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Series and parallel connections are usually first encountered in the study of elec-
trical circuits. Our approach is to first examine a relevant class of partially ordered
sets (posets) and then to define series-parallel networks by analogy [1]. Interesting
asymptotic constants appear everywhere, similar to those associated with counting
various species of trees [2]. We also talk briefly about the enumeration of Boolean
(or switching) functions under different notions of equivalence.

0.1. Series-Parallel Posets. We introduce two procedures for combining two
posets (S, <) and (S5, <) to obtain a new poset, assuming that S N.S" = (:

e the disjoint sum S @ 5’ is the poset on S U S’ such that x < y in S @ 5’ if
either z,y € Sand x <yin S,or z,y € " and x < y in 5’

e the linear product S ® S’ is the poset on S U S’ such that x <y in S ® S’ if
ryye Sandx <yin S,orz,ye S’and x <yin S orx € Sandy e 5.

Clearly & is commutative but © is not. A series-parallel poset is one that can be
recursively constructed by applying the operations of disjoint sum and linear product,
starting with a single point [3].
Define a poset to be N-free if there is no subset {a, b, ¢, d} whose only nontrivial
relations are given by
a<c, a<d, b<d.

It can be proved that a finite poset is series-parallel if and only if it is N-free [4, 5, 6].
Hence there are 15 series-parallel posets with 4 points (see the 16 posets in Figure 2
of [7] and eliminate the poset that looks like an “N”).

There are two cases we shall consider. The number f, of unlabeled series-parallel
posets with n points has (ordinary) generating function [3, 8, 9, 10]

F(r) =" fur™ =1+ @+ 22% + 5a® + 152* + 482° + 16725 + 60227 + 22562° + - -

n=0
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which satisfies the functional equation

o0

F(z) = exp [Z% (F(xk) + % + 2% — 2)] .

k=1

Alternatively, if the sequence {f,} is defined by 1/F(z) = > f.a™, then

(e ]
H (fj+f]+6j 1)
7=1

where 9, = 1 when j = k and §,; = 0 otherwise. Using such properties, it follows
that

fn ~ ﬁ . n73/2 o
where o = 0.2163804273... is the unique positive root of F(x) = ¢ and ¢ is the
Golden mean, and where

1 a! — oo 1 N[
B = e ll_a—l—;aF(a)(l F(&i>2>]_0.2291846208....

The number g,, of labeled series-parallel posets with n points has (exponential)
generating function [1, 3, 8, 10]

Gn » 3, 19, 195 , 2791 ; 51303 1152019
Glo) = Z TR KA R TR Ry A T
N (—1)
— In(1 _ — -1 k—+1 k
(s =) = (et

where the notation P(x)~! denotes the reversion of the power series P(x). Well-
established theory [11, 12] gives that

gn Nfr/n' .n_3/2 _5777,
where £ = In(p) — 2 + 3 = 0.2451438475... and

§
2v/5(2 — @)

Now let us define an equivalence relation on the set of series-parallel posets with n
points, induced simply by declaring S©.S” and S’® S to be equivalent. (See Figure 1.)
The equivalence classes correspond to what are called two-terminal series-parallel
networks with n edges [13, 14, 15, 16, 17, 18, 19], with the understanding that

n= = 0.2137301074....
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Figure 1: There are 10 non-equivalent (unlabeled) series-parallel posets with 4 points.
Note the analogy with Figure 2.

e points of a poset are mapped in a one-to-one manner to edges of the corre-
sponding network

e two points of the poset are comparable if and only if the analogous edges of the
network are connected in series

e two points of the poset are incomparable if and only if the analogous edges of
the network are connected in parallel.

(See Figures 2 and 3.) The leftmost and rightmost points are the terminals (two
distinguished points playing a role similar to that of the root of a rooted tree). A
network, however, is not necessarily a graph since it may possess multiple parallel
edges. Observe that an interchange of parts of the network, either in series or in par-
allel, is immaterial. In other words, when we count series-parallel networks, our tally
is unaffected by a permutation of variables in the indicated Boolean representations.

0.2. Series-Parallel Networks. The number u,, of unlabeled series-parallel net-
works with n edges has generating function [20]

Ux) = Zunx" =14z + 2% + 423 4+ 102* + 242° + 662° + 180" + 5222° + - - -

n=0
which satisfies the functional equation

[e o]

U(r) =exp |3 50 (U(a) +a* 1)

k=1
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Figure 2: There are 10 unlabeled series-parallel networks with 4 edges, that is, uy =
10. The “essentially parallel” networks constitute the first row and the “essentially
series” networks constitute the second row.

3 3 2
1
2 1 1
3 3 2

Figure 3: There are 8 labeled series-parallel networks with 3 edges, that is, v3 = 8.
The “essentially parallel” networks constitute the first row and the “essentially series”
networks constitute the second row.
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Alternatively, we have

Ua) = [ (1 —a) >0,

J=1

Using these properties, it follows that [15, 21, 22, 23]
Uy ~ N-n 32 g

where x = 0.2808326669... = (3.5608393095...)"! is the unique positive root of
U(x) =2 and

1 K . .
17/ ) — e .
A= ,|— [1 - + ;2 kU (k') | = 0.4127628892... = 2 - (0.2063814446...).

This also gives the number of non-equivalent Boolean functions of n variables, built
only with + (disjunction) and - (conjunction).

The number v, of labeled series-parallel networks with n edges has generating
function [1, 24]

oo

S ., 2., 8 4 52, 472 5 5504 , 78416 .
Vie) = D Spet sk gt b gt et et St e
= <21n<1+:c>—x><”Z(D—U’”Iéxk) |
k=1
By techniques similar to those used to analyze {g,}, we have [21, 25]
vy ~Tonlon T g

where o = 21In(2) — 1 = 0.3862943611... = (2.5886994495...)~! and

T = \/E = 0.3506584008... = 2 - (0.1753292004...).
7r

Related work involves bracketing of n-symbol products [26] and phylogenetic trees
27].

0.3. Series-Parallel Networks Without Multiple Parallel Edges. If we pro-
hibit multiple parallel edges, so that the networks under consideration are all graphs,
different constants arise. (See Figure 4).
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Figure 4: There are 8 unlabeled series-parallel networks with 5 edges that obey the
prohibition against multiple parallel edges, that is, g5 = 8. The “essentially parallel”
networks constitute the first row and the “essentially series” networks constitute the
second row.

The number ¢, of such unlabeled series-parallel networks with n edges has gener-
ating function [28]

Qz) = g™ =1+ + a2 + 2% + da* + 82° + 182 + 4027 + 9da® + 2242 4 - -

n=0
which satisfies the functional equation

oo

1
Q(z) = exp Z o (Q(mk) — % gk — 1)
k=1
Alternatively, we have
2 N\~ (a5+051-83.2)/2
Q) = [[ (1= ety @0
j=1

Using these properties, it follows that [21]

-3/2 M—n

qn ~V-N

where 1 = 0.3462834070... is the unique positive root of @Q(x) =2 and

1 =~ .
=\ = ﬁ + Zw@(w)] = 0.3945042461... = 2 - (0.1972521230...).
=2
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The number 7, of such labeled series-parallel networks with n edges has generating
function [29]

. r 1 4 20 156 1472 17396
R(z) = Z—"x”—x+—x+ S ot —2t + 2% + z’ +
< 2! 3" Tl 5! 6! 7!
>0 k — 3k +1 =
= ((a:—l— 1)2exp( (Z —_— k) .
k=1

Proceeding as before, we have [21]
Fn~w-nl-n =320

where 6 =4/e —1=0.4715177646... and

[ed
w==1/Z =0.3193679560... = 2 - (0.1596839780...).
s

It follows that the probability that a random n-edge series-parallel network has
no multiple parallel edges is asymptotically

(%) <g> = (0.9557648142...)(0.8109908278...)"

if the network is unlabeled and

(%) (%)” = (0.9107665899...)(0.8192572794...)"

if the network is labeled. We hope to report on later on other relevant material in
[21].

0.4. Boolean Functions. We have already enumerated the number u,, of distinct
Boolean functions of n variables, built only with + and -, under the action of the
symmetric group S,.

Of course, the set of all Boolean functions also includes those involving comple-
mentation of variables (—X). Let us examine briefly this larger set [30, 31]. Define
two Boolean functions to be equivalent if they are identical up to a bijective renam-
ing of the variables. The number of equivalence classes in this case is asymptotically
(32, 33, 34]

2% /n!
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hence no new constants arise. Define two Boolean functions to be congruent if they
are identical up to a bijective renaming of the variables and an additional complemen-
tation of some of the variables. The number of congruence classes is asymptotically

227" /)

Other results of this kind are also known, but none contain new constants.

Let us return to our original set of Boolean functions of n variables and let s
denote the binary field. .S, is a subgroup of the group 7, of invertible linear transfor-
mations 5 — F7, namely, the n X n matrices that have exactly one 1 in each row and
each column. What can be said about the number u,, of distinct Boolean functions,
built only with 4+ and -, under the action of the (larger) group 7,7 Our experience
with u,, leads us to conjecture that the asymptotics of @, will be quite interesting.

0.5. Irreducible Posets. Another unsolved problem involves the number a,, of
unlabeled (6,®)-irreducible posets with n points. Such a poset cannot be written as
a disjoint union or a linear product of two non-empty posets. It is known that

Alz) =) ant" = a+a' +122°+1042°+95627+100372° +1265782°+ 19710052+ - -
n=0

and, further, that

e}

P(z) =exp [Z

| =

k=1

(P(:vk) - P(;k) + A(2*) — 2)]

where

P(z) = ppr" =1+z+ 2% + 52° + 162" + 632° + 3182° + 204527 4 169992° + - -
n=0

is the generating function of (arbitrary) unlabeled posets [3, 7, 10]. What can be said
about the asymptotics of a,,7 Even a nice functional equation for A(x) in-and-by-itself
is probably impossible.

0.6. Addendum. Bodirsky, Giménez, Kang & Noy [35, 36] recently determined
that the number of labeled series-parallel graphs on n vertices is asymptotically

(0.0076388...)n~5/%(0.1102133...) "n!

as n — 00, but formulas underlying the constants are too elaborate to reproduce
here. Special cases of such planar graphs [37] — connected and 2-connected — give
rise to

(0.0067912...)n~°/2(0.1102133...) "n/,
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(0.0010131...)n~%/%(0.1280038...) "n!

respectively. The distribution of the number of edges in a random graph with n
vertices is asymptotically normal and the distribution of the number of connected
components (minus one) is asymptotically Poisson, both with explicit computable
parameters.
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