THE GROWTH OF DIGITAL SUMS OF POWERS OF TWO

DAVID G RADCLIFFE

In this note, we give an elementary proof that $s(2^n) > \log_4 n$ for all n, where s(n) denotes the sum of the digits of n written in base 10. In particular, $\lim_{n\to\infty} s(2^n) = \infty$.

The reader will notice that the lower bound is very weak. The number of digits of 2^n is $|n \log_{10} 2| + 1$, so it is natural to conjecture that

$$\lim_{n \to \infty} \frac{s(2^n)}{n} = 4.5 \log_{10} 2.$$

However, this conjecture remains open[2].

In 1970, H. G. Senge and E. G. Strauss proved that the number of integers whose sum of digits is bounded with respect to the bases a and b is finite if and only if $\log_b a$ is rational[1]. Of course the sum of the digits of a^n in base a is 1, so this result implies that

$$\lim_{n \to \infty} s(a^n) = \infty$$

for all positive integers a except powers of 10. This work was extended by C. L. Stewart, who gave an effectively computable lower bound for $s(a^n)$ [3]. However, this lower bound is weaker than ours, and Stewart's proof relies on deep results in transcendental number theory.

We begin with two simple lemmas.

Lemma 1. Every positive integer N can be expressed in the form

$$N = \sum_{i=1}^{m} d[i] \cdot 10^{e[i]}$$

where d[i] and e[i] are integers so that $1 \le d[i] \le 9$ and

$$0 \le e[1] < e[2] < \dots < e[m]$$

Furthermore,

$$s(N) = \sum_{i=1}^m d[i] \ge m$$

Date: March 29, 2015.

Proof. The proof is by strong induction on N. The case N < 10 is trivial. Suppose that $N \ge 10$. By the division algorithm, there exist integers $n \ge 1$ and $0 \le r \le 9$ so that N = 10n + r. By the induction hypothesis, we can express n in the form

$$n = \sum_{i=1}^m d[i] \cdot 10^{e[i]}$$

If r = 0, then

$$N = \sum_{i=1}^{m} d[i] \cdot 10^{e[i]+1}$$

and if r > 0 then

$$N = r \cdot 10^0 + \sum_{i=1}^m d[i] \cdot 10^{e[i]+1}$$

In either case, N has an expression of the required form.

Lemma 2. Let $2^n = A + B \cdot 10^k$ where A, B, k, n are positive integers and $A < 10^k$. Then $A \ge 2^k$.

Proof. Since $2^n > 10^k > 2^k$, it follows that n > k, so 2^k divides 2^n . But 2^k also divides 10^k , therefore 2^k divides A. But A > 0, so $A \ge 2^k$.

We use these lemmas to establish a lower bound on $s(2^n)$. Write

$$2^{n} = \sum_{i=1}^{m} d[i] \cdot 10^{e[i]}$$

so the conditions of Lemma 1 hold, and let k be an integer between 2 and m. Then $2^n = A + B \cdot 10^{e[k]}$ where

$$A = \sum_{i=1}^{k-1} d[i] \cdot 10^{e[i]}$$

and

$$B = \sum_{i=k}^{m} d[i] \cdot 10^{e[i] - e[k]}$$

Since $A < 10^{e[k]}$, Lemma 2 implies that $A \ge 2^{e[k]}$. Therefore,

$$2^{e[k]} \le A < 10^{e[k-1]+1}$$

which implies that

$$e[k] \le \lfloor (\log_2 10)(e[k-1]+1) \rfloor$$

We prove that $e[k] < 4^{k-1}$ for all k. It is clear that e[1] = 0, else 2^n would be divisible by 10. From the inequality above, we have $e[1] \le 3$, $e[2] \le 13$,

2

 $e[3] \le 46, \, e[4] \le 156, \, e[5] \le 521, \, \text{and} \, e[6] \le 1734.$ If $k \ge 7$ then $e[k-1] \ge 5,$ \mathbf{SO}

$$e[k] < (\log_2 10)e[k-1] + (\log_2 10)$$

$$< \frac{10}{3}e[k-1] + \frac{10}{3}$$

$$\le \frac{10}{3}e[k-1] + \frac{2}{3}e[k-1]$$

$$= 4e[k-1]$$

Therefore, $e[k] < 4^{k-1}$ for all k, by induction.

We are now able to prove the main result. Note that

$$2^n < 10^{e[m]+1} < 10^{4^{m-1}}$$

since $10^{e[m]}$ is the leading power of 10 in the decimal expansion of 2^n .

Taking logarithms gives

$$4^{m-1} > n \log_{10} 2$$

$$4^{m-1} > n/4$$

$$4^m > n$$

$$m > \log_4 n$$

$$s(2^n) > \log_4 n$$

$$\lim_{n \to \infty} s(2^n) = \infty$$

hence

$$\lim_{n \to \infty} s(2^n) = \infty$$

References

- [1] H. G. Senge and E. G. Straus. PV-numbers and sets of multiplicity. Period. Math. Hungar., 3:93-100, 1973. Collection of articles dedicated to the memory of Alfréd Rényi, II.
- [2] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. A001370.
- [3] C. L. Stewart. On the representation of an integer in two different bases. J. Reine Angew. Math., 319:63-72, 1980.