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ON THE WEIGHTED FINITE LINEAR SPACES

by Pierre ROBILLARD

Résumé. — La notion d’espace linéaire pondéré (e.l.p.) est upe extension de la
notion d’espace linéaire fini (e.l.) introduite récemment par P. Libois. Cette nouvelle
notion apparait naturellement dans un probléme d’énumération des schémas
confondus de classe (s, s2).

La premiére partie de cette étude concerne les e.l. ol nous obtenons une formule
donnant le nombre d’espaces linéaires comme fonction des espaces linéaires
connexes. Nous dérivons aussi une borne inférieure et supérieure pour le nombre
d’espaces linéaires non isomorphes de » points.

Dans une seconde partie nous définissons la notion de e.l.p. et de e.l.p. connexes.
Nous obtenons une formule donnant le nombre de e.l.p. non isomorphes comme
fonction du nombre de e.l.p. connexes.

Utilisant ces résultats et ceux concernant les e.l.p. nous calculons une borne
inférieure et supérieure pour le nombre de e.l.p. On trouvera en appendice I’énu-
mération des 177 e.L.p. connexes dont la somme totale des poids est inférieure & 9.

Introduction

We want to consider an extension of the notion of finite linear
space defined by P. Libois [2], which occurs naturally in the combi-
natorial problem of the enumeration of confounded factorial designs
of class (s", s2) see [4]. We recall first the notion of finite linear space.

A linear space (I.s.) is any set of objects called points some subsets
of which are called lines. We require that these points and lines
satisfy the following axioms.

Al: Any two points belong to one and only one line.

A2: Any line contains at least two points.

From this definition, it is obvious that fwo distinct lines contain
at most one point in common.

An isomorphism of a linear space L on a linear space L’ is any
bijection of L on L’ which maps any line of L on a line of L'. Two
linear spaces are isomorphic if there exists an isomorphism from
one on the other. An automorphism of a linear space L is on isomor-
phism of L on itself.
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We define a linear variety V of a linear space L as a subset of L
in which any line containing two distinct points of V is entirely in
V. It is easily seen that a linear variety is itself a linear space and that
any intersection of linear varieties is a linear variety.

A linear space is connected if it is not the union of two disjoint
non null linear varieties. A connected linear variety maximal with
respect to inclusion is called a connected component. We have the
results

— In a linear space L any point belongs to one and only one con-
nected component.

— If Vs a linear variety in a linear space L, then L — V is a variety
if and only if any line with a point in V and a point in L. — V has
no other points in it.

The enumeration problem

From now on we shall consider thelinear spaces with a finite number
n of points. The problem we want to consider is to count the number
of non isomorphic linear spaces of n points; in other words if we
define N(n) the number of non isomorphic Ls. of n points and by
N.(n) the number of non isomorphic connected Ls. of n points, one

wants to express N(rn) and N(n) as a function of n only. The question .
is far from being solved, however some partial results were found

by Jean Doyen [1]. As we need these results later we shall now
summarize them.

\a Jean Doyen has enumerated the linear spaces of n points for n < 9
nd the values of N(n) and N (n) are given in table 1 below:

TABLE 1

=

N(7) | Ne(m)

VoI WN—=O

For higher values of n he has the following theorems:
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TueoreM 1 (Doyen)

The function f: n — N(n) is convex i.e.

N(n) < %[N(n — 1)+ N(n + 1)] n>0 1)

THeEOREM 2 (Doyen)
N (n)>2""! for all n=9 (2)

Taeorem 3 (Doyen)
N(n)>2" for all n>10 3

THEOREM 4 (Doyen)
Ny <2P=N¥m)  for 4 @

Before proceeding to the generalizalition of the notion of linear
space we want to give the following results

THEOREM 5
o= 2 LA @

The summation is over the set of non negative integers {y;}i=1 ..
solutions of n = y; + 2y, + ... + Ay

We use the convention that ( " ]) = (0

PrOOF. — We realize easily that any linear space of n points can
be expressed in a unique way as the union of disjoint connected com-
ponents. More precisely if the connected components of L are
Cis ooy €, then

where | C; | is the number of points in C,
and we can write
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If L' is another Ls. of n points whose decomposition in connected
components is written as

then a necessary condition for L and L’ to be isomorphic is that
— p=p and
—{Cli=12.,p}and {|C;|i=1,2,..,p}

represent the same partition of » in p positive integers.

Thus for a given partition y; + 2y, + ... + ny, = n (y, being the
number of times k appears in the partition) we obtain the number
of Ls. of n points as equal to

Il (Nl(\f)(i ) ©

(Nl(\f)f) 0 1)

is the number of ways to choose y, connected Ls. of i elements each.
Summing (6) over all possible permutations gives (5).

The last theorem shows that in order to solve the problem of
enumeration for the linear spaces it is sufficient to enumerate the
connected linear spaces and conversely.

We can now utilize the theorems (2) and (5) together and obtain
a new lower bound for N(#) which is

Lin) = Z [H (le:)<+) " 1)]

N =N.(i) if i<9
271 if i>9

In table 2, we compare L(n) with the value 2" for 10 < n < 20
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TABLE 2

n 2" L(n) L(n)/2"
10 1024 917

11 2048 2007

12 4096 4449 1.08
13 8192 9524 1.16
14 16384 20200 1.23
15 32768 42877 1.30
16 65536 91862 1.40
17 131072 200459 1.53
18 262144 462830 1.76
19 524288 | 1055862 2,01
20 1048576 | 2390058 2.30

We realise that for n > 12 the values of L(n) are greater than 2"
and in general this inequality is true; if we write the first few terms
of L(n), we have that:

L(n) = N3(n) + N}(n — 1) + N¥(n — 2)
+2N¥(n —3) + 3N}(n—4) + ...
and for n > 12
Ln)=2""14+2""24+2""3 422" * 4 3N¥(n—4) + ...
=2"+3N}(n—-4)+..>2"

THEOREM 6

N(n) < N(n - 1)[1 P el (”'5-20} )

K=o (K + 1)! /=0

where (i) =0 for s<t

PROOF. — Suppose that we delete a point of a Ls. and also all the
lines of two points passing through it. We obtain then a Ls. L* of
n — 1 points. Let us count the number of ways one can add a point
to L* and obtain a Ls. with n points. When we talk of adding a point
P to L* we suppose that we also add all the lines of two points joining
P to any point of L* such that {L*} + P is a Ls.

One can place the new point outside any existing lines of L*; there
is one way to do that. One can also place the new point on an existing
line and not at the intersection of any other lines. There are a maximum

o =1
of (n 5 1) lines in L* which give (n 5 ) possibilities. In general,
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one can place the new point as the intersection of exactly K non
intersecting lines of L* which give

1 K= —1-2d

K on( 27
possibilities. The sum of these expressions gives the maximum number
of Ls. of n points one can obtain from one Ls. of n — 1 points. The
equation (7) follows.

We use (7) to calculate recursively an upper bound for N(n).
For example

<o [0+ Q).
Q00

N(10) < 1,006,080 = U(10)

In general

N(n)<U(n—1)-[1+ 2

K
n— 1 2j U
Srea I GERI R
We now compare this bound U(n) with N*(n) given in (4).
We have that

U(n) _ K n—1—2j n—1
Q) = U(n —1)_1+KZO(K+1)',H0( )< ( 2 )

and log,Q(n) < nlog,n
On the other hand

Ni¥(m) _n*—=3n+2

Q*(n) = log, NF(n— 1) = 2

We realize that

2_
nlog§n<$2 for n>10

The bound U(n) is thus smaller than the bound N¥*(n). However,
the difference between U(n) and L(n) is very large as we can see for
the case n = 10 and increases with r.
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Weighted linear spaces (w.l.s.)

We define a weighted linear space (w.l.s.) as a set of elementary
objects called weighted points; there are the l-points or points with
weight one, the 2-points of points with weight 2, in general the w-points
or points with weight w. Some subsets of these objects will be distin-
guished and called lines. A line may be composed of any kind of
points. In the following the word point without specification of weight
will designate any kind of w-points. On this set of objects we specify
two axioms

W1 — two different points belong to one and only one line
W2 — any line contains at least two points.

The notion of w.lLs. is an extension of the notion of ls. defined
below where we considered uniquely the 1-points.

We call an isomorphism from a w.l.s. W on a w.Ls. W’ any bijection
of W on W’ which apply

— a w- point of W on a w- point of W’

— any line of W on a line of W’

Two w.lLs. will be called isomorphic if there exists an isomorphism
from one to the other.

The notion of linear variety, connexity and connected component
defined in the case of Ls. can be extended in a very obvious and natural
way for the case of w.ls.

We shall consider now the finite weighted linear spaces, that is
the spaces whose sum of point’s weights equals n. We shall say that
they have total weight n. The problem of interest for us is the enume-
ration of the non-isomorphic w.ls. of total weight n. More precisely
we say that there are M(n) non-isomorphic w.lLs. of total weight n
and M, (n) connected ones. Obviously M (n) < M(n).

For n < 9 we have enumerated all the non-isomorphic w.Ls. We
give the values of M(n) and M (n) in table 3 below.

This problem of enumerating the w.lLs. is related as we have said
earlier to the problem of enumerating the confounded factorial designs
of class (s", s?) which will be treated elsewhere. We shall consider
only the geometrical structure here.
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Using the following theorem, the problem of enumerating the w.Ls.
of total weight n can be reduced to the problem of enumerating
the connected w.ls. :

THEOREM 7

This is analog to theorem 5 and is proved in a similar fashion.

In appendix 1 we give the complete enumeration of the connected
w.Ls. of weight sum < 8. For n > 8§ the enumeration is very fastidious,
thus we shall from now on derive only some bounds for M(x) and
M.(n)

THEOREM 8

M(n)> ¥ pu(m)N() = B (10)

where N(k) is the number of Ls. of k points and p,(n) is the number
of partitions of r in exactly k parts.

ProoF. — If one replaces the points of an /.s. L of k points by w-
points in such a way that the sum of weights equals n, one obtains
this way a w.ls. of total weight n. The set of k weights distributed
among the k points of L represents a partition of » in k parts. It is
casily seen that if we had started with another partition, the w.ls.
obtained would have been different. Also if we had started with a
different [.s. than L, we would have obtained a different result.
Enumerating all these possibilities leads to (10).
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THEOREM 9
Mi(m)> 3. pu(m)N(k) = BL(n)

where N.(k) is the number of different connected Ls. of k points.

The proof is analogous to the proof of the theorem 8. Obviously
we do not know N(k) or N (k), but we have by theorem 2 and theorem
3 a lower bound for each of these values; this gives us:

THEOREM 10
M(n) > kzl pu(n) N*¥(k) = B*(n)
M.(n) = kzl p(n)N¥(k) = B2(n)
where
N*(k)=N(k) for k<9
> for k>9
and

N¥(k) = N.(k) for k<9
251 for k>9
An other way of obtaining a lower bound for M(n), is to replace

in (9) the values M(k) by B2(k). We obtain then

THEOREM 11

M n) =

(05 v

n=y1+2y2+___+ny,.|:i=l i
»iz20

B3(n) is a much more complicated expression than B2(n) and it
becomes very difficult to state which one is better.

I whish to express my appreciation to Jean Doyen for numerous
suggestions.



APPENDIX I

Enumeration of the connected weighted linear spaces

We shall give the graphical representations as follows: Each w-
point is represented by a dot and the value w is written near to it
if w> 1. If all the w-points are collinear we write only the value
of w, each separated by a coma.
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the w.ls. 23 to 35 consist of the 13 connected Ls. described by

Doyen.



—_—

—

PPN -
—_— = — O —

—

—_——

-

—_—

-~

—_——

—_ e o N = o A N = — Al Al —
s R I 2 s A T SR T S AP R AP NP g
O RN e

1 i

— NN TN O~ NSO —

—_— o —

N

o <t vV \O I~
— e — —

the connected w.Ls. 75 to 116 consist of the 42 connected Ls. described
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