Scan A3621 Rosqes

> A3621

45]

A SET OF EIGHT NUMBERS

A39943

it can be shown for large n that Y_{n-1} is approximately equal to $(2\pi npq)^{-1/2}$, or $1/\sqrt{2\pi}\sigma_n$. Thus from (6) we obtain the approximation

(11)
$$MD_n \sim \sqrt{2npq/\pi} = \sqrt{2/\pi} \, \sigma_n = 0.79788\sigma_n.$$

More exact computation, using the remainder terms in Stirling's formula, yields the better approximation

A216

(12)
$$\frac{\pi}{2} (MD_n)^2 = npq + (np - [np])(nq - [nq]) - (1 - pq)/6 + E_n/24n,$$

A218

where the error coefficient E_n becomes numerically less than or equal to unity as n becomes infinite, for all choices of np between 1 and n-1; and $\lfloor np \rfloor$ and $\lfloor nq \rfloor$ denote the greatest integers not exceeding np and nq respectively.

A SET OF EIGHT NUMBERS

ARTHUR PORGES, Western Military Academy

- 1. Introduction. In this paper the operation of adding the squared digits of any natural number A a finite number of times is proved to transform A either to unity or to one of a set of eight natural numbers closed under the operation.
- 2. Definitions. We use the expression natural number to denote a member of set 1, 2, 3, · · · of positive integers. Zero has not been adjoined to this set is not to be included in the definition.

The operator G is defined by the equation

$$G(A) = \sum_{i=1}^{R} X_{i}^{2},$$

where A is a natural number of R digits given by

(2)
$$A = \sum_{i=1}^{R} X_i 10^{i-1}.$$

Since A has R digits, $X_R \neq 0$.

We note that G(0) = 0, and G(1) = 1.

Using the customary notation, we write $G^n(A)$, where n > 1, for n successive applications of the operator G to A.

G is not a linear operator since, in general, $G(A_1+A_2)\neq G(A_1)+G(A_2)$.

The set of numbers

(3)
$$a_1 = 4,$$
 $a_5 = 89,$ $a_2 = 16,$ $a_6 = 145,$ $a_3 = 37,$ $a_7 = 42,$ $a_4 = 58,$ $a_8 = 20,$

A 39943

is closed under the operation defined by (1). We call (3) Set K, and use the symbol a' to denote any non-specified element of the set. The equation

$$G^{8}(a') = a'$$

is easily verified.

Numbers of the form 10^n , $13 \cdot 10^n$, $10^{n+1} + 3$, where n is a positive integer or zero, and others not specified here, satisfy the equation

$$(5) G^{\mathsf{r}}(A) = 1$$

for some integer r > 0. Any natural number satisfying (5) will be denoted by the symbol b'.

3. Preliminary Lemmas. In what follows, the symbols A and B always represent finite natural numbers in the denary system of notation.

Lemma 1. Any natural number A of R digits, where $R \ge 4$, satisfies the inequality

$$(6) G(A) < A.$$

It is evident that $G(A) \leq 81R$, and that $A \geq 10^{R-1}$. The inequality

$$81R < 10^{R-1}$$

becomes, upon taking the common logarithm of each member and transposing,

(8)
$$\log_{10} R < R - 2.9085,$$

an inequality valid for $R \ge 4$.

LEMMA 2. For any natural number A there exists a positive integer n such that

$$G^n(A) \le 162.$$

For $R \ge 4$, Lemma 1 establishes the inequality (6). As a direct consequence of (6), the operator G applied to A a finite number of times must result in a natural number of less than four digits, since for R=4, $G(A) \leq 324$.

For R < 4, the following inequalities are readily established.

$$(10) G(A) \leq 243,$$

(11)
$$G^2(A) \le G(199) = 163,$$

(12)
$$G^3(A) \le G(99) = 162.$$

Since G(A), where A is a three digit number, cannot exceed 3 81 = 243, (10) is obviously valid. Also, since $G(199) \ge G(B)$ for any $B \le 243$, (11) holds. Finally, since $G(99) \ge G(P)$ for any $P \le 163$, (12) is proved.

The inequalities (10), (11), and (12) complete the proof of Lemma 2.

4. Convergence of $G^n(A)$. The following theorem is the main result of this paper.

Theorem 1. For every natural number A there exists either a positive integer n such that (5) holds for all $r \ge n$, or a positive integer m such that

$$(13) G^{r}(A) = a'$$

for all $r \ge m$, where a' is some element of Set K.

From Lemma 2 it is evident we need prove the theorem only for $A \leq 162$. The writer was unable to find a simple indirect proof sufficiently superior to the following direct one of selective verification to justify its inclusion here.

We consider two cases.

Case 1. $100 \le A \le 162$.

For A thus restricted, it is apparent that $G(A) \leq G(159) = 107$. Direct application of the operator G to A over the range 100 to 107 gives

(14)
$$G(100) = 1, G^{6}(104) = a' = 89,$$

$$G^{2}(101) = a' = 4, G^{3}(105) = a' = 16,$$

$$G^{5}(102) = a' = 89, G(106) = a' = 37,$$

$$G^{2}(103) = 1, G^{5}(107) = a' = 89.$$

thus completing the proof of the theorem for Case 1.

Case 2. 0 < A < 100.

For A = 10X + Y, where $0 \le X \le 9$, and $0 \le Y \le 9$, the following identity is valid.

(15)
$$G(10X + Y) \equiv G(10Y + X).$$

Further, if $G^n(A) = a'$, and $G^m(B) = A$, it follows that there exists a number h = n + m such that $G^h(B) = a'$.

By means of these considerations, it is possible to verify Theorem 1 numerically for all A < 100 by actual computation of $G^n(A)$ for 30 values of A < 100, thus completing the proof of the theorem.

The writer is aware of the inelegance of such a proof, and would like very much to see a simple indirect one. However, proving the non-existence of another set like (3), which seems a necessary step, is quite difficult because of the non-linear character of G.

COROLLARY. For every natural number A there exists either a positive integer n such that $G^n(A) = 1$, or a positive integer m such that $G^m(A) = 4$.

The corollary follows directly from Theorem 1 and the nature of Set K. Since every natural number is transformed either into unity or into an element of Set K by the operator G, we need only note that for every $a' \neq 4$, there exists a positive integer $r \leq 7$ such that $G^r(a') = 4$.

THEOREM 2. The number of digits N in G(A), where A has R digits, satisfies the inequality

$$(16) N \le 2.9 + \log_{10} R.$$

This theorem is a simple consequence of the inequality $G(A) \leq 81R$. We have

(17)
$$G(A) \le 10^{1.9} + \log_{10} R$$

a number of N digits, where $N \leq 2.9 + \text{Log}_{10} R$.

THEOREM 3. The only solutions in natural numbers of

$$G^n(A) = A$$
,

where $n \ge 1$, are

$$(19) A = 1, n = J,$$

$$(20) A = a', n = 8,$$

where J is any natural number.

If we assume the existence of a natural number A > 1 and different from a' such that $G^n(A) = A$ for some $n \ge 1$, it follows that A would not be transformed into either unity or an element of Set K by a finite number of applications of the operator G to A. But this is a direct contradiction of Theorem 1, and hence the assumption is false.

5. Concluding Remarks. A problem suggested by the one just discussed is that of repeatedly summing the *cubed* digits of a natural number. A complication occurs, however, since there is more than one number A such that H(A) = A, where H is the operator analogous to (1) given by

(21)
$$H(A) = \sum_{i=1}^{R} X_{i}^{3}.$$

For example, H(153) = 153, H(407) = 407, and H(371) = 371. This destroys the factor of uniqueness, since H(A) may be unity as when A = 100; or A may be transformed into a number A' like 153.

It is interesting to note that since for any number A transformed into some element of Set K by a finite number of applications of G we can construct a number $B=10^4$ such that G(B)=1, there are at least "as many" numbers satisfying (5) as (13). This intuitionally unsatisfying conclusion results from the comparison of two infinite sets.

Leibniz discovers the obvious. I have made some observations on prime numbers which, in my opinion, are of consequence for the perfection of the science of numbers If the sequence [of primes] were well known, it would enable us to uncover the mystery of numbers in general; but up till now it has seemed so bizarre that nobody has succeeded in finding any affirmative characteristic or property I believe I have found the right road for penetrating their [primes'] nature: but not having had the leisure to pursue it, I shall give you here a positive property, which seems to me curious and useful.—Leibniz, in a letter to the editor of the Journal des Savans, 1678. The discovery: a prime is necessarily of one or other of the forms 6n+1, 6n+5.—Contributed.