 complete elements characterized
by the presence of two flanking TIRs from plants and

Page 5 of 8

fungi, and annotated their protein domain architec-
tures. Unlike canonical Polintons, mitochondrial linear
plasmids of fungi or plants do not encode viral capsid
proteins (MCP or Penton), which is consistent with
their nature as plasmids (Fig. 3D). As expected, the
hallmark protein domain, pPolB, was most frequently
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identified. Most mitochondrial linear plasmids encode
pPolB and RNA_pol (accession: cl44477), which indi-
cates that they are capable of autonomous replication
and transcription. Some domains are related to vari-
ous transposable elements, and these domains might
be derived from transposable element insertions
rather than integral components of mitochondrial lin-
ear plasmids. Many host-derived domains also appear
in mitochondrial linear plasmids but with relatively
low frequency, such as mitochondrion-encoding genes
and PsaA_PsaB-encoding genes (accession: cl08224)
(Fig. 3A-C). Given the frequent movement between
nuclear genomes and mitochondrial genomes observed
for the plasmids (Fig. 1A), we suspect that mitochon-
drial linear plasmids might act as gene transfer agents
which can transfer genes between nuclear genomes and
mitochondrial genomes (Fig. 3E).

Domains related to homing endonucleases, such as
GIY-YIG (accession: PF01541), PDDExK (accession:
cl40440), LAGLIDADG (accession: PF00961), and
HNH (accession: PF01844), were also frequently iden-
tified in mitochondrial linear plasmids (Fig. 3A-C).
Homing endonuclease genes are selfish genetic ele-
ments that mobilize themselves through generating
double strand breaks at specific target sites and getting
copied across to the broken sites [10]. Therefore, we
suspect that homing endonuclease domains might help
drive the rapid spread of mitochondrial linear plasmids
into related target sites within the host genome.

On the origin of mitochondrial linear plasmids in plants

In this study, we found that mitochondrial linear plas-
mids are widely present in the nuclear and/or mito-
chondrial genomes of land plants, and the distribution
indicates that plants are likely to have acquired mito-
chondrial linear plasmids before or during the conquest
of terrestrial environments by plants. Mitochondrial
linear plasmids were identified in the genomes of ter-
restrial fungi (including Zygomycota, Mucoromycota,
Basidiomycota, and Ascomycota), suggesting that mito-
chondrial linear plasmids might have emerged in fungi
during their early transition to land in the Cryogenian
period (~720 million years ago) [11]. However, these
timescales should be taken with caution, because plants
or fungi might have acquired mitochondrial plasmids
later than estimated above (but spread to earlier-
branching lineages through host switching) or earlier
(but lost in earlier-branching lineages). Nevertheless,
our analyses do show that plants might have acquired
mitochondrial linear plasmids horizontally from fungi
through the ancient symbiosis between plants and
fungi.
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Material and methods

Identification of mitochondrial linear plasmids in plants
We used a combined similarity search and phyloge-
netic analysis approach to identify mitochondrial lin-
ear plasmids based on the hallmark protein pPolB
within the genomes of 991 plants [12, 13]. All the
genomes of plants were retrieved from NCBI genome
resources (Table S1). First, we used the tBLASTn algo-
rithm to search plant genomes using various complete
and truncated pPolb proteins (Supplemental Data Set
2) as queries with an e cut-off value of 107°. Then, we
performed initial large-scale phylogenetic analyses of
pPolB homologs from plants and representative pPolB
proteins from Polin-MEs. Protein sequences were
aligned using MAFFT 7.450 [14]. Large-scale phyloge-
netic analyses were performed using an approximate
maximum likelihood method implemented in FastTree
2.1.10 [15].

Identification of mitochondrial linear plasmids

in eukaryotes

To explore the potential source of the mitochondrial
linear plasmids in plants, we used the aforementioned
combined similarity search and phylogenetic analysis
approach to screen the mitochondrial linear plasmids
that are closely related to plant mitochondrial linear plas-
mids in a total of 6,172 eukaryotes. All the genomes of
eukaryotes were retrieved from NCBI genome resources
(Table S1).

Phylogenetic analysis

To explore the evolutionary relationships of the mito-
chondrial linear plasmids, we performed phylogenetic
analyses using pPolB proteins of mitochondrial linear
plasmids, some phages and Polin-MEs. The pPolB pro-
teins were aligned using MAFFT 7.450 [14]. Phylogenetic
analysis was performed using a maximum likelihood
(ML) method implemented in IQ-tree 2 [16]. ModelF-
inder implemented in IQ-tree 2 was used to determine
the best-fitting substitution model [16]. The node sup-
ports were evaluated using an ultrafast bootstrap method
with 1,000 replicates [17]. Phylogenetic trees were anno-
tated using iTOL [18].

Phylogeny congruence analysis

The phylogeny of plant mitochondrial linear plasmids
was compared with that of their hosts using Jane 4 [19].
Different sets of cost values for five types of events (for
cospeciation, duplication, duplication with host switch,
loss, and failure to diverge: 0, 1,2, 1, 1; -1, 0, 0, 0, 0; and
0,1, 1, 2, 0) were examined [20]. The statistical analyses
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were performed using the method of random parasite
tree with the sample size of 500.

Domain architecture annotation

To identify complete mitochondrial linear plasmids, we
used gt tirvish implemented in GenomeTools to iden-
tify the flanking TIRs [21]. We identified a total of 95
complete elements characterized by the presence of
two flanking TIRs (Table S3). Complete mitochondrial
linear plasmids with flanking TIRs were retrieved and
annotated using various domain search or similarity
search tools, including Conserved Domain search [22],
HMMER [23, 24], tBLASTn, and BLASTp.

Abbreviations

TEs Transposable elements

TIRs Terminal inverted repeats

pPolB Protein-primed family-B DNA polymerase
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