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1 Introduction
1.1 Background and scope

There have been o number of significant developments over the past 15
years since the original article on analysis of series cocfficients by D.S.
Gaunt and A. 1. Guttmann was written for this series. At that time. the
renormalization group (RG) theory (see Volume 6 of this series) and all
its ramifications had yet to become widely known. 1t was tacitly assumed
that most thermodynamic functions had a singularity structure qualitatively
similar to that ol the two-dimensional Ising model. and most methods of
series analysis were variants of the ratio method or the method ol Pade
approximants. These methods were cither applied directly or after an
appropriate transformation.

In the intervening years the RG theory produced increasingly precise
predictions. some of which were at variance with the beliefs of the time.
most notably the series-analysis predictions of the exponents of the three-
dimensional Ising model. Reconciliation of many of these differences has
oceurred. Tollowing the explicit inclusion of confluent singularitics into
methods of series analysis. and many new techniques have been developed
10 take such singularities into account. While credit for an idea can seldom
be assigned to an individual or group. the Hlinois group under Michacel
Wortis appears to have been the first to systematically study confluent
singularities in an attempt to reconcile series data with universality for

the spin-s Ising model.

That work was first reported by Wortis (1970). and a fuller picture of
the history and details of earlier contributions is given by Saul er al.
(1975). Shortly thercalter. Wegner (1972) showed how correction-to-
scaling exponents arose naturally within the context of the RG theory.
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with the first experimental cvidence of such terms being reported by
Greywall and Ahlers (1972) at about the same time. ‘

The renormalization group  also  triggered an“interest in - higher-
dimensional systems. The prediction of confluent logarithmic terms at the
upper critical dimension provoked an interest in methods of analysis that
sought cvidence of this term. Quite successful methods were (Ie\'clnpcd
by Domb (1974) and Gutimann (1978a).

Another important development was  the method of differential
approximants. This method was developed by Guttmann and Joyee in
1971 (sec Guttriann and Joyce. 1972). following a suggestion of"Sykcs
that the series expansion of the Onsager solution of the two-dimensional
Ising model fice energy should have cocfficients that are related by
simple recurrence relations. Joyce found these recurrence relations. and
Guttmann developed a method of series analysis based thereon—hence
the namce “recurrence-relation method™. A similar idea occurred 1o
Qunnncl (1973a) at about the same time. In the method as originally
formulated, the underlying function is represented as the solution of a
homogencous  differential cquation of degree two or higher. with
polynomial cocfficients. As we discuss in Section 6. this is a “natural™
generalization of Padé approximants. and allows in principle for the
presence of confluent singularities. Hunter and Baker (1979) subsequently
developed the theory appropriate to an inhomogencous first-order
diffcrential cquation. and used the more descriptive name of “integral
approximants™ for the method. Fisher and co-workers in a series of papers
g‘pnsidcred both the general inhomogeneous case. and perhaps more
significantly introduced the idea of “partial differential approximants™,
which enable series expansions in more than onc variable to be studicd
(see c.g. Fisher. 19770 Fisher and Au-Yang, 1979). We refer to these
methods as “differential-approximant™ methods. and discuss them in
Sections 6 and 7. We consider these methods the most powerful general-
purpose class available. and advocate their use as tiic method of choice
in the absence of compelling alteinative reasons. This is not to argue that
they are always “the best™ methods—as we shall see, there is no such
thing—but for most of the common singularity structures encountered in
QI(\(lels of phrase transitions they represent an excellent starting point.

The work of Kosterlitz and Thouless (1973) on O(2) models in two
dimensions predicted a singularity of an entirely different type from
the "usual algebraic singularity. An essential singularity of the form
exp [e(v=x.) ] was proposed, and methods of analysis designed to
investigatc such series were devised by Camp and Van Dyke (1973a).
Guttmann (1977). Ferer and Veigakis (1983a) and recently by Butera e
al. (1989). These and other methods tailored for pzlrticulnrJ functional
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forms —such as Domb's (1976) proposed form for the asymptotic number
of lattice animals—will also be reviewed. Section 2 concludes with a
discussion of the asymptotic form appropriate o a given singularity
structure. and so allows for special methods to be devised, which
appropriately peneralize the ratio method.

The traditional methods discussed in the carlier article have not
been neglected in the intervening years. The theory underlying Pad¢
approximants has advanced significantly, particularly our understanding
of the convergence properties of entries in a Padé table. Almost all of

_« -+ this work, and earlier work tasides. can be found in the encyclopacedic

works of Baker and Graves-Morris (1981a.b) and is summarized in Scction
4 A variant of the Padé method due to Nuttall and co-workers (see’
Baumel et al.. 1982a) also shows considerable promise. and is discussed
in Section 5. In Section S we also discuss the generalized inverse vector-

Tvalued Padé approximants intioduced by Graves-Morris (1988) and co-
workers.

Methods that work directly with the assumed asymptotic form of the
series coefficients. such as the ratio method. we call “direct”™ methods.
Padé- and differential-approximant methods are not in this class. New
direct methods for conventional singularities have been developed by
Zinn-Justin (1979, 1981) and for confluent singularities by Saul ef al.
(1975). There is also a considerable body of numerical-analysis literature
for extrapolating sequences, which can be applied to the sequences of
ratios and exponent estimates. We review the most successful of these in
Section 3.

Another development of significance is the application of methods of
serics analysis Lo arcas of science other than Jattice statistics. M. Van
Dyke and co-workers have tackied many problems in the arca ot {luid
mechanics by these techniques, and much of this work is reviewed in
Van Dyke (1984). Applications to quantum mechanics and quantum
fickd theory are reviewed in Baker and Graves-Morris (1981h), while
applications to simulation and control are deseribed in Graves-Morris
(1973). .

Several heroic extensions of certain series expansions have also been
made. allowing more subtle effects to be probed. and highlighting the
danger of excessive refiance on the predictions of series that arc
insufficiently lTong for true asymptotic behaviour to manifest isclf. The
most notable examples are the 2i-term h.c.c.-fattice (Nickel, 1982)
and Sd-term square-lattice high-temperature Ising-susceplibility scries
generated by Nickel (1985, petsonal communication), and the 56-term
square-lattice and 82-term honeycomb-lattice polygon series generated by
Guttmann and Enting (1988a) and Enting and Guttmann (1989). Many
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other series have been uscfully extended by Sykes. Gaunt. Martin, S.
McKenzie, Essam and co-workers at King's College and Royal FloHoway
College and by Butera, Guttmann. D. Hunter. Liischer. Rehr, Redner,
Stanley and Weisz at other universities. to name but a few. The use of
these longer series allows the strengths and weaknesses of many analysis
techniques to be highlighted.

In this article we propose to assume most of the material in the carlier
work of Gaunt and Guttmann. and concentrate on describing the newer
methods. or new variants. of older methods, that have demonstrated their
usefulness over the intervening decade. In order that this article be self-
contained. we cursorily review the previous work too. However, we have
largely restricted attention to power series with a non-zero radius of
convergence: series arising in statistical mechanics are usually (but not
always) of this form. Very different techniques are required for power
series with a zero radius of convergencee. We return briefly to that problem
in Scetion 9.2, - :

Section 10 constitutes a summary and outlook. and tries to emphasize
the philosophy of choosing a method of series analysis that can reflect
the expected singularity structure. A cautionary note is sounded about
the introduction of untested new methods. i

In Section 11 a listing of computer programs for a number of the more
widely discussed algorithms is given, along with instructions for their use.

1.2 Basic problem

The simplest and most cominon problem in series analysis is to determine
the parameters A, z. and A through

A
I"(z)~/\<lfj) (=2 ). (1.1

where Fis some thermodynamic function of the system of interest whose

Taylor expansion about the origin is known through the first N terms.
That is,

~

Fz)y= 2, a,z". (1.2)
- 0
where{a, | n=0.1.. .. . N}isknown. The constants A, z. and A are called

the critical amplitude, critical point and critical exponent respectively. We
frequently drop the adjective “critical™.

. 7(

The c.se A = 0 has several possible interpretations. 1t could mean that
F(z.) is finite and non-zero, or that 1(z) diverges or vanishes logan ithmically
AL
as z — zo . for example like
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[

M=) - | In (1 - Z) ’ (z =z ). )

Z

or in a more complicrted form such as In [ (1 = z/z.) |- I Ads a positive
or negative integer. this could indicate a pole or zero of F.or a pole or
zera multiplied by a confluent fogarithmic term such as (1.3).

The asvmptotic form (1.1) is of course only the leading-order term.
and it is incressingly clear that in many cases the correction terms need
10 be taken into account in order to cestimate the critical parameters A,
and A with the required degree of accuracy. 4
The usual form of correction assumed is one or more “correction-to-

z
S

scaling” terms, characterized by exponents 0< A < A< Ay <. .as
in o
2\ * ( 7\ FARE .
F(z)w/\(l— I+Al(1— ) + Al - ) +... (z—z.).
oz 7. z.
(1.4)

Note that if A; = A then this corresponds to a term A.A;in F. This then
i an additive. analviic ternt, and many methods of series analysis cannot
distinguish between an additive term of this type and a “genuine”
confluent term corresponding to an independent branch O,f F. .

If the cxponents A, are all positive integers then F(z-) in (1.4.) is just
the expansion of F{z) = A1 = z/z)) *owhere A(z) is analytic in the
neighbourhood of z = z. 10 one or more A, are non-integral, we then
have one or more confluent singularitics.

Confluent terms can also be logarithmic. in which case

e a(1-2) - )

4

(z—2z.). (1.5)

and special methods are necded to unravel such singularities. Suc'h
confluences frequently arise ar the critical dimensionality of thermodynamic
systems., for example the Ising model in four dimensions.

" As well as multiplicative confluent singularities. as in (1.5), we can also
have additive confluent singularities, in which case

[~
ln(l - Z)\‘ . } (1.6)

these are also known to occur in model systems (Brézin et al., 1976).

Fz) ~ .4(1 - Z) ' {1 + A
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~ Certain models of interest display quite different singular behaviour
from that discusscd above. For example, the two-dimensional classical
plane-rotator is believed to have a divergent susceptibility of the form

N

(Kosterlitz and Thouless, 1973), as is the one-dimenisional Ising model
with a ferromagnetic interaction (Anderson and Yuval. 1971). The squarc
lattice spiral self-avoiding walk model (Privman. 1983a; Guttmann and
Wormald. 1984) has coefficients that diverge like

F(z) ~ Aexp L(I - (1.7

a, ~ Anvexp (on'?).

-

(1.8)

For these models, and other special cases. methods of analysis have to
be designed to accommodate the assumed functional form.

The last remark highlights the underlying philosophy of all methods of
series analysis. This philosophy is that we arc fitting scries cocfficients to
an assumed functional form—an assumed form may be implicit or explicit,
but is invariably present. This observation is a partial refutation of the
purists’ objection that the first N terms of a power series will. in principle.
tell you nothing of the asymptotic behaviour of the underlying function
at points away from the origin. As a mathematical statement. that is
incontestable. However, if we assume a certain {functional form, including
explicit restrictions on subdominant terms. we can say a great deal. The
assumed functional forms are motivated by the growing number of exact

solutions (Baxter, 1982) and by renormalization-group theory (Brézin e
al., 1976). )

Nevertheless, it is difficult to quantify errors in any rigorous manner.
As a consequence, error bounds are generally referred 1o as (subjective)
confidence limits, and as such frequently measure the enthusiasm of the
author rather than the quality of the data. What is clearly required is a
comprehensive mathematical treatment of standard methods of series
analysis. Such a treatment docs not at present exist. though the books
by Brezinski (1977). Delahaye (1988) and Wimp (1981) do provide a
number of uscful results in this direction. within the restricted domain of
scquence extrapolation.

Y

1.3 Basic properties of power series

In this section we summarize the propertics of power series that lie at
the heart of several methods of series analysis. most notably the ratio

¢

1 Asymptotic analysis of power-series expansions
method and its variants. Most of this material can be tound in standard
texts on complex analysis (c.g. Hille 1976, 1977: and Whittaker "and
Watson. 1963).

Let I be given by

I(z)—= E a, z"

nou

(1.9)

and define

(1.10)

lim infla,| """ =R
Then the series (1.9) converges for lz| ~ R and defines an analvtic
function in the dise 2] < R it diverges for Jz] > Reand it R = > (as we
assume hencelorth). the function F has at Teast one singular point on the
circle |z] = R.If F(z) ~ Al - z/z) *. and the singularity at z. 1§ the
dominant (and hence closest) singularity, then R = |z.]. and the sequence
{Ja, ] "} will give a convergent sequence of estimates of |z, Unfm‘lun;\‘.cl))'.
this sequence is rathei slowly convcrigent‘.‘ For example, llet us consider
the high-temperature susceptibility series of the square-lattice lsn?g n.mdell.
for which 54 terms are known (Nickel. 1985 persnnnl communication):

kT

5
n-

= 1 4 4o+ 1207 + 3607 + 100 + 2760° + 74000 + 197207 + 51720,

+134920" + 348760" + 89 7640"" +229 6282'2 + 585 5082'"

+1 4863082 + 37634600 % + 9497 3800'" + 23918708»'7

+60080 1562' + 150660 388" + 377009 36402 + 942 106 1160
£2350 157 268022 + SR55734 7400>" + 14569 31849207

36212402 5480°% + 89896 870 204070 + 222 972071 23060

+ 552460 084 4280 + 1 3672784095 15602 + 3 383289 570 2922
+83630787966120%" + 20656 054 608 4040 + 50987 8419446120
125771030685 7400™ + 310070 329 656 9640

763956047 852 5480 + 1 881332450 300 6920

14630413888 204 3720™ + 11391 558 804 854 5322

£28010951 274 197 3800* + 68 849 212 197 171 604" \
+16Y 150097 365333 7080™ + 415419639494 357 940"
+10198162662526363160* + 2502715799 503410 3882*
£6139555263040 186 1160 + 15056658 258 453004 3400*7

136912 183772984 767 9640™ -+ 90 466 431959 6117033082

+221 649470925 554 607 50005 + 542914755 497 1826760200 )
11329440077 4247124354760° + 3254 615979 848 876064 244
+7965 488065940462 1053800™ + . . ., (1.1

. €

Y%

1

ob

s
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where » = tanh (J/kT) is the usual high-temperature expansion variable.

The last four terms in the sequence {a,; """, n = 51.52, 53, 54} are 2.5501.

2.5481. 2.5462,°2.5444, while the limit of this sequence is known to be -

22 4+ 1 = 2.4142135 . ..
higher than the limit.
A more generally useful theorem (Hille,

. so that the Jast estimate is still some 5.4%

1976) is that if

“111114
i

o a
a = lim inf and A=

n—r

fim sup

P a, |

a

n

(so that ¢ = A) then the series converges for [z| < A° " and diverges for
[z] >« In most applications lim,_.. |, /a,)] |z ' exists and is
equal to either @ or A, and the theorem tells us that the circle |z| = « !
= A~! contains at least one point of non-analyticity. It is worth
emphasizing that there may be more than one singularity on the circle
|z| = a7 = A"'. The high-temperature susceptibility of the spin-} Ising
‘model on a loosely packed lattice is an example of such a situation.

If the coefficients of the power series f(z) = £,a,2" are all positive for
n sufficiently-large. Pringsheim’s theorem tells us that z = R is a singular
point of f(z). Several powerful generalizations of this result exist. For
example, the theorem holds under the much weaker condition that
Re (a,) = 0 for sufficiently large n (Hille, 1976)." A corollary of this
result. pointed out by A. Sokal, is that if there exists y such that
Re (et %q,) = 0 then f(z) has a singularity at z =Re".

The sequence {a,,/a,} usually converges more rapidly than the
sequence {a)"}. For example, from the series (1.11), the last four ratios
are 2.44943. 2.44871, 2.44811, 2. 44744 so that the last ratio is some [.4%
away from the limiting value of 22 + 1. In addition to this more rapid
convergence. the sequence can be more readily extrapolated than can the
sequence {a)”}, and indeed this Observation leads to the ratio method of
series analysis. which we consider in Section 2.

A significant amount of information can often be obtained simply by
observing the sign pattern of the series coefficients. If they are all positive.
or positive after the first k& terms, then the closest singularity to the origin
lies on the positive real akis. If they alternate in sign. the dominant
singularity lies on the negative real axis. 1f they display a four-term

periodicity of sign pattern, there is a conjugate pair of singularitics on
This is in addition to any singularities on the real
axis. More complicated singularity locations. such as conjugate pairs of

the imaginary axis.

P

=

p

1 Asymptotic analysis of power-series expansions Lo

singularities in the complex plane. lead to more complicated. and generally
aperiodic, sign patterns.

This behaviour can be clearly understood using Darboux’s thecorems
(1878). which are also useful in our study of correction terms to leadlng
asymptotic behaviour.

1.4 Darboux’s first theorem-

Suppose that a function F is analytic in the closed disc lz| = «. tapart

from a single algebraic singularity at z = «a. so that
2)=(z - a)'¢lz) + Y(z) = 2, a7 (1.12)

"

where ¢ and 1 are two functions analytic in the neighbourhood of the

closed disc |z| = «a. that is. in some disc |z| < a+e. where £ > (. Then

the asymptotic form of the coefficients a,, can be obtained by substituting

for the expansion of F(z). (z — «)¥ times the expansion of ¢(z) around

z = a. Higher order approximations may be obtained by replacing F(z2)

by

(1.13)

i(kq)’tb"‘(u) (—a).

-1
re

r=0

The error in stopping at the pth term is always O(n~ ' V). The proof of
this theorem was given by Darboux (1878) and. in a more accessible
article. by Szegd (1959). If p = m in (1.13). we refer to this as the
(m—1)th Darboux approximation.

If y(z) = 0. this theorem is essentially
that F(z) may be expanded around the point z = a by taking (z—«)”
times the Taylor-series expansion of ¢ around the point z = The
importance of Darboux’s theorem is that it tclls us that the effect of the
additive function 1(z) becomes vanishingly small. This is intuitively
obvious. since it simply states that the asymptotic form of the coefficients
of the series expansion of a function is eventually dominated by the
closest singularity to the origin. The word “eventually™ is the key word
here. since the series may be initially dominated by contributions from

Taylor's theorem, which states

+ 1 his means that the function is analytic in some open neighbourhood of the closed disc.
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other singularities. To illustrate this. consider the series expansion of the
function

A.J. Guttmann

f)=(I=x)"" (1 + 4x)"F =1 = 1.25x + 1.2813x2 — (.99219x"

+ 0.7788 Lx* — 0.50330x° + 0.36568x — 0.20517x7 + (1. 15370x"

= 0.06987x” + 0.06375x'" — 0.017169x"" + 0.001229x'2

+0.016318x'* + 0.006921 1% + . . . . - (1.14)

If we knew only the first 12 terms of the series. we might guess-that the
closest singularity to the origin lay on the ncgative real axis. because the
coeflicients alternate in sign. [t is only after 12 terms that the coeflicients

“settle down™, become of positive sign. and thus indicate that the closest
singularity to the origin lies on the positive real axis. Even for this simple

function, then, it is possible to deduce quite misleading information if
only the first 12 terms of the series expansion are known. It is a trivial
exercisc to construct much more pathological examples.

The above example gives some insight into the fundamental question
of series analysis: “When has the series settled down to asymptotic
behaviour?” To answer this question fully is of course impossible. but
for the two-dimensional Ising model the exact results provide an excellent
testing ground. Consider the spontancous magnctization of the Ising
model on a square lattice, first obtained by Onsager in 1947, though
never published by him, for which Yang (1952) obtained the exact result

M“(Z) — 2 a,z" = (l_z)—f!/.’.(l+z‘)l/4(z__3+2_lr3)|:’H(2737v2.14’2)I/S‘
n=0

(1.15)

]

where z = e™**"_From Darboux’s first theorem. Ninham (1963) obtained
the asymptotic form of the coefficients a,, in the first and second Darboux
approximations (i.e. to leading order and to order n~'). The comparison
is shown in Table I.1. From the table it can be seen that Darboux's
theorem gives an asyniptotic form of considerable accuracy. Nevertheless.
two remarks should be made. First, the function M, given by (1.15) has
a series expansion whose coefficients are rapidly dominated by the closest
singularity to the-origin, and, secondly, it is much simpler to obtain an
asymptotic representation of the series coefficients from the function than
to extract information about the function from a knowledge of even many
coefficients. We sllustrate this more clearly in the discussion of the ratio
method later in this section. - ]

1 Asymptotic analysis of power-series expansions b,

Table 1.1 Comparison between actual coefficients of the series ex'pzmsion Eor M
and the first and second Darboux approximations. (Taken from Ninham (1963)).

Order of Coefficient in Darboux approximation

coefficient Gf - o .

;Sen o Ist approximation 2nd approximation Actual coefficient
670 700 714

g 3300 3410 3472

8 16 550 17 020 17 ?»l%sy

9 84 830 86 520 88 048

1.5 Darboux’s second theorem

To determine the asymptotic form of the coefficients of a function with
more than one singularity on its circle of convergence, we turn to
Darboux’s second theorem. This may be stated as tollow:ﬂ.

Suppose that a {unction F(z) is analytic in the cl()secl_dlsc |z] = 1, c:nd
has a finite number of singularities e'*1, e'?2, e, el
where ci®«= eis for « # B, on the circle |z| = 1. Then if

r'(z)='i AR (1= zefy s = D a2 k=120 (1.16)

-0 =10

in the vicinity of e'*x. where f3, < 0. the expression

S5 @By (o + vy — )]

(1.17)
n!

v—0 k-t

furnishes an asymptotic expansion for the coefficient a, in the following
sense: if Q is an arbitrary positive number, and a sufﬁcncn.tly large number
of terms in the sum over v in (1.17) is taken. we obtain an ex;:re;s\mn
that approximates the coefficient in question with an error o () That
is. the infinite sum over v is not claimed to be convergent. Szegq (1959)
proved this theorem for a particular choice Qf function F, h_uF his proof
m‘ay be readily extended to any function satisfying the conditions stated
above. .
To illustrate the theorem. consider the function

fx)y=0—X)""(1+x)"'"?= 2 a,x" . (1.18)

n-0
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series has recently been extended to 20 terms by Guttmann (1989). and
is

C(x) =1+ 6x + 30x> + 138x* + 618x* + 2730x° + 11946x + 51 882x7
+ 224 130x% + 964 134x” + 4133 166x "+ 17668 938"
+ 75355206x" + 320734 686x"* + 1 362791 2504
+ 57817655820'% + 24497330 332" + 10367 396 788217
+ 438296739 59411 4 185 123 137 63741
+ 7812439620678+ .. ..

In Table 4.1 we show poles and residues of the tridiagonal Pade
approximants to the logarithmic derivative ol C(v). There is clearly a
<trong temptation to conclude, as has been done in the past. that
(0.24088 and y = 1.333. From here, itis only a shortstep to the suggestive
conjecture that y = % Indeed. for many years this was believed to be an
exact result. and it was only in 1982 that Nienhuis was able to show that
y = i—‘ = 1.34375. which differs from the previously assumed vatue by
less than 1%. How can this behaviour be explained. and more particularly.
can we ensure that such incorrect conclusions are not drawn? (In fairness.
we remark that the 20-term series is several terms longer than that
available to the pioneers who conjectured that y = %.)

Looking more closely at Table 4.1, we sec first that, as N increascs.
there is a tendency for estimates of both z. and y to increase for N up
to about 7. This tendency is by no means a monotonic trend, but is fairly
clear. The bulk of the approximants with N = 8§ are clustered around the

Table 4.1 D log Padé approximants to the chain-generating function of the
triangular-lattice self-avoiding walk.

[N=1/N]| [NIN| [N+ 1/N]

N Pole - Residue Pole — Residue Pole ~ Residue
d4 0.24017 1.2926 ().24029 1.2971 ().24052 1.3062

5 ().23993 1.2880* ().24061 1.3109 0.24144 1.4263

O 0.24070 13169 0.24079 1.3234 ().24083 1.3276

7 (1.24090 [.3357 0. 28087 13318 (. 24088 13345

8 0.24088  1.3330¢ 0. 24088 1.3333" 0.24088 1.3334°
9 0.24088 + 1.33367 0.24088 1.33327 complex  complex
10 0.24087 1.3327*

T Delective approximant.
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values cited above. Those marked with an asterisk are defective. That is,
there is a pole—zero pair closer to the origin than the physical singularity.
To make this clearer, for the [8/8] approximant we have a root of the
denominator at z = z* = —0.13311367 with residue 3.8729867 x 107F,
while the numerator has a root at the same value of z (to the accuracy
quoted), with residue 7.8945549 x 10%. This means that, loosely speaking,
the [8/8] approximant differs from the [7/7] approximant by a factor z—z"

in both the numerator and denominator. The extra two series coefficients

have not been used to construct a more accurate representation of the
function. but rather to introduce a spurious pole-zero pair, which virtually
cancel one another. This then gives a false impression of convergence,
and must be guarded against by a careful examination of the pole/zero
distribution of the approximants.

Given that most exponents of interest in critical phenomena are in the
range 0.1-10.0, Hunter and Baker (1973) suggested the ad hoc procedure
that poles be deemed defective if the absolute value of the residue is
less than 0.003 and lies approximately inside the physical disc. One
occasionally encounters a closely adjacent pair of poles in the vicinity of
the critical point. and this too signals that caution must be exercised in
accepting the approximants. The precise origin of such defective approxi-
mants can be seen as follows. Given an approximant [N—1/D—1].
if the higher-order approximant [N/D] is related to [N=1/D—1] by
[N/D] = [N=1/D=1](1=ax)/(1—fx) then there exists an infinite family
of solutions for arbitrary a = . If « is very close. but not equal. to I
then the linear systems defining the polynomials in [N/D] will be nearly

cingular, the residue at the pole x = 1/ will be very small, and clearly

we have no further information on the function—that is. the [N/D]
approximant still represents the function by an [N—=1/D—1] approximant,
multiplied by an irrelevant factor (1—ax)/(1-fx).

Thus the correct interpretation of a Padé table is a non-trivial
exercise. requiring careful consideration of defective approximants, the
decomposiiion of Padé tables into blocks of essentially stable approximants
(due to defects). and an identification of the scatter between distinct
blocks of the Padé table. Only then can an assessment of the probable
accuracy in estimates of the critical parameters be made.

This assessment should also utilize a quite general crror analysis that
has been given by Hunter and Baker. and is particularly interesting since
it shows how crrors in different critical parameters are related to one
another, and shows why, and to what extent, the accuracy of critical-
point estimates is better than that of critical-exponent and critical-
amplitude estimates. Their analysis. with minor changes in notation. is
given below, and generalizes the specific error analysis of the ratio method
given at the end ol Section 2.
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$assign sqpols.dat for005

(this assigns the output file to
unit 6)

$assign sqpols.out for006

(this runs the previously compiled
program)

$run newgrqd

On the following pages we show the input data, the transcript of the
screen session and a small sample of the output produced. We seek first- and
second-order unbiased differential approximants. Only inhomogeneous
approximants are sought, with the degree of the inhomogeneous
polynomial ranging from 1 to 8.

In order to present these data in a more accessible form they are
summarized and tabulated by the program TABUL. This program is also
written in Fortran. To use this program with the data produced by the
previous run, we proceed as shown. Again, a VMS cnwronment is
assumed. The input file to this program is the output file from the
previous program, sqpols.out.

(this assigns the input file to unit 5)
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$ ty sgpols.dat

square lattice polygons
00090

2521270.0
14385376.0
83290424.0
488384528.0
2895432660.0
17332874364.0
104653427012.0
636737003384.0
3900770002646.0
24045500114388.0
149059814328236.0
$28782423033008.0
5814401613289290.0
36556766640745936.0
230757492737449636.0
1461972662850874916.0
9293993428791901042.0
1 2 3 14

$ assign sgpols.dat for005
$ assign sgpols.out for006
$ run newgragd

FORTRAN STOP

(INPUT DATA FOR NEWGRQD)

TRANSCRIPT OF SCREEN SESSION
RUNNING NEWGRQD
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112 ANALYSE and NEVBARB to calculate and extrapolate ratios

The next two programs take as input a series and then form ratios, linear
extrapolants, unbiased exponent estimates and biased exponent estimates
as defined by (2.4), (2.9), (2.11) and (2.12) respectively. The option of,
transforming the series by an Euler transformation (see Section 8) is also
given. The data-deck make-up is as shown in the following screen
transcript. The first record is a title (up to 80 characters). The second
record (for ANALYSE) gives the number of series coefficients minus 1
(for a series starting with a constant this is the maximum power of the
expansion variable). The series coefficients then follow, and the data file
is terminated by a blank record followed by a record containing a negative
number. The interactive program ANALYSE assumes this data is in a
file called textin.dat and writes its output to a file called textout.dar. The
parameter “mu" is the reciprocal of the critical-point estimate (needed if
the series is to be Euler-transformed, and also for biased exponent
estimates). 1f an Euler transformation y = x(1+a)/(1+ax/x.) is required,
the parameter o as defined in Section 8 near (8.4) is then requested. As
explained in Section 8, a should be chosen as small as possible. Finally,
a choice of Levin transformation (¢, u or v) is requested. We have found
i to be the best choice in the overwhelming majority of cases.

Sample output is shown following the transcript of the screen session.

The data-deck make-up for NEVBARB is similar, except that it is not
‘interactive, and so the second record of input data contains, in order,
the maximum power of the expansion variable, a code = 0 for no Euler
transformation, (otherwise code = 1 for an Euler transformation), the
estimate of mu (the reciprocal of the critical point), and finally the value
of « to be used in the Euler transformation.

Sample output from this program is also shown.

t

C

-H

b
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S ty textin.dat (INPUT DATA FOR ANALYSE)

square lattice polygons
6

2
1
2
7

[oleNo)

28.0

124.0

588.0

2938.0

15268.0

81826.0

449572.0

2521270.0 :
14385376.0 ’ (
83290424.0
488384528.0 \
2895432660.0
17332874364.0
104653427012.0
636737003384.0
3300770002646.0
24045500114388.0
149059814328236.0
928782423033008.0
5814401613289290.0
36556766640745936.0
230757492737449636.0
1461972662850874916.0
92923993428791901042.0

{3,9\&{%\

-1

$ run analyse

gefault mu of 1 [y 2 TRANSCRIPT OF SCREEN
Value of mu is 2  SESSION RUNNING
6.2598803 . } ANALYSE

Apply Euler transformation to series [Y] ? '

n USER RESPONSES
Enter levin transform type (t,u,v) 2 UNDERLINED.

u



