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Identities in Jordan algebras

C. M. GLENNIE

THE main part of this paper is the calculation of the dimensions of certain

subspaces of Jordan algebras. From a knowledge of these dimensions we
deduce a theorem on identities in Jordan algebras. This is given in the third
and final section. In the first section we set up some notation and give some
preliminary results. The results are not new but it is convenient to gather
them together here. The sccond section gives the statement and proof of the
main theorem. The reader should consult the preceding paper by L. J. Paige
in this volume for background material,

1. We shall work throughout over a fixed but arbitrary field of charac-
teristic zero and shall not refer to the ground field again. The restriction on
the characteristic can almost certainly be relaxed but this would require
further investigation which we have not carried out. We shall be working in
certain frec Jordan and free associative algebras and shalluse a, b, ¢, . .. to
denote the free generators. In particular places we shall write p, g, r,
instead of @, b, ¢, ... when the result we are stating remains true if the
variables are permuted or if we wish to indicate a typical monomial. The

element pgrs+srgp in an associative algebra will be denoted by pgrs, and
called a tetrad. Smuhrl_\, parst+tsrqp lqufst and so on. Tetrads such as
abed, deba, acef, feca in which the letters appear in alphabetical or reversed

~ alphabetical order will be called ordered tetrads. As associative products

oceur only under bars we shall also use juxtaposition to denote the Jordan

product 1pg. Products in the Jordan algebras will be left normed, i.e. xyz
means ().y)z and so on. We use the following notation.

L(n) subspace of the free Jordan algebra on 1 generators spanned by
monomials linear in each generator,

M(n) subspace of the free special Jordan algebra on n generators
spanned by monomials linear in each generator,

N(n) subspace of the free associative algebra on n generators spanned

by the §n!elements i arising from the n! monomials w linear in
each generator,

S(r) (n=2) subspace of L(n) spanned by monomials pw wheie wisa
monomial linear in each of the generators other than p,
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under consideration,

P(x,3,2) REIR(Z)+ROYIREX) + REG)R(x),
O(x,y,2) R(y2)R(x)+ R(zxX)R())+ R(x))R(),
S(x, y,2)  R(x)R(z)R()+ R(G)IR(z)R(x).

With the above notation the linearized form of the Jordan identity
xyi? = x)?yis

xP(y, z, t) = x0(y, z, 1) (D

or XR(yzt) = xP(y, z, 1) —xS(y, z, 1). (2)
From (1) and (2) we have at once

xR(yzt) = xQ(y, z, 1)~ xS(y, z, 1). (3)

It is clear that M(n) S N(n). We have also

LEMMA 1. For n = 3, Un)+ V(n) = L(n).

Proof. Let w¢ L(n). Then w isa sum of elements «Rwhere R is a mono-
mial in operators R(x) and each x is a monomial in some of the genera-
tors b, ¢, ... . If x contains more than two gencrators then by (2) R(x) can
be expanded as a sum of words R(y) where each ¥y contains fewer generators
than x. Repeating such expansions as often as necessary gives the result,

COROLLARY. S(n)+T(n) = L(n) and S(n)+ V(n) = L(n).

LEMMA 2. dim S(n) < ndim L(n —1), dim T(n) < $n(n—1)dim L(n — 2)
dim U(n) = (n—1) dim L(z—1), dim V(n) < L(n—1)(n—2) dim L(n —2).

Proof. The proofs of these inequalities follow at once from the definitions
of S(n), etc.

The following relations, in which p, ¢, r, ... denote distinct elements
from b, ¢, d, ... and x is a monomial in the remaining generators, are either
clear from the definitions of the operators or follow easily from 0, (2, (3
and previous relations in the set.

xQ(p, g, r) € Un) (4)
xF(p, g, r) € U(n) (5)
xS(p, q,r) € Un) (6) .
xR(pgr) € U(n) Q)
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T(n) (n= 3) subspace of L(n) spanned by monomials pgw where wis a
monomial linear in each of the generators other than pand g,

U(n) (n=2) subspace of S(r) spanned by monomials pwwith p + a,

V(n) (n=3) subspace of 7(») spanned by monomials pow with p = @

» andg + a,
[W] subspace spanned by the subset W of a vector space,
R(x) the mapping y — yx, x and y elements in the Jordan algebra

X

The followin

LEMMA 3. oh:
ofa b, cd.

Lemma 4. M(
empty set) fo:
= {pgrstu-+pgr:
pars(ti)y, parsiu
elements obtain:

such that pgrs i

Let U be a sy
a subset of V. I

amongst the ¢l
matrix 4 = (4,]
LemmA 5. din
Proof. Letr =
as a linear com!
ments of W.So |
ments from W, :
2. THEOREM 1
are respectively
Proof. The 1
transformation
we now find a ni
It follows at ol
to denote the :
for L(r) and so
n = 1.Take d
Lemma 4, M =
n = 2. Take
dim L = d. By |
n = 3. Take
Lemma 4, M =



d g,
4,

bra

‘nts
iher

L (3)

(5)
(6)
(7

sa’

Identities in ._Iordmz algebras 309
x{qr(st))—x0(q, r, st) € U(n) 8)
x(gr)(st)—xQ(q, r, st) € U(n) )]
xplgr(st))—xF(p, gr, st) € U(n) (10)

x(qrp)(st)+x(stp)(gr)—xQ(p, gr, st) € Un). (11)

The following lemmas are due to Cohn. Proofs will be found in [1].

Lemma 3. abed—(sgn ﬂ);q‘rs— € M(4) where p, q, v, s is the permutaiion
ofa b, c, d.

Lemva 4. M(n)+[W(n)] = N(n) for n = 1, , T where W(n) = ¢ (the
empr)' set) for n=1,2,3, W4) = {aucd} W(S) = {pqrst}, W) =

= {pgrstu+pgrsut, pqrs(m) pqrsruqurwr} W(T) = {;ognnn + pgrsuty,
pars(tu)v, pqrstuv —pgrsutvy. In the cases n = 5, 6,7 the set is to include all

elements obtained by replacing p, g, r, ... by any permutation of a, b, ¢, . ..

such that pgrs is an ordered tetrad,

Let U be a subspace of the vector space ¥ and W = {wy, ..., w,} be
asubset of V. If r; (i = 1, ..., m) denotes the relation

? Jiy €

amongst the clements of W and R = {ry, ..., r,,} we shall call the mXn
matrix 4 = (4;) the word-relation matrix for W and R. We have

Lemma 5. dim (U+[W]) = dim U+ (n—rank A).

Proof. Let r = rank A. We can find r elements from B each expressible
as a linear combination of some element in U and the remaining n—r ele-
ments of W.So U+ [W]is spanned by any basis of U together with n—r ele-
ments from W, and the result follows.

2, THEOREM 1. For n = 1, ..., 7,dim L(n) = dim M(n). The dimensions

- are respectively 1, 1, 3, 11, 55, 330, 2345.

Proof. The mapping a —a, b — b, etc., can be extended to a linear
transformation of L(n) onto M(n). So dim M(n) = dim L(n). For each =
we now find a number d(n) such that dim L{n) < d(n)and dim M(n) = d(n).
Tt follows at once that dimZL(n) = dim M{n) = d(1). We shall usc w(n)
to denote the number of elements in W(xn). For simplicity we write L
for L(m1) and so on when dealing with the case n = m.

n = 1. Take d = 1. L1is spanned by a single monomial. So dim L=d. By
Lemma4, M = N.Sodim M = dimN = 1 = 4.

n=2. Take d = 1. L is spanned by the single monomial @b. So
dim L = d. By Lemma 4, M = N.Sodim M = dimN = 1= d.

n = 3, Take d = 3. L is spanned by @b, bea, cab. So dim L < d. By
Lemma4, M = N.Sodim M = dim N = 3 = d. ’
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n = 4. Take d = 11. Lis sp..wad by the twelve monomials apqr, ap(qr),

a(pg)r (see proof of Lemma 1). These are subject to the relation

aP(b, ¢, d) = aQ(b, ¢, d)
and the word-relation matrix has rank 1. So by Lemma 5 (with U = {op
dim L=<11 = d.From Lemma 4 we have that M+ [¥] = N where w = 1.
So dim M = dim N—dim [] = dimN—w = 12—1 = 1] = 4.

n = 5.Take d = 55. Since pgr(st) = stR(pqgr) = stQ(p,q,r)—stS(p, q,r)
we have that S U and U = L. Then dim L = dim U= 5 dim L4) =
=5X1l =55=4d. From Lemma 4, M+[W] =N with w=35. So
dim M =dimN — w=60—-5=55=d.

n = 6. Take d = 330. From Lemma 2, dim U= 5 dim L(5) = 275. V' is
spanned by (i) 60 elements apgr(st), (ii) 30 elements a(pq)r(st), (iii) 30 ele-
ments ap(gr)(st). From (1), (8), (9), (10), (11) we have

ap(qr)(st)—a(gqrp)(st)—a(stp)(gr) € U.
Defining T(p, g, r, s, t) as
[Q(g, r, P)—S(q, r, P)IR(st)+[O(s, 1, p)—S(s, t, p)IR(gr)

we have
ap(gr)(st)—aT(p, q,r, s, 1)c U. (12)
Also, from (5): '
apqP(r,s, HEU (13)
a(p)P(r, s, 1)< U. (14)
and from (1):
aP(pa q, r)R(St)—aQ(p, q, I')R(S’f)é U. (1 5)

(12) to (15) give respectively 30, 20, 10, 10 relations. Setting up the word-
relation matrix for the 120 spanning elements of ¥ and these 70 relations we
get a 70x 120 matrix of which the rank is 65. Then by Lemma 5,
dim (U+V) < dim U+(120-65). So .

dim L < dim (U+V) = 275+55 = 330 = 4.

From Lemma 4, M+[W] = N with w = 45, Now let W’ be the subset
of W consisting of the 30 elements pgrstu+ pgrsut, pars(ti), and let N’ =
= M+ [W’]. We have 45 rclations amongst elements of W — W’ obtained
from
abcdef—&@]a-{-@?efaHbcdeaf-f— cdefab— cdefba+ acdfeb—acdfbe ¢ N’

. (16)
by permuting a, b, ¢, d, e, fand using Lemma 3. We have a further 6 rela-
tions obtained from

cdefab— cdefba+ defbac— defbea+ efbead — efbeda

+fbedae —foedea+bedeaf—bedefa € N an

T
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by permuting a, b, ¢, d, e, and using Lemma 3. (16) is the linearized
form of

abedab— abedba EN
which comes from

acdb®a— cdb®aa-+ cdb’a® — bdca®h+ dea®bb — deah® — O

using Lemma 3 and

pyrst = grstp —rsipg+stpgr — Ipgrs+ pgrst. (18)
(17) comes from ) (cdefab—cdef(ab)) = O where the sum is taken over
the cyclic permutations of b, ¢, d, e, f and Lemma 3 is used where neces-
sary. The rank of the word-relation matrix for the 15 elements in W— W’
and the 51 relations above is 15. So dim N = dim (N'+[W—W']) =
dim N'+15—15 = dim N’. Whence N = N’. So dim M= dim N—30 =
360—30 = 330 = 4. .

n =.7. Take d = 2345. From Lemma 2, dim S = 7 dim L(6) = 7% 330 =
= 2310. ¥V is spanned by clements of types (i) apgrs(tu), (ii) a(pg)rs(tu),
(i) ap(gr)s(ra), (iv) apg(rs)(tu), (v) a(pg)(rs)(ty). Now tuR(apgrs),
tuR(a(pg)rs), wR(apg(rs)), and twR(a(pg)(rs)) are in S. This follows at
once on expanding the operator R using (3) and then using (3) again where
necessary. So L = S+V is spanned by S and the sct of 180 elements
ap(qr)s(ni). Now let X be the set of the 48 elements of type (iii) in which
g="band! = corq=cand = b Consider the following table, in which
each element is to represent the set of elements obtained from it by
replacing p, g, r, s by all permutations of doe, f, g:

ap(bg)r(cs) ap(eq)r(bs)
ap(gr)b(cs) ap(bg)e(rs) ap(cq)b(rs) ap(qr)c(bs)
ab(pg)r(cs) ap(gr)s(be) ap(be)grs) ac(pg)r(bs)
ab(ep)q(rs) ab(pg)<(rs) ac(pg)b(rs) ac(bp)q(rs)

Each element in the table can be expressed modulo S as a linear combina-
tion of elements in higher rows. Thus, for example:

ap(gr)b(cs) = —ap(bg)r(cs)—ap(br)g(es) (mod S)
since apQ(yq, r, L)R(cs) = apP(q, r, b)R(cs) and the elements in this last

-expression are zll of type (iv) and so in S. The expression for ab(ep)g(rs)

arises from
rQ(a, b, ) R(rs)+rsQ(a, ¢, p)R(bg)+bq0(a, r, 5)R(cp) —aQ(bg, cp, rs) € S.

So we now have that S+[X] = L. But there are further relations modulo
S amongst the elements of X. These are:

2. ap(bg)r(es) € S (19)

2, ap(eq)r(bs) € S, (20)
CPA 2}
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where in each case s is fixed as one of d, e, f, g, and the sum is taken as
P, 4, r run over all the permutations of the remaining variables, and
ap(bg)r(cs)+ap(eq)r(bs)— ar(bp)s(cq)—ar(cp)s(bg) € S, (21)
where the sum is taken as P, g run over the permutations of two of the vari-
ables and r, 5 over the permutations of the remaining two. For (19) it is
s_uﬂﬁcicnt to show that ap(bp)p(cs) is in S for (19) can then be obtained by
linearization. But 2ap(bp)p(es)+abpp(cs) € S and abpples) = abpp®(cs) € S.
(20) is obtained similarly. (21) is the lincarized form of ap(bp)r(br) —
~ar(bp)r(bp) € S. Now
8Lap(bp)r(br)—ar(bp)r(bp)] = 8lap(bp)r(br) + ap(brir(bp) -+ arbr)p(bp)]
(by (19) and (20)) = 2(crbp‘-‘br2+aprgpb?+arb‘~’rp9)
= —d[RGPIR?)+ R r2) R
+RED)R(?)
=aP(b® p* r?)= 0 (all congruences mod S).
We now have 14 relations (4 each of (19) and (20) and 6 of (21)) amongst
the 48 elements of X, and the word-relation matrix has rank 13. So
dim L = dim (S+U) = dim S+(48—13) =< 2310+35 = 2345 = 4.
Now M+[W] = N from Lemma 4. If I’ consists of the 210 elements

parstuv+pgrsuty, Ez}g(m)r it follows from work done in the n = 6 case
that M+[W'] = N. Also we have

P4rsqsp+pqrssqp-+ gprspsq-+ gprsspq € M. (22)
To establish (22) we use the following (congruences are modulo M):

8g'rst = TS S T T

= Sqursﬂp 1-8qp°rsg

Pe*rsp = 2r5pgap = dpgrsgsp

ﬁi—gﬂ_p == 2p?;;sp = drspgsqp = 4p—qu-._§sqp
and the relations obtainad by interchanging p and g. If we linearize 22)
and substitute all permutations of a, b, d e, f, g we obtain 315 relations
corresponding to the 315 words pa(rs)t(uv). But we know that dim S+0U)
—dim .S =35. So at most 35 of these relations are linearly independent.
If we choose 35 relations corresponding to 35 words in U which are line-
arly independent mod S we can set up the word-relation matrix for these
and the 105 words of I involved in them. The rank of this matrix is 35
(sece comment at end of proof of theorem). So dim M = dim N—(210-35)
= 2345 = d. This completes the proof of the theorem.

Comment. The proof requires at several stages the calculation of the

rank of a matrix. In all cases but the last this calculation was carried out
by hand. The work involved is not as bad as might be feared because of the
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large number of zero entries and the pattern of blocks within the matrix.
For the last matrix (which has 35 rows and 105 columns) use was made of
the KDF9 computer at Edinburgh University. The program was designed
to print out a basis for the space of vectors x such that x4 = 0 for a
given matrix A. In the present case the matrix was augmented by five rows
known to be linearly dependent on the chosen 35, The print-out showed
correctly the known linear dependences and this was regarded as being a
check on the accuracy of the program. -

3. In [2], the cases n=<35 of Theorem 1 were proved although no explicit
values for the dimensions were established. An example of an identity
in three variables valid in all special Jordan algebras but not valid in all
Jordan algebras was given. This identity is of total degree 8, 5o in a line-
arized form shows that Theorem 1 is not valid for n = 7. The following
theorem, which is a corollary of Theorem 1, bridges the gap left in [2)
forn =6, 7.

THEOREM 2. A multilinear identit v of total degree G or 7 which is valid in
all special Jordan algebras is valid in all Jordan algebras.,

It should be possible using the methods of Part 2 to find dim L(8),
dim M(8) and the degree 8 multilinear identities holding in special Jordan
algebras but not in all Jordan algebras. These correspond to the elements
in the kernel of the canonical linear transformation of L(8) onto A(8).

I should like to record my gratitude to Mr. J. K. §. McKay for his

encouragement in general and his help with the programming and com-
puter work in particular.
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