Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
A001824
Central factorial numbers.
(Formerly M4749 N2031)
10
1, 10, 259, 12916, 1057221, 128816766, 21878089479, 4940831601000, 1432009163039625, 518142759828635250, 228929627246078500875, 121292816354463333793500, 75908014254880833434338125, 55399444912646408707007883750, 46636497509226736668824289999375
OFFSET
0,2
REFERENCES
T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f.: (arcsin x)^3; that is, a_k is the coefficient of x^(2*k+3) in (arcsin x)^3 multiplied by (2*k+3)! and divided by 6. - Joe Keane (jgk(AT)jgk.org)
a(n) = ((2*n+1)!!)^2 * Sum_{k=0..n} (2*k+1)^(-2).
a(n) ~ Pi^2*n^2*2^(2*n)*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
(-1)^(n-1)*a(n-1) is the coefficient of x^2 in Product_{k=1..2*n} (x + 2*k - 2*n - 1). - Benoit Cloitre and Michael Somos, Nov 22 2002
a(n) = det(V(i+2,j+1), 1 <= i,j <= n), where V(n,k) are central factorial numbers of the second kind with odd indices (A008958). - Mircea Merca, Apr 06 2013
Recurrence: a(n) = 2*(4*n^2+1)*a(n-1) - (2*n-1)^4*a(n-2). - Vladimir Reshetnikov, Oct 13 2016
Limit_{n->infinity} a(n)/((2n+1)!!)^2 = Pi^2/8. - Daniel Suteu, Oct 31 2017
EXAMPLE
(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
MATHEMATICA
a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
With[{nn=30}, Take[(CoefficientList[Series[ArcSin[x]^3, {x, 0, nn}], x] Range[0, nn-1]!)/6, {4, -1, 2}]] (* Harvey P. Dale, Feb 05 2012 *)
CROSSREFS
Right-hand column 2 in triangle A008956.
Sequence in context: A024293 A361559 A120268 * A024294 A183406 A084999
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Joe Keane (jgk(AT)jgk.org)
STATUS
approved