
COLLATZ ITERATION AND EULER NUMBERS?

MARKUS SIGG

For an integer n > 0 and an odd integer r, 1 ≤ r < 2n, consider cn,r(1) := 2nx + r with x
being an indeterminate positive integer. Because cn,r(1) is odd, its first two Collatz iterates
are cn,r(2) = 3 · 2nx + 3r + 1 and cn,r(3) = 3 · 2n−1x + (3r + 1)/2. As long as the parity of
cn,r(k) is known, we can continue with the iteration, up to an index kn,r where the parity
of cn,r(kn,r) depends on the actual value of x. This means that kn,r is the first index k for
which the coefficient of x in cn,r(k) is odd, which defines the set

Tn,r := {cn,r(1), . . . , cn,r(kn,r)}.
Let R(n) be the set of those r for which there exist u, v, w ∈ Tn,r with u+v = w+ 1. We are
interested in %(n) := |R(n)|. As r, 2n + r ∈ R(n+ 1) for r ∈ R(n), we have %(n+ 1) ≥ 2%(n).

It is easy to see that R(1) = R(2) = ∅ and so %(1) = %(2) = 0.

For n = 3 we have r ∈ {1, 3, 5, 7} with

T3,1 = {8x + 1, 24x + 4, 12x + 2, 6x + 1, 18x + 4, 9x + 2},
T3,3 = {8x + 3, 24x + 10, 12x + 5, 36x + 16, 18x + 8, 9x + 4},
T3,5 = {8x + 5, 24x + 16, 12x + 8, 6x + 4, 3x + 2},
T3,7 = {8x + 7, 24x + 22, 12x + 11, 36x + 34, 18x + 17, 54x + 52, 27x + 26}.

The identity (6x + 1) + (18x + 4) = (24x + 4) + 1 shows that 1 ∈ R(3). No such identity
exists for the other cases of r, so R(3) = {1} and %(3) = 1.

Similarly, for n = 4 one sees that R(4) = {1, 9, 11, 13}, so %(4) = 4.

A Python program (see below; not optimised for speed) was used to generate the initial 20
terms of the sequence %:

1 : 0 6 : 26 11 : 1013 16 : 32752
2 : 0 7 : 57 12 : 2036 17 : 65519
3 : 1 8 : 120 13 : 4083 18 : 131054
4 : 4 9 : 247 14 : 8178 19 : 262125
5 : 11 10 : 502 15 : 16369 20 : 524268

Surprisingly, these seem to be the Euler numbers A000295, i.e. %(n) = 2n−1 − n. A proof of
this for all n, presumably by establishing the recursion %(n) = 2%(n− 1) + n− 2, has yet to
be given.

Date: August 2, 2024.
1

https://oeis.org/A000295

2 MARKUS SIGG

Listing 1. Python program for generating the initial 20 terms of %

def checkTra jectory (T) :
for u in T:

for v in T:
for w in T:

i f u [0] + v [0] == w[0] and u [1] + v [1] == w[1] + 1 :
return 1

return 0

for n in range (1 , 2 1) :
rho = 0

for r in range (1 , 1 << n , 2) :
c = (1 << n , r)
T = [c]

while c [0] % 2 == 0 :
i f c [1] % 2 == 0 :

c = (c [0] // 2 , c [1] // 2)
else :

c = (3 ∗ c [0] , 3 ∗ c [1] + 1)

T. append (c)

rho += checkTra jectory (T)

print (n , ” : ” , rho)

Freiburg, Germany

Email address: mail@markussigg.de

