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Outline:

Lattice models

Critical phenomena

Description of the finite lattice method

Application to self-avoiding polygons

Will focus on the “what” and the “how” of the finite
lattice method, and leave the big picture to Tony and Ian.

2 / 21
Lattice enumeration

N



Lattice models Enumeration FLM What’s next?

Lattice models

Lattice models are used to approximate physical systems,
to gain understanding of collective behaviour known as
phase transitions.

Most famous such model is the Ising model, which assigns
a magnetic spin variable to each site of the lattice.

In order to understand properties of lattice models, need
to calculate the partition function which is a sum over all
possible configurations with appropriate (Boltzmann)
weights.

For the square lattice this was solved exactly by Onsager
in 1942.
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Lattice models
When the system has a phase transition we expect that
thermodynamic functions will have a singularity critical
point.
The corresponding critical exponent controls how the
function behaves in the vicinity of the critical point. E.g.,

χ(x) = A(x)

(
1− x

xc

)−γ
+ corrections

=
∞∑
n=0

cnx
n

⇒ cn ∼ A∗nγ−1x−nc = A∗nγ−1µn

Exact solutions (for some 2d models) give us exact
exponents; enumerations and Monte Carlo give us
approximate but accurate exponents.
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Lattice models
What makes this exercise more than an interesting
mathematical game is that we find that lattice models,
like real physical systems, lie in distinct universality
classes.

Critical exponents are universal quantities, and so our
simple, unphysical model has the same critical exponents
as real physical systems.

Loosely, at the critical point there are long range
correlations, which are much longer than the short
distance details of any particular model. Thus models
with the same kinds of correlations are indistinguishable
when we view them at a sufficiently large length scale.

Formalised by the renormalisation group of Ken Wilson,
for which he won the Nobel Prize in 1982.

5 / 21
Lattice enumeration

N



Lattice models Enumeration FLM What’s next?

Lattice enumeration

For lattice models, it is possible to calculate the
coefficients cn via a graphical expansion.

These calculations are combinatorial, and the partition
function and related quantities can be written as infinite
series with integer or rational coefficients.

As early as the late 1940’s Cyril Domb pioneered the use
of series expansions to study lattice models, and he
established a school at King’s College London which
developed this powerful approach and applied it to a wide
range of problems.
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Self-avoiding walks and polygons

Self-avoiding walks are walks on a lattice that start at the
origin and can never revist any site.

Self-avoiding polygons return to the origin.

7 / 21
Lattice enumeration

N



Lattice models Enumeration FLM What’s next?

Self-avoiding walks and polygons

Self-avoiding walk of 15 steps on the square lattice
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Self-avoiding walks and polygons

Self-avoiding polygon of 16 steps on the square lattice
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Self-avoiding walks and polygons
Self-avoiding walk of 225 steps on the square lattice
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Self-avoiding walks and polygons

It is widely believed that the following asymptotic behaviour
occurs for the self-avoiding walk in any dimension:

pn ∼ BµNnα−2

cn ∼ AµNNγ−1

〈Re〉n ∼ Dn2ν

In 2d, α = 1/2, γ = 43/32, ν = 3/4.
In 3d, α ≈ 0.23, γ = 1.156957(9), ν = 0.587597(7).
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Self-avoiding walks and polygons

Physically, self-avoiding walk correspond to the
universality class of polymers (long-chain molecules) in a
good solvent.

ν, which determines how the size of the walk grows with
the number of steps, can be measured experimentally for
a range of so-called homopolymers.

It has been found to correspond exactly with the value of
ν for self-avoiding walks. In the context of polymers, ν is
known as the Flory exponent.
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Enumeration

Brute force: µn, where µ ≈ 2.63.

Guiding principle for efficient enumeration: if it’s too
hard, transform your problem and count something less
numerous instead.

Various games can be played for SAW, Sykes and others
counted dumbbells and other configurations, more
recently Clisby, Liang, and Slade1 used the “lace
expansion”.

This only gets you a polynomial factor.

Finite lattice method (FLM) makes an exponential
improvement.

1N. Clisby/R. Liang/G. Slade: Self-avoiding walk enumeration via the
lace expansion, J. Phys. A: Math. Theor. 40 (2007).
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The finite lattice method
FLM was pioneered by Ian and Tom de Neef (1977, and a
little earlier)2, initially applied to the Potts model (a
generalisation of the Ising model).

Longer series, with sophisticated methods of series
analysis (e.g. differential approximants) can allow
dramatically better estimates of universal quantities.

This combination formed the basis of the collaboration
between Ian Enting and Tony Guttmann over the past
30+ years.

Will go through a toy example to demonstrate the basic
principle (hard squares on a small rectangle).

Then move on to self-avoiding polygons.
2T. de Neef/I. G. Enting: Series expansions from the finite lattice

method, J. Phys. A: Math. Gen. 10 (1977).
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From Enting (1980)3: “The finite lattice method involves three
stages, two formal and one computational.
(i) The series expansion has to be formally expressed as a linked-graph
expansion.
(ii) Formally, the linked-graph expansion has to be re-expressed as a sum
of contributions from finite rectangles.

(iii) The contributions for finite rectangles must be computed and then

combined in the appropriate way.”

3I. G. Enting: Generating functions for enumerating self-avoiding rings
on the square lattice, J. Phys. A: Math. Gen. 13 (1980).
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Enting (1980)4, continued: “Of these steps: (i) the linked-graph
formulation was known for many models long before the finite lattice
method was first described; (ii) the resummation is given once and for all
by Enting (1978); (iii) the contributions from rectangles can be computed
efficiently by using techniques based on a transfer matrix formalism.

In the enumeration of polygons we are only concerned with connected

graphs, and so the formal aspects of the combinatorics involve ensuring

that the generating functions exclude all contributions from two or more

co-existing polygons.”

A brilliant combinatorial insight by Ian allowed him to specify
the boundary so that only genuine polygons were counted, and
the LHS and RHS were kept independent.
This key paper was one of Ian’s first at CSIRO! “Present address:

CSIRO, Atmospheric Phys., PO Box 77 Mordialloc Vic. 3195, Australia.”

4Enting: Generating functions for enumerating self-avoiding rings on
the square lattice (see n. 3).
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Finite lattice method for SAPs
Reduce the problem of enumerating all SAPs (of length
≤ N) to that of enumerating all SAPs within minimum
bounding rectangles:

P(x) =
∞∑

W=1

PW×W (x) + 2
∞∑
L=1

L−1∑
W=1

PW×L(x).

Define boundary states so that when a boundary between
two parts of the rectangle is fixed, then the partial
generating functions to the LHS and the RHS of the
boundary are independent of each other.

PW×L(x) =
∑

bi∈{boundary states}

P
(bi )
W×L,LHS(x)P

(bi )
W×L,RHS(x)
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Finite lattice method for SAPs

These boundary states specify the topology of the SAP
either to the left or the right of the boundary.

For the square lattice, each edge can have 3 states.

We have 2(W + L) ≤ n, and W ≤ L, so W ≤ n/4.

Number of boundary states bounded by 3W+1 ∼ 3n/4.

Hence instead of generating 2.638 · · ·n SAPs, we generate
(31/4)n = (1.31 · · · )n boundary states.

Pruning allows you to do even better, roughly 1.20n.
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Results for self-avoiding polygons

Sykes et al. (1972)5 p26 = 14 385 376.
Enting (1980)6 p38 = 636 737 003 384 (FLM).
Guttmann and Enting (1988)7

p56 = 9 293 993 428 791 901 042 (metric properties).
Jensen and Guttmann (1999)8

p90 = 600 931 442 757 555 468 862 970 353 941 700
(pruning).

5M. F. Sykes/A. J. Guttmann/M. G. Watts/P. D. Robers: The
asymptotic behaviour of selfavoiding walks and returns on a lattice, J.
Phys. A: Math. Gen. 5 (1972).

6Enting: Generating functions for enumerating self-avoiding rings on
the square lattice (see n. 3).

7A. J. Guttmann/I. G. Enting: The size and number of rings on the
square lattice, J. Phys. A: Math. Gen. 21 (1988).

8I. Jensen/A. J. Guttmann: Self-avoiding polygons on the square
lattice, J. Phys. A: Math. Gen. 32 (1999).
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Results for self-avoiding polygons

Jensen9 p110 =
97 148 177 367 657 853 074 723 038 687 712 338 567 772.
(parallel implementation).

Clisby and Jensen10 p130 =

17 076 613 429 289 025 223 970 687 974 244 417 384 681 143 572 320

(constrain future topology)

The extended series in11 yielded:
the estimates x2c = 0.143680629269(2),
µ = 2.63815853035(2), α = 0.500000015(20).

9I. Jensen: A parallel algorithm for the enumeration of self-avoiding
polygons on the square lattice, J. Phys. A: Math. Gen. 36 (2003).

10N. Clisby/I. Jensen: A new transfer-matrix algorithm for exact
enumerations: self-avoiding polygons on the square lattice, J. Phys. A:
Math. Theor. 45 (2012).

11Ibid.
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What’s next?

FLM as a tool to explore boundary of solvable models -
conjecturing exact results.

Recent improvements will allow efficient FLM for 3d walk
and polygon models, since pruning problem has been
solved.

Surprisingly, more than 30 years since FLM was first
applied to SAWs and SAPs progress is still being made in
improving the method.
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