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We start with some terminology from differential topology [1]. Let  be a circle

and  ≥ 2 be an integer. An immersion  :  → R is a smooth function whose

derivative never vanishes. An embedding  :  → R is an immersion that is one-

to-one. It follows that () is a manifold but () need not be ( is only locally

one-to-one, so consider the map that twists  into a figure eight).

A knot is a smoothly embedded circle in R3; hence a knot is a closed spatial
curve with no self-intersections. Two knots  and  are equivalent if there is a

homeomorphism R3 → R3 taking  onto . This implies that the complements

R3 −  and R3 − are homeomorphic as well.

A link is a compact smooth 1-dimensional submanifold of R3. The connected
components of a link are disjoint knots, often with intricate intertwinings. Two links

 and  are equivalent if, likewise, there is a homeomorphism R3 → R3 taking 
onto  .

We can project a knot or a link into the plane in such a way that its only self-

intersections are transversal double points. Ambiguity is removed by specifying at

each double point which arc passes over and which arc passes under. Over all possible

such projections of or , determine one with the minimum number of double points;

this defines the crossing number of  or .

There is precisely 1 knot with 0 crossings (the circle), 1 knot with 3 crossings (the

trefoil), and 1 knot with 4 crossings. Note that, although the left-hand trefoil  is not

ambiently isotopic (i.e., deformable) to the right-hand trefoil , a simple reflection

about a plane gives  as a homeomorphic image of . Under our definition of

equivalence, chiral pairs as such are counted only once.

There are precisely 2 knots with 5 crossings, and 5 knots with 6 crossings. In

particular, there is no homeomorphism R3 → R3 taking the granny knot # onto
the square knot #, where # denotes the connected sum of manifolds [2, 3]. (See

Figure 1.) Also, there are precisely 8 knots with 7 crossings, and 25 knots with 8

crossings.

A link  is splittable if we can embed a plane in R3, disjoint from , that

separates one or more components of  from other components of . There are

precisely 1, 0, 1, 1, 3, 4, 15 nonsplittable links with 0, 1, 2, 3, 4, 5, 6 crossings,

respectively.
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Figure 1: Four famous knots ( and  are prime and equivalent; # and #
are composite and distinct).

Figure 2: All two-component prime links with crossing number ≤ 5.

A knot  or nonsplittable link  is prime if it is not a circle and if, for any plane

 that intersects  or  transversely in exactly two points,  slices off merely an

unknotted arc away from the rest. (See Figure 2.) Otherwise it is composite. For

example, # and # are composite knots, each being nontrivial connected

sums of knots. Every knot decomposes as a unique connected sum of prime knots [4].

People have known for a long time that there exist non-equivalent links with

homeomorphic complements [5, 6]. This cannot happen for knots, as recently proved

by Gordon & Luecke [7, 8].

Let  denote the compact unit ball in R3 and  denote its boundary. A tangle

 is a smooth 1-dimensional submanifold of  meeting  transversely at the four

points
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and meeting  nowhere else. Thus  is a union of two smoothly embedded line
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Figure 3: All prime alternating tangles with crossing number ≤ 3.

segments in  with distinct endpoints on , together with an arbitrary number of

smoothly embedded circles in the interior of , all disjoint but often intertwined. Two

tangles  and  are (strongly) equivalent if there is a homeomorphism  → 

that takes  onto  , is orientation-preserving on , and leaves  fixed pointwise.

The crossing number of a tangle is defined via projections as before. Tangles form the

building blocks of knots and links [9, 10, 11]; the first precise asymptotic enumeration

results discovered in this subject concerned tangles (as we shall soon see).

A tangle is trivial if it is only the union of the two line segments  - and

 -, or the union of the two line segments  - and -. A tangle  is

prime if it is not trivial; if, for any sphere  in  that is disjoint from  , no portion

of  is enclosed by ; and if, for any sphere  in  that intersects  transversely in

exactly two points,  encloses merely an unknotted arc of  . (See Figures 3 and 4.)

Finally, a knot, link or tangle is alternating if, for some projection, as we proceed

along any connected component in the projection plane from beginning to end, the se-

quence of underpasses and overpasses is strictly alternating. The first non-alternating

knots appear with crossing number ≥ 8. General references on knot theory include
[12, 13, 14, 15, 16, 17].

0.1. Prime Alternating Tangles. Let  denote the number of prime alternat-

ing tangles with  crossings (up to strong equivalence) and let () =
P∞

=1 
 be
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Figure 4: Five of the 4-crossing prime alternating tangles; the other five are obtained

by rotating through 90◦ (and switching crossings to maintain the convention that the
NW strand is an underpass).

the corresponding generating function. Then [18]

() = +22+43+104+295+986+3727+15388+67559+3099610+ · · ·

satisfies the equation

()(1 + )−()2 − (() + 1)(())− − 2 2

1− 
= 0

where the algebraic function () is defined by

() =
(1− 4) 32 + (22 − 10− 1)

2(+ 2)3
− 2

1 + 
− + 2

Further, () satisfies the irreducible quintic equation

0 = (4 − 23 + 2)()5 + (84 − 143 + 82 − 2)()4 +
(254 − 163 − 142 + 8+ 1)()3 + (384 + 153 − 302 − + 2)()2 +

(284 + 363 − 52 − 12+ 1)() + (84 + 173 + 82 − )

Sundberg & Thistlethwaite [19] proved the above remarkable formulas, as well as the

following asymptotics:

 ∼ 3
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= 38333138762
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 = 2−3 = 00632356411

and

 =
101 +

√
21001

40
= 61479304437

A completely different approach to the solution of this problem appears in [20].

Let ̂ denote the number of -crossing prime alternating tangles with exactly two

components. That is, no circles are allowed. A two-component tangle is also known

as a knot with four external legs. The sequence [18, 21, 22]

{̂}∞=1 = {1 2 4 8 24 72 264 1074 4490 20296 92768   }
is believed to possess a leading term of the form ̂


with ̂  , but more intensive

analysis is needed to compute ̂.

0.2. Prime Alternating Links. Let  denote the number of prime alternating

links with  crossings (up to equivalence), then the sequence [23, 24]

{}∞=1 = {0 1 1 2 3 8 14 39 96 297 915 3308 12417   }
satisfies the following asymptotics [25]:

 ∼ 3

16

r



−

7
2

where

 =
1

2

µ
371√
21001

− 1
¶
= 07800411357

and ,  are as before. This is a somewhat more precise result than that proved in

[19].

Let  denote the number of prime links with  crossings (including both alter-

nating and non-alternating links), then we have [23, 26, 27]

{}∞=1 = {0 1 1 2 3 9 16 50 132 452 1559   }
The value 12 is not known. Stoimenow [28], building on Ernst & Sumners [29] and

Welsh [30], proved that

4 ≤ liminf
→∞

1 ≤ limsup
→∞

1 ≤
√
13681 + 91

20
= 103982903484

but further improvements in the upper bound are likely. The two-component analogs

[23]

{̂}∞=1 = {0 1 0 1 1 3 6 14 42 121 384 1408 5100 21854   }
{̂}∞=1 = {0 1 0 1 1 3 8 16 61 185 638   }

also await study.



Knots, Links and Tangles 6

0.3. Prime Alternating Knots. Let  denote the number of prime alternating

knots with  crossings (up to equivalence), then the sequence [31]

{}∞=1 = {0 0 1 1 2 3 7 18 41 123 367 1288 4878 19536   }

is more difficult and only conjectured to satisfy the following asymptotics [32]:

 ∼  ·  · 

where

 = −
√
13 + 1

6
− 3 = −37675918792

Thistlethwaite [33] proved that

limsup
→∞

1  

and further claimed that lim→∞ 
1
 exists. If the conjectured asymptotic form for

 is true, it would follow that   . Again, more intensive analysis is needed to

compute . Might it be true that  = ̂ [22]?

Let  denote the number of prime knots with  crossings (including both alter-

nating and non-alternating knots), then we have [31]

{}∞=1 = {0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972   }

The value 17 is not known. Welsh [30] proved that

268 ≤ liminf
→∞

1

and clearly Stoimenow’s upper bound 1040 applies to the limit superior. Sharper

bounds for both {} and {} would be good to see.
0.4. Planar Curves. Here are enumeration problems that seem to be even more

complicated than those in knot theory [34, 35, 36, 37, 38]. A closed planar curve is

a smoothly immersed circle in R2 whose only self-intersections are transversal double
points. Define an equivalence relation between closed planar curves in the same

manner as between knots, with the additional condition that the homeomorphism

R2 → R2 is orientation-preserving. (See Figure 5.)
An open planar curve is a smoothly immersed line in R2, given by  : R→ R2,

whose only self-intersections are transversal double points and which satisfies () =

( 0) for all sufficiently large ||. Such a curve is also known as a knot with two
external legs. Define an equivalence relation between open planar curves in the

same manner as between closed planar curves. Note that, unlike closed curves, open
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Figure 5: All closed planar curves with crossing number ≤ 2.

Figure 6: All open planar curves with crossing number ≤ 2.
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curves are oriented from the initial point (−∞ 0) to the final point (∞ 0). (See

Figure 6.)

Let  and  denote the number of -crossing closed curves and open curves,

respectively. The sequences [39, 40]

{}∞=0 = {1 2 5 20 82 435 2645 18489 141326 1153052 9819315   }

{}∞=0 = {1 2 8 42 260 1796 13396 105706 870772 7420836 65004584   }
are conjectured to satisfy the following asymptotics [32]:

 ∼ 1
4
 ∼  ·  · 

where  =  + 1 = −27675918792. Numerically, we have  = 114 [22]. There is
a great amount of work to be done in this area.

0.5. Addendum. At the risk of potential confusion, let us generalize the word

tangle to include smooth 1-dimensional submanifolds  of  meeting  trans-

versely at any four distinct points and meeting  nowhere else. Two such tangles

 and  are weakly equivalent if there is a homeomorphism  →  that takes

 onto  , but need not be orientation-preserving on  nor need it leave endpoints

fixed. Kanenobu, Saito & Satoh [41] gave the number of non-weakly equivalent prime

tangles with 4, 5, 6, 7 crossings to be 0, 1, 4, 18 respectively. The four legs (small

circles on the spherical surface depicted in Figure 7) of classical tangles are fixed on

the equator, whereas the legs of weakly equivalent tangles can slide anywhere on the

unit sphere, hence there are many more possible untangling strategies.

A different generalization of tangle was provided by Bogdanov, Meshkov, Omelchenko

& Petrov [42], in which 2-tangles correspond to classical tangles and -tangles,

  2, similarly possess 2 legs equally spaced on the equator. The number of non-

equivalent prime alternating 2-tangles with 2, 3, 4, 5 crossings is given in [42] to be 1,

2, 5, 13 respectively, which at first glance appears to contradict the numbers 2, 4, 10,

29 from [19], until it is understood that 1, 2, 5, 13 do not distinguish projections that

differ by only a sequence of flypes. The asymptotics of counts of prime alternating

-tangles, as the number  of crossings →∞, would be a challenging exercise.
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