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1. The method of converging factors, for hastening the convergence of slowly
convergent series and improving the acouracy of asymptotic expansions, wasintroduced
by J. R. Airey and is well known to computers (see Airey (1) and Rosser(2)). The

principle is as follows. It is required to compute & quantity which is expressed as an
infinite series S = uy+u; +ug+....

The series may be either convergent or asymptotic and divergent. If it is written as
a'ﬁnlte sum S=uO+u1+-.. +un_1+R",

this sum may be computed either if the remainder term R, is known to be negligible
or if R, can be estimated sufficiently acourately. To establish that R, is negligible
it is usual to determine an upper bound to | R, |; often, however, this bound turns
out not to be negligible. Airey therefore directed his attention to the estimation
Lof It,. He first chose w, to be one of the smaller terms of the series, and then, writing

E,=+ Crthy, v
he concentrated on evaluating C,, which he called a converging factor. In practice the
range of variation of C, is much less than that of R, or of u,,; this usually simplifies the
problem of obtaining a useful expansion for C,. ‘

By somewhat empirical methods Airey obtained converging factors for several
asymptotic expansions of terms with alternating signs, testing his results numerically
by comparing them with those obtained from other expansions. The method was
highly successful, and results were obtained to many more decimal places than are
usually considered possible when, for example, an asymptotic expansion is available
with an error bound of the form | R, | <|u, |.

When the asymptotic series has terms which are not strictly alternating in sign, at
least for n > ny, Airey’s methods still work, with more or less effect, so long as the signs
change infinitely often. Series with a fixed sign for terms with n > n, are, however, of
an entirely different character, and Airey obtained converging factors only in two or
three cases where an explicit expression for R,, was known as an integral, and where
this had been redeveloped, e.g. by Stieltjes (3), in a form immediately useful for Airey’s
purposes.

In the present paper it is shown how a convenient expansion for C, may be developed
whenever & is a function of z satisfying a linear differential equation, so that C, also

atisfies such an equation in z, while at the same time u,, and thence C,, satisfies
a linear difference equation in n. If the number of changes of sign in the sequence u,, is
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giving results which have not been previously obtained except for certain particular -
values of a. '

The methods have been completely successful in the present case. A warning must,
however, be given, since asymptotic representations, satisfactoryin the Poincaré sense, -
are not unique. In theoretical developments of such expansions, results are often ‘
obtained in different ways having the same ‘major’ series—as they must—but having
different multiples of an accompanying subsidiary series, whose ratio to the major
series is a negative exponential in the independent (complex) variable z, and so
treated as negligible. These differing expansions have overlapping z-regions of validity
and are such that in the common region the parts of the expansior. which differ are
relatively negligible, though the roles of major and subsidiary series may well be
interchanged outside this common region. The well-known Stokes phenomenon refers
to a change in the multiple of the subsidiary series somewhere in such a common region.

If, however, a converging factor is used, the increase of precision may be such that
the subsidiary series is not negligible numerically for values of z where the expansion
is useful. In this case, it is clear that the correct multiple of the subsidiary series must
be used—in other words, that regions of validity must have strictly non-overlapping
ranges for the phase (or ‘argument’) of z. See, for example, Airey (1), p. 546, where the
asymptotic expansion for Iy(x 4/i) = berz+ibeiz is considered, the main part being
a series with factor e¥v2, but where it is shown that a term (i/7) (ker 2+ keiz), with
expansion having a factor e~#/V2, remains numerically significant. Such refinements
indicate that the change referred to above in connexion with the Stokes phenomenon
is abrupt and not diffused over a range of phases.

2. The Weber functions or parabolic cylinder functions with which this paper is

concerned satisfy the D.E. 2
dxy2 (a+ 32y = 0. . (2:1)

The asymptotic expansions for solutions to this equation involve two particular
independent solutions S;(a, x) and Sy(a, z) such that

(@+d)(@+3) (a+3})(@+})(a+s) (a+%)__._}

S,=8,(a,z) ~ et g—a-1 {1 -

2.z2 2.4. 24
=V —v,+v,— ..., (2:2)
)y la— % a— % (@a-%)(a—%)(a—3)(a—%)

Eu0+ul+u2+.... (2'3)

; 5
7
¥
>

infinite, €, may be determined esther from the differential equation (denoted Lere by
D.E.) or from the difference equation (A.E.). If, however, the terms u,, are ultimately : 5
all one-signed, there is difficulty with constants of integration and summation, a.nd
both D.E. and A.E. are needed for the determination of C,. ;!
The method is outlined by its a,pphca.’mon to the asymptotic expansions for the -
solutions to Weber’s equation

]
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Determination of converging factors
In these v, and u, satisfy the A.E.’s

2raty, = (a+2r—§) (a+2r— i»)'v,.l.}

_ 2:4
2rxtu, = (a—2r+3) (@a—2r+3)u,_;. (24)

Write, now, B o ' R
r—=1 ' . ' r-1 ‘ ’ -
Sur = % (=1rv, By, =8-8,, Sy = 20 Uy Ry p="8—8,, (26)
whence : Rl.r_Rl.r+i = (-1) Vp . Rz,r_R2,r+1 = Up. (2-6)

Then it is desired to find expressions from which R, , and B, , may be calculated. This
is done by writing, say, o
Ry,= (-1, or Rz,r = G, (2+7)

Then the converging factors I', and G, each satisfy a D.E. and a A.E., and from these
equations suitable expansions may be derived.

3. Consider first the series for S, (a, ), which is easier to deal with; it will be apparent

later that the reason for this is the alternation of sign in the successive terms of the
series.

From (2-4), (2-6) and (2:7) it is readily verified that T, satisfies the A.E.
2r2®(T,_,— 1)+ (a+2r—3) (@+2r— )T, = 0. (3:1)

Again, substitution of (2-2) in (2-1), using R, , to curtail the series, gives a D.E. for
R, ., namely,

d*R
@+ By, = (= 1) 210, (3-2)
The substitution (2-7) then gives
0, dr, .
2% —x(x?+2a+4r+1) =T (a+2r+%)(a+2r+3) T, + 22}, —1) = 0. (3:3)

Suppose now that v, is the smallest term, or nearly so, then v, and v,_; are nearly of
the same size so that, from (2-4),

2r = a2—2(a—1)-k, (3-4)
in which % is small, of the order unity. To simplify the expressions, write
—a-2, u=(a—1p—}=(@—H -9 (3:5)
Then the A.E. (3-1), keeping « constant, so that » and & vary together, becomes
(L4 Ty — 1) —2?[(k+20+2) (D, + T,y — 1)+ kL )+ (B2 4+ 200+ 1) b+ 4] T, = ((), |
36

whilst the D.E. (3'3), keeping r constant, so that x and &k vary simultaneously,
becomes

A4l — 6T+ 20, — 1)+ a2 [4(k+ b)T; — (3k + 4b) ', + (k + 2b + 2)]
+[k2+2(b—-1D)k+p—4b]T, =0, (37)

where accents denote differentiation with respect to k.
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A solution to these is sought in the form

UG

22,22 23,24 ortlglr = T

I

r

(3:8) -

suitable for numerical work when z is fairly large. Either equation, D.E. or A.E., may -
be solved, giving identical results for a particular integral. The accompanying com- -
plementary function will be assumed absent, not being expressible as a series in

descending powers of z; its neglect will then be justified in §86.

4. To obtain a solution to (3:7), substitute (3-8) therein, and equate to zero successive
descending powers of 2. The resulting relations are

20— 3B5+By = 1,

2p1—

301+ By = —4(k+b) fo+ (8K + 4b) By — (2k + 4b + 4),

283 3f5-+ By = — 4ll-+ b= 2) B+ (3h+4b—6) B, — 202+ 26— \ k4 u— 45} By, | (41)
2B711—3Bri1+ Bri1 = —4(k+b—2r) B+ (3k+4b—6r) B, + 8(r — ) (k+b—-7)p._,

—2(k2+2(b— 1) k+ p— 4B} B,y |

These may be solved in succession, the right-hand side being known at each stage.
The operator 2D%—3D + 1 on the left sides of (4:1) may be removed in tie usual way
by application of the operator

1 2 1

= —_ = 2 3 — -1 N
1—-3D+2D% 1—2D 1—=D 14+3D+17D%*+156D%+ ... + (2" = 1) D14 . (4-2)

The result obtained is

1 1 1
Ty~ b+ gaalle— U g (K2 3k — (20— 1)} 5k — 6k2 — (80— 7) k— (8b — 2 — 1)}

1
+ giga (k' — 10K° — (2210 — 25) k% — (48ub — 16+ 5) k— (2812 — 561b — 26+ 13)}

1
+ 510 {k° — 16k4 — (521 — 65) k% — (1841 — 681+ 60) k2

— (2284% ~ 480ub — 18471+ 83) k— (9642b — 144412 + 152ub + 1464 — 4T)} + ...

(4-3)

Concerning the coefficients in { }, it may be noted that (i) none contains a term in b
alone, and (ii) their values when k = 0, # = 0, namely —1, +1, +1, — 13, + 47,...,are
the constants —a, tabulated by Airey ((1), p. 529) for his converging factors for the
‘exponential integral; they also occur when dealing with the ascending series for
the exponential function. This is to be expected, since a = — % gives a D.E. satisfied
by y = exp (— }x?).

5. Consider next the substitution of (3-8) in the A.E. (3-6) and the relations obtained
by equating to zero the coefficients of successive powers of 1 [x2. The resulting relations,
in which B} (k) is written for S, (k + 2)—for k becomes k + 2 when r becomes 7 — 1, 8o that

—are

AW A AR

b=yttt

(P14 BT) = (k+20+2) (By+ BF—2) + kP,
3 Bra +£841) = (k+ 20+ 2) (B, + BF) + ki, — 2{k2 + 2k(b + 1) + 1} B, ;.

(5:1)

(52)

st B &

Cl
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The last relation may be rewritten

2 Brir+ By —2kf,) = (k+2b+2) (B, + BF — 2k, _1) — 21, (6-3)
whence may be derived the relations :

Hpo+B) =1, }

381+ A1) = kB, '

$Ba+B7) = kfr—21B0, ' ( (5-4)

3(Ba+ B3) = kBy— 2y — 4(k + 2b + 2) uf,,
HBy+BT) = kfs—2ufy— 4(k+2b + 2) ufy — 8(k + 2b + 2)* uf,,

and so on. These are useful when seeking early coefficients.
The details of methods of solving these equations are not uninteresting, but are
omitted. The coefficients in (4:3) result as before.

8. Lastly, the complementary functions that may arise during the solution of (3-6)
and (3-7) remain to be considered. It is convenient to consider the D.E. and A.E.
for B, , itself for this purpose, and to omit those terms which give rise to the right-
hand sides of (3:6) and (3-7). The A.E. for R, ,is given in (26), so that, omitting the
term (—)"v,, which leads to tho term —a+ (k+2b+2)a% = —2rz? in (3-6), the
complementary function is given by

R, ,=constant or T, = (—1)" xconstant/v,, (6:1)

where the constant may, of course, be a function of z.
The D.E. for R, , is (3:2), whence

d* = =
@Rl,r_(a'*'%xz) Rl,r =0, (6'2)
so that R, , = A,.8,(a,z)+ B,S,(a, z), (6-3)

in which 4,, B, may depend on r.
The desired complementary function, which must satisfy simultaneously both (6-1)
and (6-3), is thus of the form

R-l,r = (_ 1)r f‘r ’l),. = ASl(a’x) +BS2(a’x), (64)

where A and B are constants independent both of z and of 7.

Now, as x>0, 8;—0 while S,->co. Also R, ,—0 for fixed r. Hence B = 0. Likewise,
if A+0, 8, ,+(~1)yR¥,= (1+A4)8,, in which R}, = R, .+ R, ,, indicating an in-
correct identification of the series with S,(a,z); if this is ruled out, clearly 4 = 0.
Hence R, , = 0 and so T, = 0.

7. Next the series S,(a, ) must be considered. In a manner similar to that described
in §3, it may be shown that R, , satisfies the A.E. (2:6) and the D.E.

&R
dx?
whence the converging factor C, satisfies the A.E.

2rz?C,_, — (a—2r+ %) (a—2r +}) C, = 2rz? (7:2)

= (a+ }a?) R—2ru,, (7-1)
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(O Gy + 1) +2° [ (4 — 2) Gyt (2h— 20) (Cp_y ~ 1)] + (4h2 = 4he £ ) C, = O (T:5)
and

2A(Cy — Cy+ 1) + 22 (4h— 2c — 2) Cp— (2h — 4) C, — (2h — 2¢)]

4R ah(c+2)+ A+ 4(c+ 1], = 0, (T:6)

2

¢ .:
3
s
o
i%
s
&
=z
{
_‘n
2

and the D.E. : '
#i0r + %@+ 2a—4r) Cr+-{(a—2r—}) (a—2r— §) - 2r2?} C, + 2ra® = 0,  (7-3)
in which accents denote differentiation with respect to A, where A
| 2r = 2%+ 2(a+1)— 2. | (74) ¢
By elimination of r and rearrangement, these take the forms @

+
4

in which c=a+l, A=c?-}=(a+})(a+3). (7°7)

8. A solution is sought in the form

0,=ao(h)+“;(f)+“i§f)+“;(?)+..., (8:1)

which, on substitution in (7-8) and on equating to zero the coefficients of successive
powers of 1/z2% gives the relations

ay—ag =1,
a;—aj = 2(2h—c—1)ay—(2h—4)ay—2(h—c), _ 1
ay—ay = 2(2h—c—3)aj — (2h— 8) ot; + {4h% — 4h(c + 2)+A+4(c+ 1)},  (82)
Oy — g = 2(.‘2h—c—2r—1)05;—(.‘Zh---27'—4)05,—4(7'—'1)(272,—0—7'—l)oc,._1 ’
+{4h*—4h(c+2) + A +4(c+ 1)}

r—1° /

Likewise, noting that
ai(h) | ag(h)

C_,= a3‘(h)+? g T (8-3)
in which af(h) = a,(1+4), (8-4)
substitution in (7-5) yields the relations
oaf—ay =1,

af —a; = — 2haty— 2(h—c) (xg— o + 1),
ay—a, = —2haty — 2(h—c) (y — af) + (4h2— dhc + A)
o1 =y = — 2ha,— 2(h—c) (a,— a}) + (4h%—4hc+A) a,_,;.

9. This time the complementary function includes an additive constant which
cannot be assumed zero. The constant arises from the fact that the operator D or £ —1
occurs as & factor on the left of the equations (8-2) or (8:5); these factors in turn are
connected with the non-alternation of sign in the terms of Xu,,. This connexion is of
considerable interest, as it exhibits a reason for the special behaviour of asymptotic
series with all terms ultimately positive, as evinced here and in the Stokes phenomenon.
The remainder term R, in an asymptotic sum such as those of §2, but allowing complex
argument z in place of z, can usually be written in the form R, = F.exp (tx,) in which
F.is a function which varies steadily with r, without oscillations,and which iseventually
one-signed, whilst usually x, = Ar (exactly or approximately) where A is ¢z? or

(8:5)
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¢z7 +m, ¢t indicating'the phase of the complex:number:t. ‘In this 2?.is the increase in
the power of zin the denominator when passing from one term of the series to the next.
Thus for 8, and S, of §2, A is respectively 7 or 0,

The difference R,,, — R, of (2 6) ma.y thus be wntt,en

SHA+D ( - e-u)

so that the operator £ —1is & factor if and only if A = 0. Similar a.rguments show that
D is then a factor of the corresponding D.E. Only in such cases can an a.ddxtlve
constant arise as part of the complementary function. '

i The other part of the complementary function will be 1gnored untll it is dascussed in
1

Both «, equations yield immediately

_ _ o oy = h+€, N _ (9-1).
Then, from (8:2) «j—a] = —2h2+(6—2¢,) h— (2 —4¢,), (0 ‘2)
and from (8:5) af—a; = —2h%—2hey = —2h(h—1)— 2h(1 +eo).}

On solution, these yield respectively

a, = — R34 (1 —eg) A2+ 2¢,h + €4, R
a = —%h"’+(1—€o)h’+(€o—%)h+€p}

- whence €& =—% (9-4)
The next pair of equations gives

(9:3)

= ARE—4RA+ 2088 + (JA— 4 —e) B2+ (BA+ 46 h+ ey, } 05)
and oo = Fgh® —$hA+BPR+ (FA—§—€) B2+ (Fs—gA +e ) h ey
whence | € = 15— 3A. (9-6)

Proceeding in this way, the value finally obtained is
1
G, = (h—3)— 5 (§4°— $h* + §h+ 3A — 133)
x4[‘k5 474 4 2083 + (A —138) B2 — (A — &%) b+ (Ac + A+ 7555)]

_;_6[_1_3_5.}&7 32h6+ 112h5+(%A 544 hd (_la_A 19?)h3 2/\C+ /\ 19%4)h2

+(3A2—8Ac— 363/\-—“5)h+( /\2+1TAc+ +5¢08)]
+5 [ 8RO — L8H8 + 32R7 + (f5A — 52 hO — (A — 502 B0+ (FAc + 5PA — 3558) bt
+(RA2—BAc — 2158 /\+lg554“)h3 (2/\2+16/\c+°°1 2432y p2
+(2/\20—3/\2—-l—2£%c—-1““/\ 1028V 7 1 e ]+ .. (9:7)

To evaluate €, involves the almost complete evaluation of as, which has not been
carried out.
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C=f@)u,, (10-1) -
whilst (7-1) shows that &, , = 4,8,(a, z) + B,S,(a, z), (10-2) -
whence, combining the results, -

C, = {48,(u, z) + BS,(a, )} u,, (10-3)

in which 4 and B are constanﬁs.

As before, B must be zero, for B+ 0 would imply identification of Sy(a,z) with the :

wrong multiple of the series (2-3).

The term AS,(a,z) in B, , is less easy to dispose of, for it becomes relatively in-
significant as z->co. However, the constant 4 has a definite value which may be
investigated numerically to whatever accuracy is attainable by any method which
may be available. Its presence or absence does not, therefore, affect the numerical
use of the converging factor; it is necessary only to evaluate 4 at both ends of the
range of z for which C, is desired, by alternative calculation (for example by means of
the ascending series), and to use the better of the two values so criculated—they
should agree to within the estimated error of the less accurate—at intermediate points
in the range.

As an illustration of this point, consider the case @ = — %. A solution of this equation
(2-1) in this case is z
e—iz* f ed? dt
K
for any constant K. Change of the constant K adds a constant multiple of the other
solution of (2-1), namely e—#=*, corresponding to a change in the constant 4 of (10-2) or
(10-3). It happens here, as often, that the most natural choice of K , namely K = 0,

corresponds to 4 = 0, as will be partially verified in §13.

11. The converging factors (4-3) and (9-7) may be expressed in other forms. In
particular, expansion in powers of 1/r, rather than of 1/2%, is useful, since r is integral.
The re-expansion may be done by expressing (2?)~? = {2r+2(b+1)+k}? or
(2?)~? = {2r — 2c + 2h}~P in powers of 1 [r and rearranging the terms. Alternatively, the
expansions may be obtained by rewriting (3:6), (3-7), (7-5) and (7-6) in terms of » and
h or k instead of z and % or %, and equating to zero successive powers of 1/r after
substituting o 80(k)+81(k) 8,(k)

T g gy Tgsa e

h h
or G, = o)+ T Tell)
Other expansion in terms of inverse factorials may also be developed. It is pdssible
that some of these may be convergent.

12. Numerical illustrations. The following numerical illustrations all refer to cases
with « = 4—rather a small value for effective use of asymptotic expansions. The
values of a used are a = 4, 3, § for S,(a, z) and a = — 3, —3, —§ for S,(a, ).

¥ !;‘

10. Precisely as in §6, the complementary function ‘may be found from (7-1) and
(2-6). The latter shows that &, , is independent of r, whence

Y
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For these cases it is readﬂy venﬁed tha.t '

Code [T A T PR

1(%, r) = e*”’ f e’*" dt | : Sl(}, 4) 0 00433 44395 876
—8y(3,2) = x81(1}, x)—e-*w’, | Sl(g, 4) = 0-00097 78805 38,
—28,(3, %) = #S,(3, )~ 8,(}, z),  8,(5,4) = 0:00021 14587 17.
Also  §y(—14,2) _ e-ie* f :e“’ dt, | S(—44) = 1476313 76272,
83— 3, 2) = 28—}, %) — %, Sy(—$,4) = 445440 00758,

28,(—%,2) = 28,(— $,2) - Sp(— 1 2),  Sp(—%;4) = 1-52723 13879.

The value of 8;(},2) was extracted from the NBSCL tables of the probability
integral, and the last digit is doubtful for this value and for the two quantities derived
from it. The value of S,(— , ) was obtained from the ascending series

S —1,2) _e-;z-(“;”?) 29::5 24x76 7t )
Values of k, &, u, A, b, ¢ (defined in (3-4), (3:5), (7-4) and (7-7)) are as follows:
Sy(@,z) a b u k Sy(a,z) a c A h
3} —% 0 17-2r ~3 +% 0 3(17-—2r)
3 -3 0 16—-2r -3 —% 0 3(15-—2r)
54} 2 13-2 ~3 —3 2 }(13—2r).

The converging factors I'; are the same for a = } and a@ = §, while () is the same for
a=—}% and a = —3}. The effect of # when a = § is not great, but that of A when
a = —$ will be seen to be very pronounced.

13. The alternating series Sy(a, x).

Sl(‘}: 4):
r Uy Sl.r+1 k T, R,, Si(3, 4)
0-00 0-00
0 | 0-00457 89097 2218 | 457 89097 222
1 28 61818 5764 | 420 27278 645 | + 15 | 0-8534 —0-0%24 42 433 47
2 5 36590 9831 | 434 63869 628 13 | 0:77716 +0-0% 41702 433 4430
3 1 67684 6822 | 432 96184 946 11| 0-71246 9 —0-0¢ 1194701 433 44399 6
4 73362 0485 | 433 69546 995 91065716 69 4005 48211 11 | 433 44396 06
b 41266 1523 | 433 28280 842 71060048 558 | —0-0% 25151 126 | 433 44395 870
6 28370 4797 | 433 56661 322 5| 056802002 | +0-0° 16115026 | 433 44395 868
7 23051 0147 | 433 33600 308 31053166 641 | —0-05 122556 460 | 433 44395 872
8 21610 3263 | 433 55210 634 +1 | 0-49955 587 | +0-05 10795 565 | 433 44395 873
9 22060 9717 | 433 32249 662 —1|047100623 | —0-05 10814 761 | 433 443956 873
10 27266 1539 | 433 659515 816 —3 | 044546 03 +0:0% 1214599 | 433 44395 65
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The column 84,r41 indicates how closely the result is given—to about 5% decimals,—;by,v &

e

the unaltered asymptotic series, and how partial sums are alternately in excess and %

in defect. The final column indicates a good range of k, from about —1 to- +7, where .

the converging factor is very effective; in fact, with 13 decimals, the study of accuracy

’
\

is not quite complete—the figures suggest that the check value 0-00433 44395 876

given.in §12 is itself inadequate. Fewer details are given _below:
Sl(%’ 4-'):
Vp k Ry, Sy(4, 4)
0 0-00114 47274 3054
1 21 46363 9323
2 670738 7288
3 2 93448 1939
4 1 65064 6090
b 113481 9187
6 92204 0590 +3 +0-0° 49021 801 0-02 97 78805 400
7 86441 3053 +1 —0-0° 43182 262 97 78805 396
8 91843 8869 -1 4+ 0-0% 43259 043 97 78805 395
9 1 09064 6156 -3 —0-0° 48583 96 97 78806 28
Sl(%» 4)
r Vp k T, R,, Si(%, 4)
0 | 0-00028 61818 578
1 10 73181 966
2 5 03054 047
3 293448 194
4 208330 761
5 170222878 | +3 | 0-52865 4 —0-0% 89989 0 0-0% 21 14584 2
6 161357103 | +1 | 0-49726 294 | +0-0% 80236 907 21 14587 253
7 172882610 | —1 | 0-46922 185 | —0-05 81120 297 21 14587 152

It will be seen that I, is determined to about 8 or 9 decimals, at = 6 or 7 for
a = 4 and 4, with perhaps slightly less accuracy for a = 3. In fact, for k = —1

2 53 13 28 11
“=4 P’=%—22.x2 25,8 20287 25 287 28 10’

2 1 1 4 49
a=3 T= %—22.x2+23.x4_24.x“_25.x8+2°.x1°'

The accuracy falls off as k gets away from the optimum range; it also falls off as |a|
increases, while the optimum % also changes. Thus, for @ = — 4%, k = 6 is about the
best, and this gives

b 41
.t 23 gd

223 67 15295
24 28 25 g8 28 pl0°

a=-3 I‘r=%+22

In this the numerator 67 is abnormally small (compared with about 1500 to 2000 for
this neighbourhood in £); the last coefficient is normal—for the range k =5tok = 12
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* Determination of converging factors
its modulus does not ‘exceed:about 2
limits of this range. -

For effective use of thése formulae a fu]lei'“s"cudvj?ié-‘d‘eéira.ble-.f-' it i

14. Themngle-azgn series Sy(a, ).

253
5000, ‘although increasingirapidly-outside the

Cailds

r S,(—}, 4) Sz, rH1 Rt Sa("'i" 4) Sz(—g‘v 4) )
0 13-64953 75083 |- ‘1364953 75083 ...| * 3:41238 43771:" | ,,Q'85_309' 60943
1 . 85309.60943. . 14-50263 36028- |- .63982 20707 " |.::31991 10354
2 15996 655177 14-662568 91203 .19994 43971 - 14995 82978
3 4998 60993 14-71257 52196 - 8747 567317 - .8747 5687317
4 2186 89184 14-73444 41380 " 4920 50665 6150 63331
b 1230 126686 14-746874 54046 | 73382 84832 | 5074 27248
6 846 71208 14-75520 25254 2748 56426 - | .- .. 4809 98745
7 687 14108 14-76207 39360 2576 77899 ’
8 ‘644 194775 14-76851 58835 2737 82768
9 684 45692 14-77536 04257 3251 17037

10 812 79259 14-78348 83786

The partial sums S, .., are given, for Sy(~ }, 4) only, in order to exhibit the. way in
which S, , increases up to and, at the least term, through the value 14-76313 75272
given in §12.

Take in each case the least term, respectively the 8th, 7th or 6th, so that b = % for

each. Thus

1 131 353 1 1423 1
for a=-%—% G =5 520 2268074 13608070 ' "
P 4= b o 1 6531 419331 37
or =~%  UrT 5T 540zt 22680z% a8
whence, for z = 4, a=-} —3 C =016510379,

a=-3%, C. = 0-0945,

the former to 7 or 8 decimals, the latter to about 3—the effect of non-zero A is very
pronounced. Thence

a=—}% a=—% a=-3%
S, s = 1476207 30360 Sy, = 445014 57100 Sy ¢= 1522790
S, = 14-76313 75260 S, = 4-45440 00707 S, = 1:62733 7

These are correct to 8}, 8 and 4 decimals respectively.
No serious attempt has been made to search for the best range of values of h for
convergence, but small ones seem likely to be best.

Much of the work in preparing this paper was done at the National Bureau of
Standards, Washington, D.C., U.S.A., and it is published with the permission of the
Director. The writer is grateful to the Bureau for its encouragement, and to the Office
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Command, U.S.A.F., which supported the work in :
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It is also & pleasure to acknowledge the enlightenment obtained from discussions
on many occasions with Prof. W. G. Bickley, who supplied at least one key idea.
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