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it can_be shown for large # that V._, is approximately equal to (2rnpg)~1/2, or
1/4/2xa,. Thus from (6) we obtain the approximation

(11) MD, ~\2npg/m = \/2/m 00 = 0.797880,. Eé
More exact computation, using the remainder terms in Stirling’s formula, yields ‘F( 0/2 / (9
5

the better approximation

(12) %%MDH2=nM4—w¢-MMXW-—MM)—(l—p®M4—EJMm }%';Z‘

where the error coefficient E, becomes numerically less than or equal to unity
as n becomes infinite, for all choices of np between 1 and n—1; and [np] and
[ng] denote the greatest integers not exceeding np and ng respectively.

A SET OF EIGHT NUMBERS
ARTHUR PORGES, Western Military Ac_ademy

1. Introduction. In this paper the operation of adding the squared digits of
any natural number 4 a finite number of times is proved to transform 4 either
to unity or to one of a set of eight natural numbers closed under the operation.

2. Definitions. We use the expression natural number to denote a member of
@ set1,2,3,- - of positive integers. Zero has not been adjoined to this set
L.l is not to be included in the definition.

The operator G is defined by the equation

kil 2
(1 G(4) = 3 X,

t=1

where 4 is a natural number of R digits given by
. R
(2) A4 =Y X101,
=1

Since 4 has R digits, Xz 0.
We note that G(0)=0, and G(1) =1.
Using the customary notation, we write G*(4), where 72> 1, for 1 successive
applications of the operator G to 4.
G is not a linear operator since, in general, G(A1+42)#=G(41)+G(4,).
The set of numbers
ay = 4, ap = 89v

© o e )Q 7?0[0? L(f 3
az = 37, a; = 42) f

58, az = 20,

1

ay




380 A SET OF EIGHT NUMBERS [Aug.-Sept.,
is closed under the operation defined by (1). We call (3) Set K, and use the sym-
bol &’ to denote any non-specified element of the set. The equation

(4) . G¥a) = o

is easily verified.
Numbers of the form 107, 13107, 107+!+3, where 7 is a positive integer or
zero, and others not specified here, satisfy the equation

(5) Gr(4d) = 1

for some integer 7 >0. Any natural number satisfying (5) will be denoted by the
symbol b’

3. Preliminary Lemmas. In what follows, the symbols 4 and B always repre-
sent finite natural numbers in the denary system of notation.

LeMMA 1. Any natural number A of R digits, where R 24, salisfies the inequality -
(6) G(4) < A.

It is evident that G(4) £81R, and that 4 = 103“1. The inequality
(7 81R < 10772
becomes, upon taking the common logarithm of each member and transposing,
(8) logio R < R — 2.9085,
an inequality valid for R=4.

LEMMA 2. For any natural number A there exists a positive integer n such that
9) G(4) £ 162.

For R=4, Lemma 1 establishes the inequality (6). As a direct consequence
of (6), the operator G applied to A a finite number of times rmust result in a nat-
ural number of less than four digits, since for R=4, G(4) =£324.

For R<4, the following inequalities are readily established.

(10) G(4) £ 243,
(11) G(4) = G(199) = 163,
(12) G3(4) = G(99) = 162.

Since G(4), where 4 is a three digit number, cannot exceed 3-81=243, (10) is
obviously valid. Also, since G(199) ZG(B) for any B <7243, (11) holds. Finally,
since G(99) = G(P) for any P <163, (12) is proved.

The inequalities (10), (11}, and (12) complete the proof of Lemma 2.

4. Convergence of G*(4). The following theorem is the main result of this
paper.
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THEOREM 1. For every natural number A there exisls either a positive integer n
such that (5) holds for all r Zn, or a positive integer m such that

(13) G(A) =d
Jorall r 2m, where a’ is some element of Set K.

From Lemma 2 it is evident we need prove the theorem only for 4 £162.
The writer was unable to find a simple indirect proof sufficiently superior to the
following direct one of selective verification to justify its inclusion here.

We consider two cases.

Case 1. 1004 £162. )

For A thus restricted, it is apparent that G(4) <G(159) =107. Direct appli-
cation of the operator G to 4 over the range 100 to 107 gives

G(100) = 1, G%(104) = o' = 89,
) G*(101) = o’ = 4, G*(105) =o' = 16,
G5(102) = o/ = 89, G(106) = o’ = 37,
G*(103) = G5(107) = o’ = 89,

thus completing the proof of the theorem for Case 1
Case 2. 0<4 <100. ) .
For 4=10X+Y, where 0<X <9, and 0< V<9, the following identity is
valid.

15) ~ G(10X 4 ¥) = G(10Y + X).

'H;‘urther, if GM(4)=a’, and G"(B)=4, it follows that there exists a number

h=n+m such that G*(B)=a". .

By means of these considerations, it is possible to verify Theorem 1 numeri-

~ cally for all 4 <100 by actual computation of G*(4) for 30 values of 4 <100,
thus completing the proof of the theorem.

The writer is aware of the inelegance of such a proof, and would like very
much to see a simple indirect one. However, proving the non-existence of an-
other set like (3), which seems a necessary step, is quite difficult because of the
non-linear character of G.

COROLLARY. For every natural number A there exists either a posilive integer n
such that G*(A) =1, or a positive integer m such that G(4) =4.

The corollary follows directly from Theorem 1 and the nature of Set K.
Since every natural number is transformed either into unity or into an element
of Set K by the operator G, we need only note that for every a’#4, there exists
a positive integer » <7 such that G7(a’) =4.

THEOREM 2. The number of digits N in G(A), where A has R digits, satisfies
the inequality

(16) N £ 2.9 4 logi R.
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This theorem is a simple consequence of the inequality G(4) £81R. We have
(17) G(4) < 10 + logio R
a number of IV digits, where N £2.9-+Log., R.

TuEOREM 3. The only solutions in natural numbers of

G(4) = 4,
where n 21, are
(19) A =1, n=17,
(20) | 4 =d, n = §,

where J is any natural number.

If we assume the existence of a natural number 4 >1 and different from a’
such that G*(4) =4 for some n =1, it follows that 4 would not be transformed
into either unity or an element of Set K by a finite number of applications of the
operator G to 4. But this is a direct contradiction of Theorem 1, and hence the
assumption is false. :

5. Concluding Remarks. A problem suggested by the one just discussed is
that of repeatedly summing the cubed digits of a natural number. A complication
occurs, however, since there is more than one number 4 such that H(4) =4,
where H is the operator analogous to (1) given by

: R
1) HA) = 3 X4

$=l
For example, H(153) =153, H(407) =407, and H(371)=371. This destroys the
factor of uniqueness, since H(4) may be unity as when 4 =100; or 4 may be
transformed into a number A’ like 153.

It is interesting to note that since for any number 4 transformed into some
element of Set K by a finite number of applications of G we can construct a
number B =104 such that G(B) =1, there are at least “as many” numbers satis-
fying (5) as (13). This intuitionally unsatisfying conclusion results from the com-
parison of two infinite sets.

Leibniz discovers the obvious. I have made some observations on prime numbers which, in
my opinion, are of consequence for the perfection of the science of numbers . . . . If the sequence
[of primes] were well known, it would enable us to uncover the mystery of numbers in general;
but up till now it has seemed so bizarre that nobody has succeeded in finding any affirmative char-
acteristic or property . ... I believe I have found the right road for penetrating their [primes’ ]
nature: but not having had the leisure to pursue it, I shall give you here a positive property, which
seems to me curious and useful.—Leibniz, in a letter to the editor of the Journal des Savans, 1678.
The discovery: a prime is necessarily of one or other of the forms 6n+1, 6n-+5.—Coniributed.




