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hen we depart from
4s the pole and the
=- We may develop a
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us the crapli of the back surface from which we can draw the front surface
and =0 have -a Jens without knowine the equations of the curves.
(A tigr the foeul length to be wui Vs the fulinhnent of the sine condition
wil (uire y=sint.) Simili v owe could work with the surface
b " R
C=a-1bp*+cp?,
1 » . 1
where b=-—- and c¢= -]—3, instead of R
2r 8r 8r

as in the case of the sphere. The choice of p would help in dealing with
the aberrations. This would mean including terms like p 4, ete. in P,

and the equations obtained from Fermat’s theorem would be solved by

approximate methods. Finally, it would be mteresting to compare the
results for all methods and develop the formule for more general optical
systems. ’

XXXVIIL. Table of Coefficients for Repeated Integration with Differences.

By HErBERT l{ SALZER *t.

[Received August 2, 1945,]

Formuras for doubly or multiply repeated integration, emploving either
advancing or backward differences of the integrand, are obtained by
integrating the Gregory—Newton interpolation formula with advancing
differences or the Newton formula with backward differences. Although
it is true that a k-fold primitive of f(z) is expressible as 1/(E—1)! times a
single primitive of (x—t)*~1f(¢), that fact is of no help when only f{z) and
its differences are tabulated. Thus it is convenient to have a table
facilitating repeated integration in terms of the integrand and its
differences.

A k-fold quadrature introduces an arbitrary polynomial of the (k—1)th
degree whose coefficients are determined by the values of the primitive
at k near-by points, or instead, the primitive and its first k—1 derivatives
at a point. A useful case (occurring in the solution of differential
equations) is where the integration proceeds stepwise. . Then a, particular
4 fold primitive (i. e. apart from the arbitrary polynomial) is obtained by
making z, the lower limit of the repeated integral and x, the last upper
limit, where z,—zy=h=the tabular interval. Then, using A notation
for advancing differences and 7 for backward differences, one finds for

* Mathematical Tables Projeet, National Burcau of Standards, U.S.A.
t Communicated by the Author.
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Advancing Differences :

[of [ et [ [ oy

k-fold k-fold

:h’“{ﬂiﬂ) %G;k)A"f(zo)}—i—Rm.. . (1)

BV aon

Backward Differences :

o (BT C 1 oy
["[ ] tayawp=i[ | | flaotphiapy
Zo Zo” %o 0o J0s0

k-fold fold

-

f m
=h’”{f—§§%")+i?lHn“"v“f(xo)}JrR,;- RE
The coefficients G® and H® are defined by
1 rt P P
=1 .. [ 1) .. (p—nt @), . . .
S=if [ o= ot 1), (3)
1 k-fold
an
1 1 P D
N R I I e O A
0 kgod

For the most important case of a single quadrature, the exact values of
G® and H® have already been tabulated up to n=20%*. Also, in the
paper by W. E. Milne, “On the Numerical Integration of Certain
Differential Equations of-the Second Order,” Am. Math. Monthly, xl.
pp. 322-327 (1933), there are tabulated the exact values of G{® and
H® for i=1,2,...,7 (“i” for “n” only here to avoid confusion with
n in Milne’s z,_, and x,, ), where GP=(—1)'A(x,_,) and HO=A (1)
The tables in this paper give the exact values of G@ and H? up to
n=20 (because of the greater importance of double quadrature and
second-order differentiale quations). Then G¥ and H® are given in
decimal form for k=2, 3, 4, 5 and 6, n going up to 22—k (k=2 is repeated
for convenience), with an accuracy well within 1} units in the last decimal
place for k=2 and well within 2 units in the last place for £=3, 4, 5 and 6.

The coefficients for double quadrature are expressible rather simply in
terms of B™(x), Bernoulli polynomials of order » and degree v, defined
by Milne-Thomson t from the equation

ne®

'00 E N) (g i z z T
w1y —,.foV!Bv (). . . (M.127(2)upper)

* Jour. of Math. & Phvs. vol. xxii. No. 2, pp. 49-50 (Junc 1943), where
GUO=B(m(1)/n! and H=(—1)"B» /n!

+ For the sake of brevity, M. will denote L. M. Milne-Thomson, “ Calculus of
Finite Differences” (Macemillan, 1933). )
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(By”(0) is denoted by
Thus from

(n+
B‘n

substitute into (3) for

Making use of the re}

and using that relation .

" (n2)!
put from
B
G@

Now from the relation

Bre)=(

one gets
B, (1)=—
from which
1
G = =
L)

Equation (7) was em
caleulations of G2, using
“or o oup to 20%% and an |

check G, From (7) and

CO—
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J)}—:‘“Rr'n' - (2)

Idp), . . . (3)

Idp). . . . (4)
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(B™(0) is denoted by B{® and called a ““ Bernoulli numi ber of order n.”)
Thus from

BytD 41 =1(t—1). ..

(t—n+1), . (M. 130 (2))

substitute into (3) for
@_ L . -
G¢ =n7f f B Owydtdr. . L L L (3)
Jala _ ‘

Making use of the relation

S [Bsm )—Bﬁ%(a)], .

and using that relation again,

J’ B™()dt— . (M. 127 (3) lower)

one finds

1 1
G;Z): (7l+2) | [Bnn++21)(2)—B£Ln:_2l)(l)]* (n+1) |B£Ln++11)( )'

But from

B®(r 1L 1) oBmy (ML 128 (7))

Gf”:m[wﬂu) — B )] C ()

Now from the relation
Bgn+1>(x)=<1—Z)Bgn)(x)+v(§—1)Bgﬂl(x), (M. 129 (2))

one géts

B )——7@[13(’”1’(1)%—(%Jrl 2= g 1)]

from which

G;f‘) [—B('H'l)(l) B(n)/”:l .‘ . . . (7)

Equation (7) was emplox ed as an independent check upon the
calculations of G,(lz’, using the previously tabulated values of BM(1)/n !
for 2 up to 20%* and an independently calculated value of BEM(1)/21! to
check G, From (7) and (M. 128 (7)) it follows immediately that

1 o
(E?—n,[)B“’() — B 1”(-)] N )

SER. 7, VOL. 38, N0. 280—May 1947. 2B




Ay SV —

ORI e

v

v

L

= T H e £

334 Mr. H. E. Salzer on a Table of

A more direct derivation of (7) is had from (3), through integration by
parts and use of the relation

B;’”(l):f x(z—1) ... (x—n+1)dx (M. 130 (4))
0
[n similar fashion, from (4) and (3. 130 (2)),

HP=" n‘T J ByD(—t+N)dtdw, . . . . . (9)
so that

(— 1 =
HO— TJ B (4 1)t dr— (2" rB‘"+1’ (t4-1)dt dae
: 0o

from (M. 127 (3) lower),

Now, by change of variable #’=x+-1, and from
1
f BO(t)dt=Bo-D, (M. 128 (10))
[

(2)

B;'ilﬁB;":f)(l)].. ... 0
But from

B# ——n [B;n++11>+ (n-+1 )Bgo:l

(M. 129 (3) for v=n-1),

B{m 1
HE=(— 17| o B oy + g PR |

and since
BYSO() B B
(1)1 (n4-1)! n!

(obvious from M. 128 (8)),
(—1)"BrAP(1)

@ _
HP= 7!

(12)

-This last equation was employved as a check on H{®, even though it
would have been very much casier to compute H)* that way rather than
by direct quadrature. Thus an additional c]‘mck hax been performed on
the quantities B (1)/n ! published previously. Equation (12) can be
obtained directly from (4) and (M. 130 (4)) through integration by parts.

= | e . = e —— - — SN T SRR
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Coefficients |
From (7) and (12) it
G;

Coefficients for k-folc
simple recursion formu
H¥ in terms of H&-1)
of f(t) vanish at t=0, o

L.

k-fold
50 that
1
By__ Lt
G n!(k—1)1,
. 1

T nl(k—1) !J

_ 1—m
Tl (k—1)1,
(n-
(n41)!

Hence,
; 1
k) __ _ >
GY 7 l:t
In exactly the same v
1
(k) —
Hy n ! (k-
is seen to satisfy

Hﬁ,"’:?

Formulas (14) and (:
starting from G and
values of G& and H?,
with £, an upper bound

times the initial error fo
that might arise in prac
G® and H® and to aj.
number of places given
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the recursion scheme,
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From (7) and (12) i‘t follows at once that
G‘;?’:(——l)"—l[Hg,2>+ = Hgﬁl]. L (1
Coefficients for k-fold repeated quadrature (k>=2) can be generated by
simple recursion formulas for GU in terms of G~ and G¥D, and for

H® in terms of H*-1 and HFP. Thus, when all successive primitives
of f(t) vanish at ¢t=0, one has v :

1t ’ :
SO VS S T
[F ' o= gy -0

o 4o
k-fold
s0 that
G — 1 Jl(l—t)k—lt(t~1) (t—n-1)dt
n Tl (k=11
_______1___11 ¢ 1—pE—2t(t—1 — 1\t
I G e G B e
—__1.:L P . B B
in!(k—l)1J’0(1 HE2(e—1) ... (¢ n--1)dt
D) g ez
(’n+1)!(lc—1)zjo(1 By 1) ... (t—n+1)({t—n)dt.
Hence,
G(k): :L_r(n—l')u\';'»—l}_{_\n_i_i"a{k 1_)-| L2 N
" 1—*/\:L n )A’n+1 _I; [ . . 2

In exactly the same manner,

1 1
(k) — k-1 1y —
HY .n!(k——l)!J'o(l PE(EA1) - (1)
is seen to satisfy
H;k):%[ﬂsz"‘”—ﬂgfg”],fork>2. ... (13)
o .

Formulas (14) and (13) are convenient for obtaining G® and H®,
starting from G{? and H®. But if one does not begin with exact
values of G and H{®, the error in GW and HYP multiplies enormously
with &, an upper bound being

k-2 fn-l-fp—2
T( k—1 )

times the initial error for k=2. Itwas thought sufficient, for most needs

that might arise in practice, to begin with about 10 significant figures in

G and HP and to apply these recursion formulas up to k=6. The

number of places given below for the decimal values of G and HYP

was determined by allowing for the worst possible propagation of error in

thie recursion scheme. '
2B2
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TABLE or COEFFICIENTS.

Gﬁ?’E;}! Ej:t(t—l) ..

11
HE) = I_’J'lj (1) ..
- Mol :

. (t—n+1)(dt)* and

(tn—1)(de)2.

2
G-

' @
I a?2.

10

11

13

14

15
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