Scan #3422

Kurepa

3422

44 (1972) ## 3945

). Kurepa

001..042

KUREPA ĐURO (Beograd, Jugoslavija)

ON THE LEFT FACTORIAL FUNCTION ! ND

1. Definition of !n (left factorial of n). For every (cardinal or ordinal) number n let be

$$|n=0| +1| +\cdots +m| +\cdots$$
, $(m < n)$, i.e.

 $!n = \sum m!$, (m < n), with 0! = 1.

The number !n is called "left factorial of n" (to be distinguished from 362980 0628800 99168 the n factorial, n!)². E.g.

N472.5

										36	3
n	1	2	3	4	5	6	7	8	9	10	11
n!	1	2	6	24	120	720	5040	40 320	322 560	322 5600	5 581600
!n	1	2	4	10	34	154	874	5 914	46 234	409114 -368 794	3 594394
(cf. §2.1) M _n	1	2	2	2	2	2	2	2	2	2	4037914
4091/4											

1.1. One has the following recursive formula:

$$1(n+1)=|n+n| \ (n \in N).$$

We shall give some properties of the sequence !n, in particular in connexion with its prime divisors (if not stated otherwise n, m, \ldots , will be assumed to be natural numbers).

The main question is to know whether for every natural number n > 2 one has $M_n = 2$ (cf. 2.1) or equivalently whether $!n \neq 0 \pmod{n}$.

MATHEMATICA BALKANICA, 1 (1971)

 $M_n = ged(n! \cdot !n)$

Some results of this paper were presented at the 5th Congress of mathematicians, physicists and astronomers of Yugoslavia (Ohrid, 14-19.9.1970).

²⁾ The number n! is defined as the cardinality kSl of the set S! of all permuations of S, S being any set of cardinality n.

1.2. Lema. If $m \mid !n$ and $m \leqslant n$, then $m \mid !m.$

As a matter of fact, it suffices to consider the case m < n; the relation m < n implies

$$|n-1| + m+m! + (m+1)! + \cdots + (n-1)!$$

and therefore !n is divisible by m.

1.3. Lemma If the relations

(1.3.1)
$$!n \equiv 0 \pmod{n}, 2 < n \in N$$

are consistent, then $n \equiv 0 \pmod{m}$, $m \in N$ implies $!m \equiv 0 \pmod{m}$. In particular, the least number satisfying (1.3.1) should be an odd prime number.

As a matter of fact, the relation $m \mid n$ implies $m \leqslant n$; let us consider the case $m \leqslant n$; then

$$1n = 1m + B$$
, where $B = m! + (m+1)! + \cdots + (n-1)!$.

Since each term of B is divisible by m, and since $m \mid n$, the number $m \mid n - B$ should be divisible by m.

The last section of the lemma is obvious.

1.3.1. Corollary. There are infinitely many solutions of

(1.3.1.1)
$$!n \not\equiv 0 \pmod{n}, \ 2 < n \in \mathbb{N}.$$

Since these relations are satisfied for m=3,4,5,6,7, the same is so for n=mk for every $k \in N$.

Our hypothesis is that (1.3.1.1) is holding identically.

1.3.2. Problem (Function r_n). For any natural number n let r_n be the least non negative integer which is congruent $!n \pmod n$. The problem is to investigate the function $n \to v_n$ and in particular to determine the values of r_n and the frequence of every term of the sequence r_1, r_2, r_3, \ldots Our hypothesis says that $r_n \neq 0$ for every n > 2, i. e. that for every natural number n > 2 one has

$$!n \neq 0 \pmod{n}$$
 (cf. H_2 in § 2.4).

1.4. Lemma. If $m \mid n$ and $m < n \le r$ then $m \mid r_n$.

The lemma is obvious because m divides s! for every $s \ge n$.

1.5. Lemma. For any natural integer m satisfying milm and any natural number n we have

$$m \mid ! n \Rightarrow m > n.$$

Proof. In opposite case there would be some m such that (1) holds and some n such that (2) does not hold, i.e. such that

$$m \mid !n, m < n.$$

¹⁾ The sign | means divides; I is the negation of |.

Now, from (3) one infers that m divides lm too, because

(4)
$$|n=!m+m!+\cdots+(n-1)!;$$

every member in the second part $(4)_2$ of (4) except the first one is divisible by m; now, by hypothesis $m \mid !n$, and the relation (4) would imply $m \mid !m$, contradicting (1).

- 2. Function $n \to M_n$
- 2.1. Definition. M_n denotes the greatest common divisor of

$$[n, n]$$
 i.e. $M_n = M([n, n])$.

2.2. Lemma. Every prime divisor of M_n divides M_{n+1} : One has $M_n \mid M_{n+1}$ for every $n \in N$.

As a matter of fact the relation (1.1.1) implies that $M_n \mid !(n+1)$; since also $M_n \mid (n+1)!$ we infer that M_n divides both !(n+1) and (n+1)! and hence also the greatest common divisor M_{n+1} of these two numbers.

- 2.2.1. Corollary. The sequence M_n is increasing: $M_1 \leqslant M_2 \leqslant \cdots$
- 2.3. Our hypothesis states $M_n=2$ for $1 < n \in \mathbb{N}$; this is connected with the determination of prime factors of !n. We have the following.
 - 2.4. Main theorem. The following 3 statements are mutually equivalent:
 - H_1 : M-Hypothesis. If $1 < n \in \mathbb{N}$, then $M_n = 2$ where $M_n = M(!n, n!)$.

 H_2 : Factorial incongruence. If $2 < n \in \mathbb{N}$, then $!n \neq 0 \pmod{n}$; in particular if p is odd und prime, then $!p \neq 0 \pmod{p}$.

 H_3 : Factor hypothesis. If $1 < n \in \mathbb{N}$, then every divisor of !n is 2 or $\geqslant n$.

Proof. $H_1 \Rightarrow H_3$. In opposite case, there would be an integer n > 2 and a prime p dividing !n and such that p < n. Therefore, the more $p_!!n$ and $p_!n!$, i.e. $p \mid M_n$ and $M_n \geqslant p > 2$ contradicting the M - hypothesis.

 $H_3 \Rightarrow H_2$. In opposite case, there would be some n > 2 such that $n \mid !n$, therefore also $n \mid !r$ for every $r \geqslant n$, in particular for r = n + 1; in other words, n would be a divisor of n + 1, although n < n + 1, contradicting the factor hypothesis H_3 .

 $H_2 \Rightarrow H_1$. Let us assume $M_n > 2$ for some n; let m be the smallest such n, i.e. $M_m > 2$ and $M_m = 2$ for every $2 \leqslant m' \leqslant m$. Let p be an odd prime divisor of M_m . Consequently, p divides both !m and m!. Therefore, $p \leqslant m$. If p = m, the relation p : !m says that p : !p, in contradiction with H_2 . If p < m, we have $!m = !p + p! + (p + 1)! + \cdots + (m - 1)!$ from where we get

$$!p=!m-p!-(p+1)!-\cdots-(m-1)!$$

Since every term on the second side is divisible by p, so is the number p too, contradicting the factorial incongruence. The chain of implications $H_1 \Rightarrow H_2 \Rightarrow H_1$ proves completely the theorem.

2.5. A reduction of the factorial hypothesis.

Since for every prime p

$$(p-1)! \equiv -1 \pmod{p}$$

$$(p-2)! \equiv 1 \pmod{p}$$

$$(p-3)! \equiv \frac{p-1}{2} \pmod{p}$$

we have the following equivalence:

2.5.1. Theorem. For every prime number p>3

$$p \not\equiv 0 \pmod{p} \Leftrightarrow \sum_{k=0}^{p-4} k! \not\equiv \frac{1-p}{2} \pmod{p}.$$

3. On divisors of !n.

According to the Main theorem 2.2 our hypothesis says that every prime odd divisor of !n should be $\geqslant n$. Therefore it is interesting to find some cases for which the corresponding induction argument holds.

3.1. Lemma. If $p \nmid n'$ for every $n' \leqslant n$ and if $p \mid n' \mid (n+1)$, then $p \geqslant n+1$.

In opposite case, there would be $p \le n$. The relation !(n+1)=!n+n! proves then $p \mid !n$ also, contradicting the assumption $p \mid !n$.

3.2. Lemma. Let n be a compound number and p an odd prime number. If for every m < n one has

$$p \mid ! m \Rightarrow p \geqslant m$$
, then also $p \mid ! (n+1) \Rightarrow p \geqslant n+1$.

Assume that $p \mid ! (n+1)$; one has to prove then $p \geqslant n+1$. One has two possibilities:

First case: $p \nmid n'$ for every $n' \leqslant n$; then $p \geqslant n+1$ in virtue of the preceding lemma.

Second case: there is some $m \le n$ such that $p \mid !m$; then by induction hypothesis $p \ge m$; we have to prove that $p \ge n+1$. In opposite case, it would be $p \le n$, i.e. $m \le p \le n$; therefore !(n+1) = !m + A + n! with

$$A = m! + (m+1)! + \cdots + (n-1)!$$

Since the numbers !(n+1), !m, n! are divisible by p, so is the number A too; therefore $p \mid !n$, and by induction hypothesis $p \geqslant n$. This relation with $p \leqslant n$ implies p=n, absurdity, p being prime and n being compound. This contradiction proves the lemma.

We are not able to prove analoguous statement of the lemma 3.2. for n being a prime number (the statement in just our Factor hypothesis H_2 in § 2.4).

¹⁾ This is consequence of the result that for any prime p and any $0 \le k < p$ one has (n-k-1)! $k! \equiv (-1)^{k+1} \pmod{p}$ (KIRIN [1]).

3.3. Problem. Is it true that the relation

$$m^2 \mid 1 n$$

has no solution for natural numbers m, n > 1?

It is so at least for m=2, 3, 4, 5, 6, 7, 8, and any n>1.

3.4. Function $S_k(n)$.

Consider the sequence

and the sum of any cosecutive n terms:

$$k! + (k+1)! + \cdots + (k+n-1)! \stackrel{\text{def}}{=} S_k(n).$$

Thus $s_0(n)=1n$. One could examine the cular, what are the prime factors of $s_k(n)$? new function $s_k(n)$. In particular, what are the prime factors of $s_k(n)$?

4 The function lz for complex numbers. Considering the relation

(4.1)
$$\Gamma(a) = \int_{-\infty}^{\infty} e^{-x} x^{a-1} dx - (a-1)! \text{ for } a \in \mathbb{N}$$

for $a=1, 2, \ldots n$ and adding all these relations we get

We use the same relation to define the function

(4.3)
$$|z| \stackrel{\text{def}}{=} \int e^{-x} \frac{x^{x} - 1}{x - 1} dx$$

for every complex number z satisfying Re z > 0, and define in particular 11 = 1. Since

(4.4)
$$\frac{x^{z+1}-1}{x-1} = x^z + \frac{x^z-1}{x-1}$$

on multiplying (4.4) by e^{-x} and on integrating one has

$$\int_{0}^{\infty} e^{-x} \frac{x^{z+1}-1}{x-1} dx = \int_{0}^{\infty} e^{-x} x^{z} dx + \int_{0}^{\infty} e^{-x} \frac{x^{z}-1}{x-1} dx, \text{ i.e.}$$

$$(4.5) \qquad \qquad |(z+1)-\Gamma(z+1)+|z.$$

In other words

$$(4.6) |z=|(z+1)-\Gamma(z+1)=|(z+1)-z|.$$

This relation enables us to define stepwise the function |z| also for z satisfying Re $z \le 0$.

- 5. Left factorial !n for transfinite numbers.
- 5.1. This function was introduced in [4] for any cardinal (ordinal) number n. At the same time we proved also that the general continuum hypothesis (GCH) implies

$$(5.1) !n=n$$

for any cardinal transfinite number n (KUREPA [4] Th. 6.2. (0000)).

5.2. On the other side, one knows (cf SIERPIŃSKI [1]) that the G.C.H. implies the choice axiom Z. In other words

$$G.C.H. \Rightarrow (5.1) \land Z.$$

5.3. The converse holds also:

The choice axiom Z and the identity ! n = n for every infinite cardinality n imply the G.C.H.

Proof. If the general continuum hypothesis were not holding, there would be a cardinal transfinite number n such that for some cardinal transfinite number r

$$(5.2) n < r < 2^n.$$

Now, n < r implies $n! \le !r$ what in connexion with $n! = 2^n$ and (5.1) would imply $2^n \le r$ contradicting the relation (5.2).

The foregoing results in 5.1 and 5.2 yield the following.

- 5.4. Theorem. The general continuum hypothesis is equivalent to the identity !n=n on transfinite cardinalities and the choice axiom.
- 5.4.1. Problem. We do not know whether it is legitimate to drop in the last theorem the words and the choice axiom. The problem is equivalent to the statement

$$n! = 2^n$$

for every transfinite cardinal number n.

Bibliography

KIRIN VLADIMIR [1]: A note on Wilson theorem, Glasnik mat. fiz. i astr. Zagreb 17 (1962), 181-2.

KUREPA ĐURO:

- [1] Uber das Auswahlaxiom, Math. Annalen, 126 (1953) 381-384.
- [2] O faktorijelama konačnih i beskonačnih brojeva, Rad JAZU, Zagreb 296 (1953) 105-112.
- [2a] Über die Faktoriellen der endlichen und unendlichen Zahlen, Bull. internat. Ac. Sci. Yougoslave, Zagreb, classe math 4, (1954) 51-64.
- [3] Sull' ipolesi del continuo, Rendiconti del Seminario Matematico, Torino, 18 (1958-9) 11-20.
- [4] Factorials of cardinal numbers; Glasnik mat. fiz. i astr. Zagreb 19 (1964) 7-21.
- [5] O četiri funkcije, 5. Kongres matematičara, fizičara i astronoma Jugoslavije; Ohrid (1970).
- SIERPIŃSKI WACLAV [1]: L'hypothèse généralisée du continu et l'axiome de choix, Fundamenta Math. Warszawa 34 (1947) 1-5.

(Received 02.09.1970)

Matematički institut Beograd, Jugoslavija