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tions for each point p;. Taking into account all the pairs of points
(pi» p;), and the inadvisable directions p;p;, noted earlier, a great
many directions might be ruled out. However, for any n, the number
of unsafe directions will be finite, leaving any number of satisfactory
choices for d, and the conclusion follows by induction.

Directions to avoid

2. A Problem about Triangles

Our second problem was very kindly brought to my attention by
the outstanding number theorist George Andrews (Pennsylvania

State University).

How many different triangles are there which have inte-
gral sides and perimeter n?

A complete specification of this number T'(n) is given in a paper by
J. H. Jordan, Ray Walch, and R. J. Wisner [5]. In a brief note [6]
George Andrews gives a beautiful solution which exploits the rather
natural connection between T'(r) and p3(n) and p,(n), the number of
ways of partitioning an integer n into 3 and 2 parts, respectively.

Andrews’ Solution. A partition of n into 3 parts, a + b +c=n,

generally defines a triangle counted by T'(). The only way a partition -

will not do so is by failing to satisfy one of the triangle inequalities

a+ b >c, b+ c¢ > a, ¢c+a>bhb.

ES] 0 be'den e+a1) ’ Trl'a.nsjes uu'H: i«-"cger ::Jes, ! ﬁm@o’.

Wb Whanthly, 86 (1979) 684-6897.
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But this can happen only when the sum of the two smaller parts, say
b + ¢, fails to exceed the largest part a: i.e., when b + ¢ < a. In this
case, b and ¢ would add up to some integer j < (1/2)n, which, be-
cause only integers are involved, is equivalent to

l ]
—nl,
12
where [x] is used to denote the greatest integer < x.

Conversely, suppose j is a positive integer < [(1/2)n]. Then each
of the p,(j) partitions of j into 2 parts,

b+ec=j (5 B-HD

b+t j=mn, and bitie = n—1

Eteo=J]=

gives

Lettingn —j = a, we have b + ¢ = a, where

= b ei=n = joEbie =K.

That is to say, each of the p,(j) partitions (b, ¢) corresponds to a
partition (a, b, ¢) of n that, in view of b + ¢ =< a, fails to generate a
triangle. Thus there is a 1-1 correspondence between the failing par-
titions (a, b, ¢) of n and the partitions into 2 parts of the integers; in
the range 1 to [(1/2)n]. Subtracting from the p;(n) possible parti-
tions the total number of failures, we obtain

Tn) =psn) — L  palj).

1<sj=1(1/2)n] ;

Now, by simply listing all the partitions, we see that p,(j) is always
just [(1/2)f]:

for j =2k + 1, the partitions are (1, 2k), (2, 2k — 1),
sl 7ol s ol [

for j = 2k, the partitions are (1, 2k — 1), (2, 2k — 2),
Dol Ny
thus po(j) = k = [(1/2)j].
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Using this result, it is an exercise in mathematical induction to establish
that the sum in question is given by [n/4][(n -+ 2)/4], yielding

+ 2
S

But, as we shall see, p3(n) is given by the formuld p;(n) = {n?/12},
where {x} denotes the integer nearest x (since no square is €ve

between two multiples of 12, this is never ambiguous). Finally, then, we
have the pretty result

o= (][5

The Formula for p3(n). Let us prove this formula for p3(n). Inorder to
do this, we introduce a simple geometric representation of a partition
which is known as a Ferrers graph. In a Ferrers graph G, each partr in
the partition is represented by a row of r equally spaced dots. In prepar-
ing a partition for representation by a Ferrers graph, it needs to be writ-
ten in nonincreasing order. Accordingly, the rows in a Ferrers graph,
which are lined up one under the other from the left so that the dots fall
into columns, also occur in nonincreasving order. For example, 10 = 4
4+ 2 4 2 + 1 + 1 yields the Ferrers graph:

The Ferrers graph G’, which is obtained from G by interchanging its
rows and columns, is called the conjugate of G. Clearly a graph G
has exactly one conjugate G’ and (G’)’ is simply G, itself. Thus, if the
conjugate is taken of each Ferrers graph in a set S, the set of conjugates
is in 1-1 correspondence with the graphs of S.

G: G’
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Let us consider, then, the collection of Ferrers graphs of the parti-
tions that are counted by p3(n). Each of these graphs G will have
exactly 3 rows, which means that each conjugate G’ will have exactly
3 dots in its first row and no more than 3 dots in any other row. As
such, each G’ represents a partition of n in which every part

G: G’

is either a 1, 2, or 3, and at least one part must be a 3. Since p;(n)
counts all partitions containing exactly 3 parts, it is not difficult to
see that the set of conjugates {G’} must represent all partitions of
this kind (i.e., with parts that are 1’s, 2’s, or 3’s, with at least one 3).
In fact, the whole purpose of these Ferrers graphs and their conju-
gates is simply to provide us with a nice way of seeing that there exists
a 1-1 correspondence between the partitions counted by p;(n) and
the partitions of n into 1’s”,“2’s, and 3’s, where at least one 3 must
occur. We have, then, that the number p3(n) is the same as the num-
ber of partitions in this latter class.

Now, if this obligatory 3 is removed from a conjugate partition, we
obtain a partition of » — 3'into I’s, 2’s, and 3’s which has no addi-
tional qualifying condition on its composition (it may or may not
have any 3’s left). If this is done to each conjugate partition of »,
then, a set of partitions of n — 3 is obtained which is clearly in 1-1
correspondence with the set of conjugate partitions of n, and, there-
fore, is also in a 1-1 correspondence with the partitions counted by
p3(n). Letting p(““A”", m) denote the number of partitions of m which
have parts from the set of numbers A, we have that

piln) = p(“{1,2,3}’ n — 3).

At last we have arrived at an expression for p3(n) that we are able to
handle. ‘
In order to calculate this quantity we turn to one of the premier
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tools of the combinatorialist—generating functions [7]. Consider the
product

fo) =1 +x+x2+x3+ )0+ 2+ xt+x0+ )
1+ x3+x0+x2+ ).
In multiplying these series together, one of the terms in x16, for ex-
ample, is obtained by taking
x3  from the first factor,
x4 from the second, and

x® from the third.
This displays the exponent 16 in the form
16 =3 + 4+ 9,
which we may construe to be
16 = 3(1) + 2(2) + 3(3)
14+ 14+1+2F2+3+3+3

corresponding to a partition of 16 in which only 1’s, 2’s, and 3’s occur
(the number of 1’s comes from the first factor in f(x), and so on).
Conversely, every such partition of 16 can be used as a prescrip-
tion for selecting terms from the three factors of f(x), based on the
number of 1’s, 2’s, and 3’s that are called for, that will generate a
term in x'6. Consequently, the total coefficient of x'® in f(x) is just
p(*{1,2,3}",16), and in general, the desired p(““{1,2,3}’,n — 3)
is the coefficient of x"~3 in f(x). Fortunately we can determine this
coefficient by elementary methods.
First of all, observe that the binomial theorem gives

(1 — x)"1 =1+ xk + x* + x3k + e
making
fe) =1 — 071 = x)7IA = )7
1
1 — x)(1 —x2)(1 — x%)°

!
1
3
-
3
P
!
1



44 CHAPTER 3

Now, by resolving f(x) into its partial fractions, we obtain

1/6 1/4 1/4 1/3
- + + +
Sx) (1 — x)3 (1 — x)? 1 — x? 1 —x3

1 1 1 1 |
== 07 =072 (=) T (=)

Therefore, the desired coefficient of x” 73 is the sum of the coeffi-
cients of x”~3 that are obtained from these four parts. But these may
be extracted by straightforward applications of the binomial theo-
rem. From the first part we get

LY B+
6 (n — 3)!

1 3:4---(n—1) 1l = 2)(n—1)

6 -3 6 2 ’

and from the second part we similarly obtain (1/4)(n — 2).

In the third part, only even powers of x occur, and we obtain the
coefficient 0 if » — 3 is odd, and (1/74)(1) = 1/4if n — 3 iseven. We
may express this by saying tHat the coefficient is (1/4)k, where k is
either 0 or 1. Similarly, in the final part, the coefficient is (1/3)¢,
where t is either 0 or 1. In these terms, then, we have

1 (n—l)(n—Z) 1'
paln) = c _ 5 —(n 2) + 4 k + 3—
_on?— 4+ 3k + 4
12 '

Now the most that 3k + 4¢ can be is 7 and the least is 0. Therefore,
we have

n? — 4 n?+3

that is,
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Thus the integer p3(n) does not differ from n2/12 by more than 1/3,
making it the integer nearest n2/12, as claimed.

Another Approach to T(n). Finally, let us close with a most ele-
gant solution of this problem, which is based on the fact that

T(2n) = p;(n), (1)

an insight that was made independently by N. J. Fine and P. Pacitti
of Pennsylvania State University. Combined with the property

T(2n — 3) = T(2n), (2)

the formula for p3(n) gives another complete solution. Again, I am
indebted to George Andrews for this approach.

The key result 7(2r) = p;(n) is established directly by displaying a
1-1 correspondence between the triangles counted by T'(2n) and the
partitions of p3(n). Suppose that (a; b, c) is a triangle counted by
T(2n). In this case, a + b + ¢ = 21, and because each side of a
triangle is less than one-half the perimeter, we have eachof a, b, ¢ <
n. Consequently, each of the integersn — a,n — b, n — cis positive,
and(n —a,n — b,n —c)isa parﬁtion counted by p3(n):

n—-a—i-n—b+n—c=3n——(a+b+c):3n—2n:n.

Conversely, if (p, g, r) is a partition counted by p3(n), we have p +
g +r =n, and thateachof p, g, r is less than n. Then the 3 positive
integers n — p, n — g, n — r add to 2n and the sum of any two
exceeds the third, for example,n —p +n —q =2n — (p + q) >
Y —n=n>n — r. Therefore,(n —p,n —q,n — r) is a triangle
counted by T'(2n), and we have

T(2n) = ps(n).

Now let us verify property (2). If (a, b, ¢) is a triangle counted by
T(2n — 3), it is easy to see that @+ 1,b+1,c+ 1isa triangle
counted by 7(2n): froma + b +¢=2n—3,wehavea + 1+ b +
1 4+ ¢ + 1 = 2n, and, from the known b + ¢ > a, etc., we have b +
{4+c+1>a-+2>a+1,etc., satisfying the triangie inequali-
ties. Hence T(2n) = T(2n — 3). “

We shall obtain the desired T(2rn) = T(2n — 3) by showing that
T(2n — 3) = T(2n). To this end, suppose (a, b, ¢) is a triangle
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counted by T'(2n). First we will show that none of a, b, ¢ can be unity.
Suppose to the contrary, for example, that ¢ = 1. By the triangle
inequality, we would then have that the integer

la —b| <ec =1,

which would leave no option but @ = b. In this case, however, the
total perimeter would be

a+b+c=2a+1,

an odd number, not the 2n it is supposed to be. Thus each of a, b, ¢
must exceed unity.

Finally, we complete the argument by showing that the triple of
positive integers (¢ — 1, b — 1, ¢ — 1) determines a triangle that is
counted by T(2n — 3). Because (a, b, c) is counted by T(2n), it is
clearthata — 1 +b — 1 4+ ¢ — 1 = 2n — 3; furthermore, the
known triangle inequality

a+b>c,
for example, yields
a—1+b—1>c—1—1,
or
a—1+b—-—1z=zc—1;

now, if equality were to hold here, then the total perimeter of the
triangle (@ — 1, b — 1, ¢ — 1) would be 2(c — 1), an even number
instead of the odd 2rn — 3. Thus the triangle inequalities are satisfied
by(@a —1,b — 1,¢c — 1), and we have the desired T(2n — 3) =
T(2n).
Consequently, we have
2

TQ2n — 3) = T(2n) = pyn) = {%}

2 2 2
T(2n)={’112}=[(4;)}

This gives
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and

T(2n — 3) :{

[(2n — 3) + 3]2}
48 '

That is to say,
. n2
if niseven, then T(n) = {—},

2
it 7 is odd, then T(n)zgm}.
18
Exercise

If a, b, ¢ are positive integers such that a? + b? = ¢? (that is, if
(a, b, ¢) is a Pythagorean triple), prove that

p3la) + p;3(b) = pslc).

(Proposed by Jack Garfunkel, Queen'’s College, New York, in Pi Mu
Epsilon Journal, 1981, page 31).
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