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6. MAJORITY DECISION FUNCTIONS OF UP.TO SIX VARIABLES

In order to check various properties of the majority decision func-
tions described so far, the Parametron Computer MUSASINQC-1 (15)
was used to find all majority decision functions of up to six variables
and the structures of elements to realize these, based on Problems 1 and 2.

Majority Decision Functions of a Few Variables and 1'heir Iv winber

All majority decision functions of up to six variables are classified

" by permutations of variables, and negations of the variables. A

representative function in each class such that w; 2 we 2 Wy = Ws
> w; = we = 0 are obtained (16, 17). The number of these functions
is too great to be shown here.

These functions were checked both by the simplex method and the
combination method, where the functions are discovered by giving all
possible integer values to the inputs.

Table IT lists the numbers of functions enumerated from several
different viewpoints (18).

(i) The number of general Boolean functions of up to n variables,
22" is shown for reference in the second column of Table II.

(it) The number of the positive functions of up to 7 variables,
those that can be realized without negation of the vaniables. These
may generally not be realizable by a single majority decision element.
The numbers were quoted from Birkhoff’s book (19). The majority
decision functions constitute only a subset of these.

(iii) The number of the majority decision functions of exactly 7
variables without negations of the variables. This is divided into two
cases. The first case shows the number of the majority decision func-
tions, representatives of equivalent classes, each of which consists of
functions identical by permutations and negations of the variables.
For example, XXz + X3, ¥1¥s 4 x,and & F2 + s belong to the same
class represented by x: + xo¢3. The second case shows the number of
the functions in the first case, taking into account only permutations of
variables. The functions in the second case are not enumerable unless

“the forms of the {uncticns representing the above classes are known,

because there are partially or totally symmetric functions. For ex-
ample, for n = 2, we have two, counting xi -+ X2 and x1xs.

(iv) The number of the majority decision functions of up to#n vari-
ables, without negations of variables. For example, forn = 2 we have
six, counting 0, 1, X1, X2, X1+ X2 and xxe.

(v) The number N (n) of the majority decision functions of up to 7
variables, taking into account permutations and negations of variables.
If this is compared with 22" we can see how small a part of 2% this
occupies.

(vi) Theoretical upper and lower bounds on N (%) shown in Section 4.
The lower bound shows the number of functions constructed similarly to
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