COLLATZ ITERATION AND EULER NUMBERS?

MARKUS SIGG

For an integer n > 0 and an odd integer r, 1 < r < 2", consider ¢, ,(1) := 2"z + r with «
being an indeterminate positive integer. Because ¢, (1) is odd, its first two Collatz iterates
are ¢,,(2) =3-2"z 4+ 3r+ 1 and ¢,,(3) =3-2" 'z + (3r + 1)/2. As long as the parity of
(k) is known, we can continue with the iteration, up to an index k,, where the parity
of ¢pr(knr) depends on the actual value of z. This means that &, is the first index k for
which the coefficient of x in ¢, , (k) is odd, which defines the set

Tn,r = {Cn,r(l)a s 7cn,r<kn,r)}-
Let R(n) be the set of those r for which there exist u,v,w € T),, with u+v = w+1. We are
interested in o(n) := |R(n)|. Asr,2"+r € R(n+1) for r € R(n), we have o(n+1) > 20(n).
It is easy to see that R(1) = R(2) = () and so o(1) = o(2) = 0.

For n = 3 we have r € {1,3,5,7} with
T57 = {8z +1,24x + 4,12z + 2,62 + 1,18z + 4,9z + 2},
T35 = {8z +3,24x + 10,12z + 5,362 + 16, 18z + 8,9z + 4},
Ts5 = {8x+5,24x + 16,122 + 8,6z + 4,3z + 2},
Ts7 = {8z +7,24x + 22,12z + 11,36z + 34, 18z + 17, 54x + 52,27z + 26}.
The identity (6z + 1) + (182 +4) = (242 + 4) + 1 shows that 1 € R(3). No such identity
exists for the other cases of r, so R(3) = {1} and o(3) = 1.
Similarly, for n = 4 one sees that R(4) = {1,9,11, 13}, so o(4) = 4.

A Python program (see below; not optimised for speed) was used to generate the initial 20
terms of the sequence p:

1 :0 6 : 26 11 : 1013 16 : 32752
2 0 7 1 97 12 : 2036 17+ 65519
3 1 8 : 120 13 : 4083 18 : 131054
4 4 9 . 247 14 . 8178 19 @ 262125
5 11 10 : 502 15 : 16369 20 : 524268

Surprisingly, these seem to be the Euler numbers A000295, i.e. o(n) =2""! —n. A proof of
this for all n, presumably by establishing the recursion o(n) = 2p(n — 1) +n — 2, has yet to
be given.

Date: August 2, 2024.

https://oeis.org/A000295

2 MARKUS SIGG

LisTiNG 1. Python program for generating the initial 20 terms of p

def checkTrajectory (T):
for u in T:
for v in T:
for w in T:
if u[0] + v[0] = w[0] and u[l] + v[1l] = w[l] + 1:
return 1

return 0

for n in range(1l, 21):
rho = 0

for r in range(l, 1 << n, 2):
c=(1<<m, r)

T=1]c¢ |
while c¢[0] % 2 = 0
if c[1] % 2 = 0:
: ¢ = (c[0] /7 2, c[1] /] 2)

c = (3% c[0], 3 xc[l] +1)
T.append(c)
rho += checkTrajectory (T)

print(n, 7:”, rho)

FREIBURG, GERMANY

Email address: mail@markussigg.de

