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Series and parallel connections are usually first encountered in the study of elec-

trical circuits. Our approach is to first examine a relevant class of partially ordered

sets (posets) and then to define series-parallel networks by analogy [1]. Interesting

asymptotic constants appear everywhere, similar to those associated with counting

various species of trees [2]. We also talk briefly about the enumeration of Boolean

(or switching) functions under different notions of equivalence.

0.1. Series-Parallel Posets. We introduce two procedures for combining two

posets (≤) and (0≤) to obtain a new poset, assuming that  ∩ 0 = ∅:

• the disjoint sum  ⊕ 0 is the poset on  ∪ 0 such that  ≤  in  ⊕ 0 if
either   ∈  and  ≤  in , or   ∈ 0 and  ≤  in 0

• the linear product  ¯ 0 is the poset on  ∪ 0 such that  ≤  in  ¯ 0 if
  ∈  and  ≤  in , or   ∈ 0 and  ≤  in 0, or  ∈  and  ∈ 0.

Clearly ⊕ is commutative but ¯ is not. A series-parallel poset is one that can be
recursively constructed by applying the operations of disjoint sum and linear product,

starting with a single point [3].

Define a poset to be N-free if there is no subset {   } whose only nontrivial
relations are given by

        

It can be proved that a finite poset is series-parallel if and only if it is N-free [4, 5, 6].

Hence there are 15 series-parallel posets with 4 points (see the 16 posets in Figure 2

of [7] and eliminate the poset that looks like an “N”).

There are two cases we shall consider. The number  of unlabeled series-parallel

posets with  points has (ordinary) generating function [3, 8, 9, 10]

 () =

∞X
=0


 = 1 + + 22 + 53 + 154 + 485 + 1676 + 6027 + 22568 + · · ·
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which satisfies the functional equation

 () = exp

" ∞X
=1

1



µ
 () +

1

 ()
+  − 2

¶#


Alternatively, if the sequence {̂} is defined by 1 () =
P∞

=0 ̂
, then

 () =

∞Y
=1

¡
1− 

¢−(+̂+1)
where  = 1 when  =  and  = 0 otherwise. Using such properties, it follows

that

 ∼  · −32 · −
where  = 02163804273 is the unique positive root of  () =  and  is the

Golden mean, and where

 =

vuut 1

(3
√
5− 5)

"


1− 
+

∞X
=2

 0()

µ
1− 1

 ()2

¶#
= 02291846208

The number  of labeled series-parallel posets with  points has (exponential)

generating function [1, 3, 8, 10]

() =

∞X
=1



!
 = +

3

2!
2 +

19

3!
3 +

195

4!
4 +

2791

5!
5 +

51303

6!
6 +

1152019

7!
7 + · · ·

=

µ
ln(1 + )− 2

1 + 

¶h−1i
=

Ã ∞X
=1

(−1)+1 + 1




!h−1i
where the notation  ()h−1i denotes the reversion of the power series  (). Well-
established theory [11, 12] gives that

 ∼  · ! · −32 · −

where  = ln()− 2+ 3 = 02451438475 and

 =

s


2
√
5(2− )

= 02137301074

Now let us define an equivalence relation on the set of series-parallel posets with 

points, induced simply by declaring ¯0 and 0¯ to be equivalent. (See Figure 1.)
The equivalence classes correspond to what are called two-terminal series-parallel

networks with  edges [13, 14, 15, 16, 17, 18, 19], with the understanding that
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Figure 1: There are 10 non-equivalent (unlabeled) series-parallel posets with 4 points.

Note the analogy with Figure 2.

• points of a poset are mapped in a one-to-one manner to edges of the corre-
sponding network

• two points of the poset are comparable if and only if the analogous edges of the
network are connected in series

• two points of the poset are incomparable if and only if the analogous edges of
the network are connected in parallel.

(See Figures 2 and 3.) The leftmost and rightmost points are the terminals (two

distinguished points playing a role similar to that of the root of a rooted tree). A

network, however, is not necessarily a graph since it may possess multiple parallel

edges. Observe that an interchange of parts of the network, either in series or in par-

allel, is immaterial. In other words, when we count series-parallel networks, our tally

is unaffected by a permutation of variables in the indicated Boolean representations.

0.2. Series-Parallel Networks. The number  of unlabeled series-parallel net-

works with  edges has generating function [20]

() =

∞X
=0


 = 1 + + 22 + 43 + 104 + 245 + 666 + 1807 + 5228 + · · ·

which satisfies the functional equation

() = exp

" ∞X
=1

1

2

¡
() +  − 1¢# 
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Figure 2: There are 10 unlabeled series-parallel networks with 4 edges, that is, 4 =

10. The “essentially parallel” networks constitute the first row and the “essentially

series” networks constitute the second row.

Figure 3: There are 8 labeled series-parallel networks with 3 edges, that is, 3 = 8.

The “essentially parallel” networks constitute the first row and the “essentially series”

networks constitute the second row.
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Alternatively, we have

() =

∞Y
=1

¡
1− 

¢−(+1)2


Using these properties, it follows that [15, 21, 22, 23]

 ∼  · −32 · −

where  = 02808326669 = (35608393095)−1 is the unique positive root of
() = 2 and

 =

vuut1



"


1− 
+

∞X
=2

 0()

#
= 04127628892 = 2 · (02063814446)

This also gives the number of non-equivalent Boolean functions of  variables, built

only with + (disjunction) and · (conjunction).
The number  of labeled series-parallel networks with  edges has generating

function [1, 24]

 () =

∞X
=1



!
 = +

2

2!
2 +

8

3!
3 +

52

4!
4 +

472

5!
5 +

5504

6!
6 +

78416

7!
7 + · · ·

= (2 ln(1 + )− )
h−1i

=

Ã ∞X
=1

(−1)+1 2



!h−1i


By techniques similar to those used to analyze {}, we have [21, 25]

 ∼  · ! · −32 · −

where  = 2 ln(2)− 1 = 03862943611 = (25886994495)−1 and

 =

r



= 03506584008 = 2 · (01753292004)

Related work involves bracketing of -symbol products [26] and phylogenetic trees

[27].

0.3. Series-Parallel NetworksWithout Multiple Parallel Edges. If we pro-

hibit multiple parallel edges, so that the networks under consideration are all graphs,

different constants arise. (See Figure 4).
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Figure 4: There are 8 unlabeled series-parallel networks with 5 edges that obey the

prohibition against multiple parallel edges, that is, 5 = 8. The “essentially parallel”

networks constitute the first row and the “essentially series” networks constitute the

second row.

The number  of such unlabeled series-parallel networks with  edges has gener-

ating function [28]

() =

∞X
=0


 = 1 + + 2 + 23 + 44 + 85 + 186 + 407 + 948 + 2249 + · · ·

which satisfies the functional equation

() = exp

" ∞X
=1

1

2

¡
()− 2 +  − 1¢# 

Alternatively, we have

() =

∞Y
=1

¡
1− 

¢−(+1−2)2


Using these properties, it follows that [21]

 ∼  · −32 · −

where  = 03462834070 is the unique positive root of () = 2 and

 =

vuut1



"


1 + 
+

∞X
=2

0()

#
= 03945042461 = 2 · (01972521230)
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The number  of such labeled series-parallel networks with  edges has generating

function [29]

() =

∞X
=1



!
 = +

1

2!
2 +

4

3!
3 +

20

4!
4 +

156

5!
5 +

1472

6!
6 +

17396

7!
7 + · · ·

=
¡
(+ 1)2 exp(−)− 1¢h−1i = Ã ∞X

=1

(−1) 
2 − 3 + 1

!


!h−1i


Proceeding as before, we have [21]

 ∼  · ! · −32 · −

where  = 4− 1 = 04715177646 and

 =
1

2

r



= 03193679560 = 2 · (01596839780)

It follows that the probability that a random -edge series-parallel network has

no multiple parallel edges is asymptotically³


´µ


¶

= (09557648142)(08109908278)

if the network is unlabeled and³


´³


´
= (09107665899)(08192572794)

if the network is labeled. We hope to report on later on other relevant material in

[21].

0.4. Boolean Functions. We have already enumerated the number  of distinct

Boolean functions of  variables, built only with + and ·, under the action of the
symmetric group .

Of course, the set of all Boolean functions also includes those involving comple-

mentation of variables (¬). Let us examine briefly this larger set [30, 31]. Define
two Boolean functions to be equivalent if they are identical up to a bijective renam-

ing of the variables. The number of equivalence classes in this case is asymptotically

[32, 33, 34]

22


!
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hence no new constants arise. Define two Boolean functions to be congruent if they

are identical up to a bijective renaming of the variables and an additional complemen-

tation of some of the variables. The number of congruence classes is asymptotically

22
−!

Other results of this kind are also known, but none contain new constants.

Let us return to our original set of Boolean functions of  variables and let F2
denote the binary field.  is a subgroup of the group  of invertible linear transfor-

mations F2 → F2 , namely, the × matrices that have exactly one 1 in each row and

each column. What can be said about the number ̃ of distinct Boolean functions,

built only with + and ·, under the action of the (larger) group ? Our experience

with  leads us to conjecture that the asymptotics of ̃ will be quite interesting.

0.5. Irreducible Posets. Another unsolved problem involves the number  of

unlabeled (⊕,¯)-irreducible posets with  points. Such a poset cannot be written as
a disjoint union or a linear product of two non-empty posets. It is known that

() =

∞X
=0


 = +4+125+1046+9567+100378+1265789+197100510+· · ·

and, further, that

 () = exp

" ∞X
=1

1



µ
 () +

1

 ()
+()− 2

¶#
where

 () =

∞X
=0


 = 1+ +22+53+164+635+3186+20457+169998+ · · ·

is the generating function of (arbitrary) unlabeled posets [3, 7, 10]. What can be said

about the asymptotics of ? Even a nice functional equation for() in-and-by-itself

is probably impossible.

0.6. Addendum. Bodirsky, Giménez, Kang & Noy [35, 36] recently determined

that the number of labeled series-parallel graphs on  vertices is asymptotically

(00076388)−52(01102133)−!

as  → ∞, but formulas underlying the constants are too elaborate to reproduce
here. Special cases of such planar graphs [37] — connected and 2-connected — give

rise to

(00067912)−52(01102133)−!
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(00010131)−52(01280038)−!

respectively. The distribution of the number of edges in a random graph with 

vertices is asymptotically normal and the distribution of the number of connected

components (minus one) is asymptotically Poisson, both with explicit computable

parameters.
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