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Generation of Triangulations of the Sphere

By Robert Bowen and Stephen Fisk

It is easily seen that there is only one triangulation of the sphere with four ver-
tices and one with five. This paper concerns an algorithm for finding all (noniso-
morphic) triangulations of the 2-sphere with N vertices from those with N — 1.
“Ppiangulation’ shall always refer to a triangulation of the 2-sphere. Tivst we de-
velop a method for generating all triangulations with N vertices which may yield
several triamgulations of the same isomorphism type, and then we deseribe an iso-
morphism routine for eliminating these duplications.

[ot T be a triangulation with N = 5 vortices, £ edges, and I faces. Let X
denote the number of vertices of T of valeney k. Then 317 = 2E as cach face is a

triangle and cach cdge is on two faces, ad 28 = E LN, us cach edge is incident
to Lwo vertices. Tlence 61 — OF = — off = — »_ kX and by Fuler’s fovmula we
have

(1) 19 = BN 4 6F — 6B = 6N — E EXe = 2, Xp(6 — k).

Since Y, X (6 — k) is posilive, 7' must have o vertex of valency less than six, Be-
cause every edge of 7' must lic on two distinet trinngular faces, each vertex nist
have valeney greater than two. Letting @ be a vertex of minimal valeney, € must
have valency three, four, or five.

(ase 1. Suppose Q has valency three Then, about @, T has the form shown in
Fig. 1. Removing Q and the edges QP , we obtain a triangulation 7" with N — 1
vertices. Thus we obtain 7' if we add the point Q to the center of the face PyP2Ps
and add the edges QP (k = 1, 2, 3).

Case 2. Suppose @ has valency four. Then, about @, 7" has the form shown in
Fig. 2. By the Jordan curve theorem cither Py is not adjacent to /5 or Py is not
adjacent to Py ;5 say Py is not adjacent to Py Then, removing Q and edges @F%
(1 £k < 4) and adding edge PiPy inside the quadeilateral PyPelPaly, we obtain @
trinngulation 7 with N — 1 vertices. The slight comnplication here is needed to
insure that 77 is a triangulation; for if Py were adjacent to Py in 7, then 7" would
have multiple edges and would not be a triangulation. We now ohtain 1" from il
by reversing the process.

" (fase 3. Assume Q has valency five. Wo claim some Pi is adjacent to no Pi
othor than the two shown (Fig. 3). Otherwise [ would be adjacent to Ps or P,
say P3 . Then by the Jordan curve Theorem, P, could be adjacent to neither P, nor
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Ps . Henee we may assume (perhaps renunbering the 17s) that Py is not adjacent
to P; or Py. Now removing @ and edges QP and adding cdges 145 and P we
obtain a trianzulation 7. Reversing the process we again obtain 7',

We thus have three operations which when applicd in all possible ways to all
triangulations of N — 1 vertices (N 2 5) will vield all trisngulations of N vertices,

Now suppose 7 and 7 are two triangulations of N vertices. Ordering the fuces
of 1, according to the lavgest valeney of a vertex of the face, then the second
largest, and finally the third valeney, let 7, be the sct of maximal faces of 7.
YLet PyPoPy be in M, . Then an isomorphism F of 7'y onto 7% must have F (@) = P;
for some 1Qu0; in 1 . Buppo=e ¥ maps @; into P’; and we wish to extend F'toa
map of the whole vertex set of 7'y which induces an igomorphi=m of 77 onto 7.
Moving clockwise from Q3 , let Qs be the next point adjacent to @y . As all faces of
7', ave triangles, Qg is adjacent to Qi . Tet Py be the vertex other than Py of 72 which
lies on & face with Py and Pg . If I is an isomorphism extending I, then as

Q) # I'(Q) = I

and I"(Q,) is adjacent to F(Qy) == Prand I (Q;) = Pgwe must have F(Qy) = P
Continuing in this manner we see that I* is determined at every vertex adjacent to
Q: . Fach of these vertices then lies on a face at which /7 is determined; hence re-
peating the argument at these vertices, I is determined at all vertices at a (graph
theoretical) distance two from Q. By induction this method determines the izo-
morphism F extending F¥ if it exists. Applying this algorithm to all possible I'™’s
and testing cach F for isomorphism, we decide whether Ty and 7' are isomorphie.
In applying the generation algorithim to 7" with N — 1 vertices, we do not use
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ation deseribed above if its yields a triangulation with a valency three
ation with a valeney three; for such tri-
perations to another triangulation
alency three or four,

the third oper

angulations will be obtained by applying carlier o
of N — 1 vertices. From formula (1) we see that if 7" hasno v
then it has at least twelve vertices of valency five. A triangulation with twelve
five is a regular polyhedron; there is only one such, the well-
known icosahedron. Thus in obtaining all triangulations with N £ 12 vertices one
need never apply the third operation, which in practice is by far the most time con-
suming. The generation of all such triangulations was carried out on the IBM 7094
in approximately 1} hours of computing time. As a check, the computation was
artied out for N = 11 with a acneral graph izomorphism routine (sce [1] for a brief
description of this routine). D. W. Grace (2] generated all trihedral polyhedra
(the dual of triangulations) with 11 or fowoer faees and our numbers check with his
to that point. Tn the table below I.(N) is the number of trinngulations and M (N)

the number with no valency threew ith \" vertices.

vertices of valency

N L) MN) N L(N) M)

K ) 1 10 233 12
7 5 1 11 1249 34
8 14 2 12 7595 130
9 50 5
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