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‘he discriminant D of this system is

I )

|

o

o that S=4 indicating four different solu-
ions defined by

[P oxpe 1y Xpm X e mpexy X tapeny Xt 1peny
voxge x X0 ryen Xy v ¥z eayen Xp = agen
[ ] 2" 3y F3r R M 2" r3ty
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SINGULAR CASES

When the discriminant of 1 has [D]=0
here is no solution of the form (5). But
here is a solution of the form

Xk=I'V‘k(x,') k=1,2,--- R
J=12---,Q
Sy =1 s=1,2,---,5 (6)

vhere f=1 (or an equivalent condition be-
ween the independent variables) represents
- restg@ on of the domain of definition of
he f ns X The restriction rules out
Il columns in D which do not have any non-
ero elements. Thanks to this restriction the
unctions Wi(x;) in (6) can take on any
alues. This fact can be used to make the
nal results algebraically simpler.

_ Example 3: The system given by the
ingle equation
Xi+m=m

1as the discriminant

D=

vith zero value. There is no solution of the
orm (5). To find it for the form (6) we rule
ut the column g=1 containing only zeros.
The condition #+x,=1 represents the de-
ired restriction. The maps for W1 1V? be-
ome ’

w! w2

‘here the shaded area can be used to sim-
lify the results (don't care conditions). Here
‘¢ have a case with no simplification possi-

le. Th re two solutions,
w LXl = X)X we: X1 =2

L+ax=1 T+ x =1,

Correspondence

which cover all conditions included in the

given system (see Remark 3). The solution

WI3FXi=x1+x;, #+x=1 uses the don’t
care condition of 11”2 but is less simple,

ANTONIN SvoBODA

Research Institute of

Mathematical Machines

Praha, Czechoslovakia
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/
The Number of Equivalence Classes
of Boolean Functions Under Groups
Containing Negation* '

INTRODUCTION

The purpose of this communication is to
point out a new derivation of the number of
self-complementary symmetry types and to
discuss a conjecture of Elspas.!

In the synthesis of digital systems, it is
sometimes convenient to have both a signal
and its negation available. This idea suggests
a modification of the conventional notion of
equivalence under a group. (See Harrison?
for a discussion of equivalence classes in-
duced by a group.) If ® is a permutation
group on the domain D of Boolean func-
tions, then one usually says that a function
fis equivalent to a function g if there exists an
a& O such that f(d) =g(a(d)) for everyde D.
The concept of equivalence can be broad-
ended if one allows the condition to be that
fld)=g(a(d)) or f(d)=gla(d)) for every
d&D. Under the proposed definition of
equivalence, the Boolean functions are

* Received July 2, 1962 revised manuscript re-
ceived May 22, 1963. This research was supported by
the United States Air Force under Contract No.
AF 33(657)-7811.

! B. Elspas, “Self-complementary symmetry tvpes
of Boolean functions,” IRE TraNS., 0N ELECTRONIC
CoMPUTERS, vol. EC-9, pp. 264-266; June, 1960.

* M. A. Harrison, “Combinatorial Problems in
Boolean Algebras and Applications to the Theory of
Switching,” Ph.D. dissertation, The University of
Michigan, Ann Arbor; 1963.
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again resolved into equivalence classes.
Ninomiya® has called an equivalence class of
the latter type a genus while the conven-
tional class is called a symmetry tvpe.

In the present communication, a new
method for obtaining the number of genera is
presented. The problem can be recast in
terms of group theory by considering nega-
tion to be obtained by the action of a nega-
tion group to be denoted by N. N has order
two; one element is the identity mapping
and the other element denoted by » has the
property

o [ f
for any Boolean function f.

Note that N is really a permutation
group on the range {0, 1] of the Boolean
functions. The situation can be summed up
by saving that we are asking for the number
of classes of functions under a group g on
the domain and N on the range.

De BreiN's THEOREM

Arecent theorem of DeBruijn' is state
which indicates an immediate solution to t
problem of counting the number of class
Let F be the class of functions from D ir
R, and suppose that D has s elements and R
has r elements. Let & be a permutagion
group of order g and degree s acting off D
while $ denotesa group of order # and deree
ron R.5 Two functions f and g are said
equivalent if and only if there exist elenfents
aE®, BEH such that f(d)=g(e(ald)
everyde D. Since this isa genuine equiv
relation, the family of functionsis decom posed
into equivalence classes and we desir
number of thesc classes. The pertinent ktheo-
rem of DeBruijn is given in terms of 'yele
index polynomials. The cycle index
nomial is a multivariate generating function
for the cycle structure of ®& acting on
D. Let fi, -+ -, f, be s indeterminates and
let g; i, = -+, be the number of permu-
tations of © having ji cycles of length 4 for
k=1,2, - s Naturally

&

ii=s. (1)

p=1

Then define the cycle index of & acting on
D as

Z(fiy oo [

1 3 R
= Qiviige g JUTe
¢ o ’

S

where the sum is taken over all partitions of
s, i.e. the non-negative integer solutions
of (1).
We can now state DeBruijn’s' theorem.
Theorem 1: Let

/’fzel\l’alzf»uz Jort=1,---,r
et

then the number of equivalence classes is
given by

3 1. Ninomiya, “On the numbher of genera of
Boolean functions of u variables,"Memorrs of the Fac-
ulty of Lugineering of Nagoya Unfversity, vol, 11, pp.
54-58; November, 1959,

¢ N. G. De Bruijn, “Generalization of DPolya's
fundamental theorem in ennmerative combinatorial
analysis,” Koninklijke Nederlundse Akademe Van
IWetenschappen, val. LXII, pp. 56-39; 1950,

® The order of a group is the number of elements
in the group. The devree of a permutation group is the
cardinality of the object set.

Cee
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( <]
=, ..
le
evaluated al z,=2z,= - - - =z,=0.

Thus, the counting problem is solved
once we know both cycle indexes. It is to be
understood that the variables (zi, 22, + - -, 2,)
in these polynomials are indeterminates.
Therefore, we can differentiate formally and
no questions of existence or convergence
need ever arise.

Lemma 2: A term hyv - - -
rise to

aJ
= Y Za by - By
82‘) o0 1)

hr in Zy gives

7@,(%/]‘[,--,”2‘@).

Proof
\We compute

(v -« « Iiv).

This yields

? (J7 7
— (A
dz; " ")

2 (flen (55 )

az.
= —_—exp Z Z /Jmt>
4z (=1 ka1
= (e‘P Z Z UlZm) Z Z bibi ke
tm] kml tem] kel
where 8;.4 is the Kronecker delta func-

tion, t.e.,
1 ifi=k
Sike = .
0 otherwise.
Taking all the z's equal to zero gives

(hyiv - - hte) = 9 b

dz; R

=1}

APPLICATIONS

The specialization to Boolean functions
is immediate, since the domain D becomes
10, 1}™ and the range R is {0, 1}. The effect
of complementation upon the range is to
permute 0 and 1. Thus, the group $ on the
range is N, the complementing group. It is
immediately apparent that N is the sym-
metric group of degree (and order) two,
hence

Zo =3 U+ 1)

Using DeBruijn’s theorem and the lemma
gives

Theoren 3: 11 O is any permutalion group
on the domain of the Boolean functions, then
the number of equivalence classes of Boolean
Sfunctions under ® allowing complementation of
the functions 1s

Hzy2, 2, 2 4 Z3(0,2,- -+, 0, 2.

We note that Zg(2, 2, , 2) is the
total number of classes of functions under
the group (cf. Harrison2%). Once the cycle
indexes Zg are constructed in order to count
the classes under ©, no additional work is
required to count the number of genera.

“The Number of Transitivity
J. SIAM; September,

¢ M. A. Harrison,
Sets of Boolean Functions,”
1963.

The groups to be considered in the pres-
ent discussion are listed below.

1) €, is the group of all 27 complemen-
tations of variables. This group was
first studied as a group on Boolean
functions by Ashenhurst.”

&, denotes the symmetric group on
the » variables, i.e., the group of all
permutations of input letters. The
order of &, is nl.

3) ®, is the smallest group containing
€,» and @, and is very well known.
®L.(Z,) is the general linear group on
the variables; the group has been
studied by Slepian,® Harrison,??® and

2

~

4)

s SR
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Proof .

Since two domain elements are sym-
metric, every term of the cycle contains a
factor fi* for 22>2.

Theorem 6: The number of classes of func-
tions with OL.(Z,) on the domain and N on
the range is exactly one half the number of
classes with just ®Ln(Z2) on the domain.

Proof

Every linear transformation leaves the
origin invariant so every term of the cycle
index contains a factor fi* for k> 1.

The calculated numerical results follow

Lechner.10 in Table I.
TABLE 1
THE NUMBER OF CLASSES UNDER THE ENLARGED GROUPS v
—— — —~ — 3 ; ~

" _1_/’-—-6\2" i A(—\%" ©n =
1 Mo 2 2 [ e, YN 2
z (| 42 s @ f?.\ s ( $7¢ 3
3 Mot 30 . f 40 14
4 — 2,288 ” 1,992 \_ 222
s 67,172,352 18,666,624 616,126
6 144,115,192,303,714,304 12,813,206,169,137,152 200,253,952,527, 184

| cormwo—

" " ©.8a(20) A O\ n@
: 2 \ 2
4 3
10 |/ G! "{ 6
46 8
72

206
7,888,299

5) An(Z,) denotes the least group con-
taining T2 and O84(Z,); this group is
the affine group on the variables and
has been studied by Nechiporuk,!!
Harrison,?? and Lechner.1?

The cycle indexes of all these groups are
derived in Harrison.?

Now we shall apply Theorem 3 to count
the appropriate numbers for five groups.

Theorem 4: The number of classes of func-
tions with C,? on the domain and N on the
range is

(22 4+ (20 — )2 ).

2n+l

Proof

The result follows directly from the fact’
that

) 1 2" n an!
Zgp = 3 "+ @ = DR

Theorem 5: The number of classes of func-
tions with €, on the domain and N on the
range is exactly one half the number of classes
with just €, on the domain.

7R, L. Ashenhurst. “The application of counting
techniques,” Proc. Assoc. of Compuling Machinery,
Pittsburgh Meeting, Pa., pp. 293-305; 1952.

8 D, Slepian, “Some further theory ofgroup codes,”
Bell Sys. Tech. J., vol. XXXIX, pp. 1219-1252;
Seplember 1960.

9 M. A. Harrison, “On the Classification of Boolean
Functions by the General Linear and Affine Groups,”
The University of Michigan, Ann Arbor, Tech.
Note 04879-7-T; September, 1962. To be published in

J.SIAM.
0 R, Lechner. “Affine Equivalence of Switching
Functions,” Ph.D. thesis Abstract, Harvard Univer-

sity, Cambridge, Mass.; 1963.

nE I Nechnporuk “On the synthesis of networks
using linear transformations,” Doklady Akad. Nauk.
vol. 123 December, 1958; pp. 610612, available in
English in Aufomation I‘:prz:s vol. xx, pp. 12-13;
April, 1959.

It is interesting to note the ease with
which these results were obtained and to
compare these methods with those of Elspas!
and Ninomyia.® Both these men computed
the same results but with considerable effort
and only for the group &,.

SELF-COMPLEMENTARY CLASSES

\We shall use the results of the previous
section to obtain some results concerning
groups without negation on the range. Sup-
pose ® is a group on the domain and we de-
sire the number of classes of & closed under
complementation of the functions. Clearly
only classes of neutral functions can have
this property. Neutral functions are those
functions with as many ones as zeroes in
their graphs, 1.e. functions of weight 2771

Theorem 7: The number of classes of func-
tions under ® which arc equivalent to thetr com-
plements, i.e., self-complementary, is

Z4(0,2,0,2,--+,0,2).
Proof

l,et T, be the number of classes
of functions under & alone. Note that
Zg(2, - -+, 2)=Tn Let N, be the number
of self-complementary classes. Then

izy(2, 2) +24(0,2,---,0,2]
= %(Tn - 1\7“) + Nee
which implies
Nee=Zg(0,2,---,0,2).

Theorem 8: The number of self- comple
mentary classes under ;™ s

(2n — 1)22""-n,




-—
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Proof*
> the proof of Theorem 4.

orem 9: There exists no self-comple-
mentary classes under Sy

Proof

See Theorem 5.
Theorem 10: There exist no self-comple-
mentary classes under &Ln(Zs).

Proof

See Theorem 6.
Numerical calculations are reported in
Table I1.

TABLE II

THe NUMBER OF SELF-COMPLEMENTARY CLASSES

Gy

I«’
e

| 1 0 i
2 3 0 2
3 /14 0 6
4 \ 240 0 42
5 " 63,488 0 4,094
6 4,227,858,432 0 98,210,640
7 ®.L,(Z2) N, (Zs)
1 0 1
2 0 1 T
3 0 ; &K
4 0 4
5 0 30
6 0 7,679

Elspas! made an interesting conjecture in
relation to his solution of this problem for
(.55,; uggested that theratio of the number
of omplementary classes to the number
of neutral classes went to zero for increasing
n under the group ®n. This implies that the
phenomenon of the self-complementary class
is rather rare.

Elspas conjecture was proved true by
Lorens!? for the group ®,. We now derive a
theorem which implies the result of Lorens
and gives a condition on & under which the
conjecture of Elspas is true.

In order to obtain the result, a lower
bound on the number of neutral classes and
an upper bound on the number of self-
complementary classes are needed. These
bounds are obtained in the following lemma.

Lemma 11: The number of neutral classes
under a group © having order g is greater than

or equal to
1 ( 2" )
g 2n*1 N

The number of self-complementary func-
tions is less than or equal to

2
Proof

The first part is obtained by using the
well-known!? lower bound s/g, where s is the
number of objects on which a permutation
group of order g acts. The result follows upon
noting that there are

LI (22:")

112 C, S. Lorens, “Invertible Boolean Functions,”
Spaqe General Corporation Report, El Monte, Cali-
fornia; July, 1962.
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neutral Boolean functions. The second part
of the theorem follows from noting that the
largest term in Z®(0,2, + - -, 0,2)is 207 g,
An upper bound is certainly

1 n—1 n—1
- Z gt g2t
£ 80

The ratio we desire can now be computed,
but it is convenient to have an estimate for
the binomial coefficient. Using Stirling’s
formula, we get

2" 7.
( n—x) ~ —_2"=ni2,
2 T

Finally, the pertinent theorem can be
proven.

Theorem 12: Let & be any group defined on
the domain of the Boolean functions. If the

order of ® does not exceed

2 . on
=27 — — — ¢elogan
L3 2

for any >0, then the number of self-comple-
mentary classes of functions tends lo zero with
the number of classes of neutral functions for
inCreasing n.

Proof

Compute the ratio for the upper bound.

As an immediate corollary to Theorem

12, we note that self-complementary classes

are rather rare for the five groups that we
have discussed.

MicHAEL A. HARRISON

University of California

Berkeley, Calif.

{
Bounds on Threshold Gate
Realizability*® *

SuMMARY

A well-known bound estimates the num-
ber of switching functions realizable by a
single threshold gate. In this communication
this bound is generalized to apply to incom-
pletely specified functions. Application is
made to prove analytically an experimental
result of Koford: the number of patterns
discriminable by a threshold gate is twice
the number of inputs (roughly). Also,
Cameron’s lower bound on the number of
threshold gates needed in a network to real-
ize an arbitrary function is improved.
Finally, a lower bound on the number of
gates needed in a two-level network s
found; it is substantially lower than Koford's
experimental results.

* Received February 21, 1963; revised manuscript
received May 27, 1963. Most of these results were
announced at the AIEE Winter General Meeting in
conjunction with a delivered paper (Windert). The
research reported in this paper was sponsored by the
Electronics Research Directorate, Air Force Cam-
bridge Research Laboratories, Office of Aerospace
Research, under Contract AF19(604)-8423.

I R. O. Winder, “Threshold logic in artificial
intelligence,” in Artificial Intelligence, IEEE Pub-
lication S-142; January, 1963.
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It is well known?™ that the number of
threshold functions of n arguments is less
than

B,.Ezi(znfl).

V=0 1

Using this bound, Cameron?® shows that the
number of n-argument functions realizable
by a network of at most &-threshold gates is
(asymptotically) less than 2%, As Cameron
pointed out, this implies that at least one
switching function of n arguments (and
probably most of them) requires more than
2113 threshold gates for realization. The pur-
pose of this communication is to generalize
these results to functions incompletely speci-
fied: an improvement in the asymptotic
bound 27/% will also be obtained. Applica-
tions in character recognition and self-
organizing systems are discussed.

The basic bound B, is derived from the
following basic lemma (see Cameron? for a
good discussion of its proof; the proof in
Winder® is virtually identical, but less well
explained):

Lemma: 1f m hyperplanes are passed
through the origin of an (n+1)-dimensional
Euclidean space, the space is divided into a
number of regions—at most,

n w1
Bnmszz(’", )
F

=0

The bound B, is then obtained by con.
sidering an (n+1)-dimensional “realization
space”—the space consisting of points
a=(ao, a1, -+, @n), each of which repre-
sents the realization of some threshold func-
tion (a bias and n weights). (We assume
a +1 logic.) By taking all possible choices of
sign, we consider 2* hyperplanes,

ani‘ﬂxiazi"'f&n=0.

Two points in the realization space repre-
sent the same function if and only if they
are not separated by any of these hyper-
planes. Thus the regions, with boundaries
defined by these hyperplanes, correspond
one-to-one with threshold functions. Thus
setting m =27 in the lemma gives By

Now, suppose we select exactly m out of
the 2» possible input combinations. How
many switching functions, no two of which
agree in value on all m of these points, can
be realized by a single threshold gate?
Clearly, by the same argument, there are at

. most B,™. (Because the m points correspond

to m of the hyperplanes, and again, we're
asking how many regions the realization
space is divided into by m hyperplanes.)

1 D. T. Perkins, D. G. Willis, and E. A. Whitmore,
unpublished work at Lockheed Aircraft Corp.,
Missiles and Space Div., Sunnyvale, Calir.

3S. H, Cameron, “An Estimate of the Complexity
Requisite in a Universal Decision Network,” Bionics
Symp., Dayton, Ohio, December, 1960, pp. 197-212,
WADD Rept. 60-600.

VR. O. Winder, “Single stage threshold logic,”
in Switching Circust Theory and Logical Design,
AIEE Special Publication S-134; September, 1961.

' R. O. Winder “Threshold Logic,” Ph.D. dis-
sertation, Princeton University, N. J.; May, 1962,



