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Micrometeorological Flux Methods 

“We’re not in Kansas anymore, Toto”, Dorothy in the Wizard of Oz 

‘Micrometeorologists are like Dorothy, in the Wizard of Oz; they always want to go back to 
Kansas’, quote attributed to David Fitzjarrald, SUNY-Albany 

Studies on topics associated with biogeochemistry, ecology, and atmospheric sciences require 
information on mass, energy and momentum exchange between the ecosystems and atmosphere 
on a continuous basis.  Yet, how can we make such measurements, short of enclosing the 
ecosystem in a huge cuvette?    

Micrometeorological methods provide the primary means of measuring mass and energy 
exchange across the ecosystem-atmosphere interface.  We give homage to Kansas because many 
of the micrometeorological flux methods in vogue were evaluated in Kansas during pioneering 
studies in the late 1960s (Kaimal and Wyngaard, 1990), and later were applied to study 
ecosystem processes during large field campaigns in the 1980s such as FIFE and CASES-99 
(Sellers and Hall, 1992). 

Micrometeorological methods have many advantages.  They are:  

1) in situ, so they are non-intrusive; 

2) they can be applied on a quasi-continuous time basis; 

3) measurements made a point represent an areally-averaged ensemble of mass and energy 
exchange,with a length scale of 100 m to 2 km across a flux footprint..    
 



While micrometeorological methods have many attributes, these attributes rely on many 
assumptions on the state of the atmosphere.    The basis for formulating any micrometeorological 
method is the conservation of a trace gas scalar as it is transferred through the atmosphere.  In 
principle, this is a three-dimensional process, which is varying in time.  In practice we impose 
many restrictions upon the application of the conservation equation and force it to describe 
surface micrometeorology as a one-dimensional processes during steady conditions.  Important 
assumptions on which the simplified method is based include: 

1) steady-state conditions 
2) horizontally homogeneity in source-sinks 
3) flat topography. 

 

Violations in these assumptions must be considered through experimental design and ancillary 
measurements. These topics will be addressed later when discussing application of the method. 

Ergodicity 
 

The expected value of a function, f, distributed across space, is defined by integrating the 
function across the infinite spatial domain and multiplying by the probability density, p. 

Equation 1 
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It is impossible to measure meteorological properties everywhere.  So meteorologists invoke the 

principle of ergodicity using temporal averaging to represent spatial averaging by invoking 

Taylor’s frozen eddy hypothesis, where x = u t. 

Equation 2 
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Often ecologists and statisticians criticize micrometeorologists for employing only one tower and 
claiming their work suffers from pseudo-replication (Hurlbert, 1984). They claim that a 
measurement with one tower does not allow the experimenter to measure the ensemble average. 
One rebut from the micrometeorologist is that we can invoke the Principle of Ergodicity, where 
space-based ensemble averages can be substituted with temporal averaging.  
 

Equation 3 
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In recent years, there has been a growing body of literature defending large scale studies (Carpenter et al., 
1995; Oksanen, 2001; Schank and Koehnle, 2009).    Oksanen (2001), for example, concludes that ‘The 
concept pseudo-replication amounts to entirely unwarranted stigmatization of a reasonable way to test 
predictions referring to large-scale systems’.   The power of micrometeorological flux measurements is 
their ability to measure the short and long-term dynamics of state variables, and when applied in a paired 
fashion two contrasting ecosystems, many hundred hectares in area (Hsieh et al., 2000; Schmid, 2002).   
Micrometeorological methods sample a large footprint, giving us the ability to measure the state of the 
general population, rather than deducing its expected value statistically with a replicated set of small and 
infrequent samples.   We contend that repeated temporal sampling of meteorological variables is not 
pseudo-replication, as suggested by Hurlbert (1984), for two reasons.  First, the theory of ergodicity tells 
us we can substitute spatial sampling with temporal sampling (Panofsky and Dutton, 1984).  And, second, 
we find that successive temporal measurements were not auto-correlated; the sub-hourly temperature 
measurements were uncorrelated after 12 hours and the daily-averaged data became uncorrelated after 90 
days.  Consequently, if we collect a large number of independent statistical samples of temperature at the 
two contrasting field sites that were representative of large areas.  We also contend that repeated temporal 
sampling reduces the sampling error and increases the precision in detecting differences between two 
treatments (Moncrieff et al., 1996). 

 

Flux-Gradient Method 
 

The flux-gradient technique is an application of Fick’s Law of Diffusion to the turbulent 
atmosphere.  It infers the vertical flux density of mass across a virtual plane between the 
biosphere and the atmosphere is a function of an eddy diffusivity, K (m2 s-1), times the vertical 
gradient in the potential, here defined in terms of mixing ratio, c: 

Equation 4 

a cF K c z     

To have units consistent with a flux density, mol m-2 s-1, we multiple K times the gradient by the 
density of dry air.  The negative sign is imposed so fluxes towards the atmosphere are positive, a 
gain, and those from the atmosphere are negative, a loss.  We can substitute c with temperature 
times specific heat at constant pressure (Cp) to compute sensible heat exchange.  We can 
substitute c with wind velocity, u, to compute momentum flux density. 

Flux-gradient theory borrows from the theory describing fluxes of material by molecular 
diffusion, which is a function of the molecular weight of the compound.  For turbulent transfer, it 



is critical to state that the turbulent diffusivity is not a function of molecular diffusivity because 
turbulence motions are many orders of magnitude greater than molecular motions.   K has values 
on the order of 1 while diffusivity has units on the order of 10-5. 

So in principle the eddy diffusivities of momentum, heat, water vapor, and other trace gases (K, 
m2 s-1) are assumed to be identical, e.g. Reynold’s Analogy 

Equation 5 
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On the other hand, eddy diffusivities do vary among different scalars when the sources and sinks 
vary from one another; we will discuss this occurrence below. 

The specific equation for the flux-densities of momentum (), sensible heat (H), latent heat (E) 
and a scalar (Fc), such as CO2, are: 

Equation 6 
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Equation 7 
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Equation 8 
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Equation 9 

c c cF K z     

(mole m-2 s-1)
 

 

In these equations, u is horizontal wind velocity,  is mean potential temperature, a  is mean air 

density, pC is specific heat of air at constant pressure,  is the latent heat of vaporization, e is 



vapor pressure, P is pressure,  is the ratio of the molecular masses for water vapor and dry air, 

and c  is CO2 mole density (mole m-3). 

The sign convention produces positive values of flux densities when they are directed to the 
atmosphere, as they are adding material to the atmosphere. Negative values for flux densities are 
associated with losses from the atmosphere.  The negative sign is therefore applied to the flux 
gradient equations as negative gradients are associated with conditions where the state, 
concentration or mixing ratio of the upper level is less than that closer to the surface. 

Application of this method is dependent upon methods of measuring the vertical concentration 
gradients directly and assessing eddy exchange coefficients indirectly. 

Eddy Exchange Coefficients 
 

As mentioned above, one basic assumption of applying the flux-gradient technique is that the 
sources and sinks of scalars (and possibly momentum) are equal.  The basis for this assumption 
is attributed to Reynolds.  If this assumption is true then we can assume Reynolds similarity, 
Kv=Kh=Kc=Km.   

By exploiting this assumption, we can derive several methods for assessing the eddy exchange 
coefficient.  The most notable methods for evaluating K are the:  

 

1) aerodynamic method; 
2) energy balance method;  
3) ‘direct’ method. 

 

The need to measure gradients well and to chose the proper method of assessing K cannot be 
overemphasized.  Errors in the flux-gradient method are strongly linked to errors in the gradient 
measurements, as well as the technique used to assess the eddy exchange coefficients.  Verma 
and Rosenberg (Verma and Rosenberg, 1975) and Sinclair et al. (Sinclair et al., 1975) have 
conducted detailed error analyzes of the method.  They found that errors can reach 30 to 40% 
when an instrument system is not be able to measure the vertical gradients well, as over forests 
that are aerodynamically rough, or over vegetation that may not be transpiring much. 

Aerodynamic Method: 

The aerodynamic method starts with the assessment of momentum transfer, , and the 
measurement of the wind speed gradient. 
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The eddy exchange coefficient for momentum (m2 s-1) can be described in terms of the friction 
velocity, u* and the wind gradient. 

Equation 11 
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From boundary layer theory we recall that the wind velocity gradient is also a function of friction 
velocity. 

Equation 12 
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We can now eliminate friction velocity and produce a relation for Km that is solely a function of 

height and the wind gradient.
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And the coefficient k is von Karman’s constant, 0.4.  The derivation so far is for neutral thermal 
stratification and short vegetation. 

In practice we must consider stability effects and the zero plane displacement, d, so the equations 
get a bit more complicated 

 

Equation 14 
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Further algebraic manipulation yields: 

 



Equation 15 
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Note that this version contains the diabatic stability correction function that depends on the 
Monin-Obukhov length scale L and information on the zero plane displacement, d. 

 

Alternatively, if one has a direct measure or estimate of friction velocity, from the covariance 
between w and u, we can apply 

 

Equation 16 
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Equation 17 
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The Monin-Obukhov (M-O) Similarity Theory enables us to predict the behavior of wind 
profiles under conditions of neutral, stable and unstable thermal stratification in the surface 
boundary layer (Foken, 2006; Hogstrom, 1996), but not in the mixed or planetary boundary 
layer.   Conceptually, a non-dimensional wind velocity gradient is defined and it is a function of 
a non-dimensional height, z/L: 

Equation 18 
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And for tall vegetation we define the non-dimensional wind shear in terms of the zero-plane 
displacement: 



Equation 19 
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In Equations 18 and 19, L is the Monin-Obukhov length scale.  It is defined using the turbulent 
kinetic energy budget or by using scaling arguments (e.g. Buckingham Pi theory).  From a 
physical view point, z/L is the ratio between of the buoyant production of turbulent kinetic 

energy, 
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Monin-Obukhov theory says little about the behavior of m with z/L. This information must 

be obtained from experimentation and empirical evidence (Businger, 1971; Foken, 2006; 
Hogstrom, 1988).  It does, however, give us a framework for synthesizing wind and turbulence 
data.   

 The functional form of the phi function for momentum is illustrated in Figure 11.  The 
‘phi’ function has 3 asymptotic limits:   

 
1. Under neutral conditions z/L approaches zero and ‘phi’ approaches 1.   

2. Under unstable conditions z/L is less than zero and ‘phi’ gradually approaches an asymptote 
near 0.4, as z/L becomes more negative.  

3. Under stable conditions, z/L is positive, but remains less than about 0.25.  Values for ‘phi’ 
increase rapidly with small changes in z/L.   
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Figure 1 



  

 As z/L becomes more negative wind speeds decrease and free convection occurs.  In this 

situation friction velocity is not the appropriate scaling velocity.  Instead, a convective scaling 

velocity (w*) is more relevant (Hogstrom, 1996; Wyngaard, 1992). 

Equation 20 
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 Under stable conditions, the dimensionless groups are independent of height and there is 

a decoupling between turbulent flow at various layers (Mahrt, 1999); this condition is called z-

less stratification. Elevated wind jets are observed a few tens of meters above the surface, where 

the local wind velocity may be relatively calm.   Jets occur because momentum of the free air in 

the surface boundary layer must find a sink at the ground at night.  To accomplish this feat, wind 

shear must increase (see Figure 1) as stable thermal stratification intensifies, in order to 

compensate for reduced turbulent mixing under stable conditions (Mahrt, 1999).     

 Empirical algorithms for φm typically follow the form: 

Equation 21 
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Model coefficients for Equation 19 from selected field studies are listed for unstable (Table 1) 

and stable (Table 2) conditions; these data are extracted from the pioneering study of Businger 

(1971) and a grand average of studies, based on the reviews and studies of Hogstrom (1988; 

1996). 



Table 1 Parameters for Phi functions for momentum transfer, unstable thermal 
stratification 

Citation k γ β 

(Businger, 1971)  0.35 -15 -1/4 

(Hogstrom, 1996) 0.40 -19 -1/4 

 

 

Table 2 Parameters for Phi functions for momentum transfer, stable thermal stratification 

Citation k γ β 

(Businger, 1971) 0.35 4.7 1 

(Hogstrom, 1996) 0.40 5.3 1 

 

Monin-Obukhov theory can also be used to define dimensionless gradients for potential 

temperature and other scalars (Foken, 2006; Hogstrom, 1996): 

Equation 22 
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When designing an experiment, rules of thumbs are important and helpful for guestimating K, 
fluxes and the gradients that need to be resolved.  A good guess for K can come by applying 0.4 
for k, estimating friction velocity as 0.125 times wind speed and assuming that d is about 60 to 
70% of canopy height, h. 

Energy Balance Method: 

Investigators have used the energy balance method for over forty years to assess mass and 
energy exchange between vegetation and the atmosphere (Baldocchi et al., 1981; Biscoe et al., 
1975; Denmead, 1969; Verma and Rosenberg, 1975). The relation starts with the formula for the 
net radiation balance, where the net radiation flux density (Rn) is partitioned in to flux densities 

for sensible (H) and latent heat (E) and conductive heat transfer into the soil (G): 

 



Equation 23 

nR H E G    

(J m-2 s-1) 

 

Substituting the Flux-Gradient relations, shown at the introduction of this topic, with the energy 
balance equation yields: 
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Of course this calculation assumes that Kv = Kh.  If this relation is applied to forest canopies with 
substantial standing biomass we must add a heat storage term, S, to the rhs of the energy balance 
equation. 

 
Error analyzes of the method suggest that errors for computing latent heat and CO2 flux densities 
over crops are on the order of 10 and 15%, respectively (Sinclair et al., 1975; Verma and 
Rosenberg, 1975).  The relative error in the Bowen ratio measurement method is a function of 
the standard deviations of K and the vertical gradients: 
 

 

Equation 25 
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The error associated with deducing K is a function of the errors of the radiation balance and the 
errors in measuring gradients of temperature and humidity. 

 



Equation 26 
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Pitfalls 
 

Extreme care must be used when applying this method to scalars as many workers (Businger, 
1971; Dyer and Hicks, 1970; Pruitt et al., 1973)  show that Reynolds analogy fails.  Empirical 
evidence shows that a more common observation is that 

 

m v h c xK K K K K     

 

Under near neutral conditions, one assumption is: 

 

1.35 m v h c xK K K K K     

 

Momentum transfer is affected by pressures forces, which do not play a role in mass transfer, is 
one argument for the different diffusivity values.  Pressure allows momentum to interact with its 
surroundings more efficiently. 

And one can only assume 

 

v h c xK K K K    

 

when the sources and sinks are equal.    

Eddy diffusivities are not a function of molecular diffusivity, as has been mistaken from time to 
time (Glotfelty et al., 1983; Hicks et al., 1984). 

 



Differential source-sink locations and processes are a reason why Km does not equal the scalar 
values.  Investigators have developed algorithms, that are stability dependent, to correct these 
values for one another.  Empirical relations published in the literature include: 
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Stable 
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Though the review by Hogstrom (Hogstrom, 1996) indicates that the error noted from the Kansas 
experiment is not 1/0.75 but closer to 1/0.9. 

Eddy exchange coefficients will differ from one another when there is significant spatial 
separation in sources and sinks.  Model computations of Kw, Kh and Kc over a tall temperate 
forest demonstrate the impact of this point.  The sources of heat and vapor tend to be co-located, 
sunny leaves in the upper portion of the canopy. So assuming Kw equals  Kh is a good 
assumption.  CO2 exchange, however, involves leaf photosynthesis by these active leaves and 
soil respiration, about 20 m away. In this case Kc does not equal Kw and is smaller by 10 to 20 %.  
One will also expect Kw and Kh to deviate from one another after a rain event causes the soil to 
be wet. Then most sensible heat will be generated by the sunlit leaves while evaporation will 
occur from the leaves and the soil.  In this case Kc and Kw may approach one another. 

 



There is some theoretical appeal to estimating exchange coefficient corrections in terms of Ri 
rather than z/L due to the effects of autocorrelation in assessing turbulent fluxes and z/L (hicks).  
This linkage and criticism should be explored whenever you are comparing two derived 
variables. 

Another factor that may cause the sources and sinks of heat and water transfer to be different is 
sensible heat advection, as occurs over irrigated fields in arid and semi-arid environments.  There 
is considerable controversy on this topic.  A team of scientists from Nebraska (Motha et al., 
1976) have reported that Kh does not equal Kw and exceeds it when there are inverted 
temperature gradients over actively transpiring crops.  Another group of worker, studying 
irrigated rice in Australia (Lang et al., 1983) report divergent results, too.  But they find relation 
between Kh and Kv is reversed.   The Australian group explains their results as arising from the 
effect of large eddies being associated with the downward transport of sensible heat and 
moisture.  Since the profiles of these two scalars are different due to insufficient adjustment in an 
evolving boundary layer, the mechanism for transport differs.  Their hypothesis is supported with 
model calculations derived from Rao et al. (Rao et al., 1974) (Kh < Kv) and observations that the 
correlation between T and q fluctuations is weak.  

In advective conditions one can assume the flux is the sum of contributions for the dry and wet 
areas, with proper weighting considered: 
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Assuming that the upwind dry area has no evaporation and the upwind humidity gradient is zero 
allows a simplification of this relation to yields: 
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The ratios of the temperature gradients are negative in an advective situation.  The dry area is 
more convective so it will be associated with larger eddies, causing Kdry/Kwet > 1.  This results in 
Kh/Kv < 1. 

This theory does not explain the Nebraska results, however. McNaughton and Laubach revisited 
the problem recently using a theory that divided eddy fluctuations into active and inactive 
components: 

' '
a ix x x x    

 

The active and inactive components are defined by applying high and low pass filters to the data. 
The inactive component is the long term, slow component and is associated with planetary 
boundary layer motions. 

They found that Kh > Kv when the Bowen ratio is small and negative, as was observed by the 
Nebraska team.  McNaughton and Laubach (1998) conclude that 2 mechanisms account for 
differences between Kh and Kw. One factor is the lack of complete boundary layer adjustment, as 
when one is in an evolving and advective boundary layer.  The second occurs from non-steady 
winds that are associated with high evaporation rates and large saturation deficits. 

Another factor to consider is the co-location of sources and sinks. With the CANVEG model, 
that considers non-local turbulent transfer, we can see that the exchange coeffient for CO2 which 
has a soil source and vegetative sink, does not equal the exchange coefficient for water, where 
most of the source is transpiration from the vegetation. The exchange coefficient for heat is 
collocated with water as energy is absorbed by the upper vegetation. 



 

Figure 2 Calculations of the eddy exchange coefficients for water, heat and CO2 over a tall temperate forest 
with a Lagrangian random walk model. Note how Kh is similar to Kv because the sources of heat and vapor 
come from the upper foliage. In contrast, Kv and Kc differ because there is a strong source of CO2 at the soil, 
as well as a sink in the upper foliage. 

Roughness sublayer 
 

K theory is notorious for its failure in a zone called the roughness sublayer.  It is a region in the 
internal surface boundary layer, immediately adjacent to the vegetation.  The roughness sublayer 
can extend 2 to 3 canopy heights, as it is directly affected by the influence of local trees or 
plants.  In this zone Monin-Obukhov similarity theory fails.  

When applying Flux-gradient theory, one can in principle avoid errors that are introduced by 
working in the roughness sublayer by making measurements above it. Two extra problems arise 
with this approach. One, we need larger fetch. Two, the gradients become weaker and harder to 
detect. 

Investigators commonly examine the roughness enhancement factor.  It is the ratio of the 
observed K to that computed from Monin-Obukhov scale theory 

 

Equation 29 
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Classic and pioneering work by Raupach (Raupach, 1979) indicated that the enhancement factor 
was on the order of 2.  Others (Cellier and Brunet, 1992; Simpson et al., 1998) revisited the 
problem with modern instrumentation and were able to study the problem over the course of a 
growing season show a distinct effect of leaf area and thermal stratification. 

 

 

Table 3 Enhancement factors for Kco2, Forest with foliate canopy. 

Derived from Simpson et al. 1998 

 

height Unstable Near neutral Stable 

1.9-2.2h 0.92 1.18 1.18 

1.6-1.9h 1.23 1.27 1.52 

1.4-1.6h 1.64 1.31 1.49 

1.2-1.4h 1.60 1.57 1.66 

    

    

 

 

 

Table 4 Enhancement factors for Kco2, Forest with senescent leaves 

Simpson et al. 1998  

 

height Unstable Near neutral Stable 

1.9-2.2h 0.90 1.38 1.27 

1.6-1.9h 0.84 1.52 1.49 

1.4-1.6h 0.93 1.35 1.47 



1.2-1.4h 1.20 1.88 1.92 

    

    

 

They conclude that the roughness sublayer extended to about 2 times canopy height.   

 

Cellier and Brunet (Cellier and Brunet, 1992) evaluated data over a corn canopy. They found that 
the depth of the roughness sublayer is a function of the heterogeneities. They scaled the 
enhancement factor for heat and vapor as: 

 

Equation 30 
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They report that the normalized length scale, z*/�� ranges between 3 and 4, where  is the 
distance between plants. 

Below, we use the conservation equation for a scalar flux covariance, w c' ' , to arrive at a 
theoretical understanding why K theory fails in the roughness sublayer. 
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Terms on the rhs are due to shear production, transport, pressure production and buoyancy 
production. 

The steady state balance in a scalar covariance budget is a function of shear production, turbulent 
transport, pressure production and buoyancy production.  A common parameterization of the 
pressure term is as a function of the flux covariance and a time scale: 

Equation 32 
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On re-substitution (and assuming near neutral thermal stratification) we have a new equation for 
the flux covariance: 

Equation 33 
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The first term on the RHS is equivalent to K dc/dz.  The second term is a transport term. In 
essence, conventional flux gradient theory fails when the turbulent transport term is non-zero. 
Our data shows this to be true in the layer up to about 1.5h.  High above vegetation canopies the 
turbulent transport term is nill (Finnigan, 2000; Paw U and Meyers, 1989)  

As a closing note, I want to stress that one should never attempt to apply Flux-Gradient theory by 
placing one instrument in the canopy and another above it.  I have seen this done by colleagues 
with faint acquaintance of micrometeorology and it is a violation of the concepts discussed so 
far.  K theory is not valid in the mixed layer either. 

 ‘Direct’ Methods 
 

The direct method uses a direct measure of a flux density and its vertical gradient to develop an 
eddy exchange coefficient for another scalar.  Classic examples employ the use of lysimeters to 
measure water vapor fluxes and the eddy covariance method to measure sensible heat transfer 
(e.g. the modified Bowen ratio, (Meyers et al., 1996).  In principle, flux densities are computed 
as a function of the flux density of a known quantity, x, and the concentration gradients for c and 
x: 

 

Equation 34 
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It is important to stress, NEVER evaluate this equation measuring concentrations differences 
above and within vegetation.  Concentration gradients should only be measured in the constant 
flux layer and preferably above the roughness sublayer. 

Sampling protocol. 
 



When applying the flux-gradient method, one needs a gradient large enough to resolve. This is a 
challenge because vigorous turbulent mixing causes concentration gradients to be small.  Typical 
values for precision required to measure meaningful concentration gradients is 0.5%! 
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The ratio, F/C, is defined as the deposition velocity.  With perfectly responding sensors, the best 
one can usually measure this value is on the order of 0.01 cm s-1.  So one needs to resolve 
relative concentration gradients to a level better than +/- 0.3% to apply the method across a range 
of conditions.  A summary table is listed below. 

 

 

Table 5 The measurement requirements for assessing relative concentration gradients as a 
function of turbulent mixing the the underlying flux density. Values of �C/C for near neutral 
conditions (after Wesely et al., 1989).  (Wesely et al., 1989)These computations are for near 
neutral stratification. 

u* Vd = 0.1 cm/s Vd= 0.5 cm/s Vd= 1.0 cm/s 

    

0.1 1.7% 8.7% 17.3% 

0.2 0.9 4.3 8.7 

0.3 0.6 2.9 5.8 

0.6 0.3 1.4 2.9 

 

 

For more general application one can use: 
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How does one sample gradients to achieve the high level of precision that is required to apply 
flux-gradient methods?   We have two choices.  Either use two instruments, placing one at each 
level, or use a single instrument and switch its sample port back and forth.  If we use separate 
instruments we can measure two height simultaneously and continuously.  But there is great 
potential for bias errors due to drifting of the instrument zero and its calibration.  The effect is 
magnified if the sensor is non-linear or suffers from temperature or humidity effects.  To apply 
this method one must rezero and intercompare   the instruments often.  In the fields of 
evaporation, scientists used temperature/psychrometer systems that systematically and 
periodically reversed or were brought to a common level. 

Another approach is to use on sensor and switch between heights at distinct intervals. But if this 
method is used then one does not measure each level simultaneously.  There is potential for 
sampling error if one level is systematically measured during turbulent sweeps, when the air is 
well mixed, and the other level is measured during quiescent periods, when concentration 
differences are magnified.  

How long should we sample each level and how often should we reverse the measurements?  
Woodruf (1986) report that the sampling error is proportional to the cycling time, Tc and the 

turbulent time scale, : 

 

Equation 35 
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
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If we sample for 30 s at each level, then Tc is 60 s, for example.  The turbulent time scale can be 
assessed as the inverse of the frequency associated with the peak of the scalar power spectrum.  
Typical time scales are on the order of 100 to 200 seconds.  A more rapid switching time reduces 
the sampling error.  In some circumstances, this may not be practical if one is measuring a 
profile at multiple points.  If we measure 5 levels and sample 30 seconds at each level it takes 2.5 
minutes to complete a cycle.  We also have to consider passing air through the cell of the sensor, 
in some circumstances. 



 

Error estimates as a function of the sampling recycling time and the turbulence time scale.  

���� Tc 

7 60 50 

4 60 100 

3 60 200 

44 600 50 

25 600 100 

14 600 200 

105 1800 50 

60 1800 100 

35 1800 200 

   

   

   

 

Some chemical sensors require tens of minutes to make a single measurement, as in the case of 
hydrogen peroxide.  An approach used by Hall et al, is to fit a regression through the intermittent 
time series and take the differences from this means.  Otherwise one has a sampling bias on the 
order of 40-60%, as in the case when sampling period is 30 minutes 
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