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Abstract

\We prove Lhal certain interesting combinatorial quantities (typi-
cally depending on two parameters) possess compact closed forms
when one of the parameters becomes fixed. The examples include
necklaces. 0. l-matrices. bipartite graphs. multigraphs and polygon
dissections. A subset ol the examples can be treated in a uniform way
which resides in the generalization of restricted partitions by means of
finite group action. The theorv given in this paper bases on empiric
results ol olher authors and serves as a case study of the experimental
methods i enumerative combinatorics. A computer algebra package
for manipulating quasi-polynomials is shortly introduced in the last

section.

Much effort was put into answering the question if a given sequence has
a generating function within a specific domain or not. In the present paper
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we are able to prove that certaiu interesting combinatorial quantities possess
very nice generating functions that give rise to simple closed forms for these
quantities.

In the first section we recall some concepts from enumerative combinato-
rics. In particular. we define quasi-polynomials as a natural generalization of
polynomials and show the form of their generating functions. This is done in
a concise stvle but pointers to basic textbooks are provided on many places.
Later on, we explain how the ezperimental methods can be used to conjecture
quasi-polvnomiality of various sequences. This approach has a twofold effect:
(i) One can collect together more examples of quasi-polynomials comparing
to what the textbooks normallv present. (i7) One can try proving quasi-
polvnomiality of other sequences. which is the main objective of this paper.

[t turns out that a certain subset of examples can be treated in a uniform
way bv generalizing the concept of so-called “restricted partitions” by instru-
ments of finite group action. Section 2 is devoted to this topic. However,
there still retain sequences that probably cannot be handled this way, and
different mechods must be taken to prove that they have generating functions
of the desired form. Two examples of such situations are in section 3.

In the last section we briefly introduce a computer algebra package for
efficient computations in the domain of quasi-polynomials. This tool may
be used to convert generating functions of quasi-polynomial sequences into
corresponding ciosed forms. Consequently, it may produce the closed form
for anv sequence studied in this paper. Only few samples are included in
order to keep the modest size of this section. However. it should be noted
that long tables of generating functions and/or quasi-polynomial closed forms
could be manulactured in a routine way.

1 Definitions

Let N denote the set of nonnegative integers. let Z be the ring of integers
and let Q denote the field of rational numbers. For a polynomial P(z), let
[2°] P(r) be the coefficient at 2* in P. This notation naturally generalizes to
X/ for
the cardinality ol a finite set X'. The svmmetric group of all permutations

univariate and bivariate formal power series. Further. we will write




of X will be denoted by Sx. The subgroup relation wiil be denoted by <.

1.1 Quasi-Polynomials

In this paper we study a natural generalization of polynomials, namely so-
called quase-polynomauals.

Let (an)n>o (or simply (a,)) be an integral sequence, a, € Z for all n € N.
We say that (a,) is quasi-polynomial if and only if there are integers p > 1,
ng > 0 and polvnomials Py(n). Pi(n),. .., P,m1(n) € Q[n] such that for each
n > ng

a, = P.(n)  where £ =n mod p. (1)

There are two differences of this definition from the usual one ([Sta], p. 210):
In our setting it suffices that the polynomials Py determine the sequence’s
values onlv from some point onwards. Later the reader may recognize why
this comes usetul: Consider. for example. the sequences of section 3.1. The
second difference is that we define the quasi-polyncnuality only tor sequences
with integral entries. The reason for this mitation 1s that in this paper we
deal exclusivelv with sequences that count combinatorial objects.

The number p will be called the quasi-period of the sequence. The po-
lynomials Fy.. ... P,_y will be called the cluss polynomzals of the sequence
because thev determine its entries on residue classes of the index.

[n the sequel. we will be using the word quasi-polynomial both as a noun
and as an adjective. Let D be the maximum degree amongst polynomials Py
and suppose P = Z,D:U cem'. Instead of (1) one usuallv writes

. D .
a, = [cop-cips . cprpn” + o+ €00, €100 Cpor 0]
Further abbreviation is achieved by writing [co, . ... ¢/ instead of [co,. .., ¢,
€y Cia oo Cor... ¢ and c instead of [c,c.... c|. We will use such no-

tation In section +.2.

Let [x] denote the floor function. The reader may verify that also each
equation of the tollowing form

a, = |[Pni].  Pn) € Qln] (

o



defines a quasi-polynomial sequence. Unfortunately, the converse does not
hold in general.

We start with two warm-up examples: The sequence (2,1,2,1,1,4,1,
1,6,1,...) of terms in the continued fraction expansion of the well-known
number e = 2 + 1/(1 + 1/(2+ 1/(1 +1/(1 + 1/(4 + 1/...))))) is quasi-
polvnomial with p=3.no=1and P, =1. P, =2/3(n +1), By = L.

The (sorted) sequence of numbers k& such that L\/ZJ divides £ (AMM
problem E 2491) is the sequence of numbers of the form m?, m*4+m, m*+2m
with m > 1. Indexing these items by 0.1.... we get a quasi-polynomial
sequence with p =3.ny =0, Py = (n/3+ 1)2, P =((n+2)/3) +(n+2)/3
and Po = ((n 4 1)/3) +2(n+ 1)/3.

For an introduction on quasi-polvnomials we recommend [Ehr] or [Stal.

1.2 Generating Functions

It follows [rom the theory of linear recurrence sequences that the integral
sequence (¢,) is quasi-polynomial (in the sense of the preceding section) it
and only if the following two conditions hold.

(QP1) The generating function of (a,) is rational, 3,50 an2" = P(2)/Q(2)
with P(r). Q(x) € Zz], ged(P(x). Q(z)) = 1.

(QP2) All roots of the polynomial Q(x) are roots of unity (not necessarily
with same primitive periods). This can be rephrased by saying that
all irreducible factors of Q(x) are cyclotomic polynomials, see [Lan],
p. 316.

The proof of this statement relies on Proposition 4.4.1 in [Sta] which in our
setting reads as follows: “The integral sequence (a,) is quasi-polynomial with
ne = 0 if and onlv if (QP1) and (QP2) hold and, moreover, deg P < deg ().”
In the general case (no restriction on degrees of P and ()) we can always find
polvnomials 2. S € Z[a] such that P/Q = R+ 5/Q with deg 5 < deg (). Let
ro=deg R and 5/Q =¥ ,soa,r". Then a, = [2"]R(x) 4+ «), for n <7 while
ay, = a forn =1+ 1. Hence. (a,) is quasi-polvnomial (in our sense) with
ng =14+ 1.



We will sav that a generating function has the (QP)-form if it fulfills
both conditions (QP1) and (QP2). Quasi-polynomials are closed under ad-
dition. convolution and indefinite summation. They are also closed under
multiplication. as may be seen by a direct argument (without consideration
of generating functions).

1.3 Closed Forms

Mathematicians like to see things in “closed forms”. For example, the follo-
wing three equations (equation systems) define the same sequence (a,):

0, = (=)"Bm)/m!®  for n even. n = 2m
a, = 0 fornodd (3)
1 3
n ke
w=3{7) -0 )
k=0
(n 4+ 2V 004 + 330 +4)(3n +2)a, =0. a=1 a =0 (5)

For manyv reasons (computation complexity. getting more mathematical
insight. asvmptotic analvsis. or even aesthetic reasons etc.) we prefer the de-
finition (3) to the other two cases. No fixed agreement used to be on the set of
operations allowed to appear in a “closed form expression”. Typically, closed
lorms may include addition. multiplication, exponentiation and factorials. In
the present paper we adopt quasi-polynomials as “closed forms”, since they
very well meet all demands listed at the beginning of the paragraph.

1.4 Experimental Mathematics

Experiment has always been. and increasingly is. an important method of
mathematical discoverv. The main questions to be answered are how one
uses the computer: To build intuition? To generate hypotheses? To discover
nontrivial examples and counter-examples?



1.4.1 Method of Our Paper

One of the frequent approaches in experimental mathematics is to build large
lists of examples and search for a specific pattern to occur.

The first subtask may be of great interest on its own, and resulting ca-
talogs or programs are often distributed amongst the mathematical com-
munity. Receuntlv, Bergeron and Plouffe [BePl] invented a Maple program
which guesses the generating function of a series from its initial terms. Using
this progran aud a similar one (by Salvy and Zimmermann), Plouffe has
computed an amazingly large catalog [Plo] of more than one thousand con-
jectured generating functions. His work will be incorporated into the second
edition of the lamous Handbook of Integer Sequences by N.J. Sloane.

In the present paper. we use Ploulfe’s list as the catalog of guessed ge-
nerating functions. and the pattern to be sought is the specific form of ge-
nerating [unction quoted in section 1.2, Interestingly enough. more than 60
(nou-polvnomial) entries of [Plo] match this pattern. This fact enabled us

(i) to collect more examples of quasi-polynomials than is usually listed in
the textbooks. i.e. to organize the knowledge

(it) Lo discover that certain sequences are quasi-polynomial. a fact that has
not been noticed by authors introducing these sequences.

It s a pleasure for us to note that in the course of our work we did not
meet any wrong puess. i.e. that each sequence which we picked for a detailed
study turned oul to be an instance [or task (¢) or (i/). Moreover, some of
these items were generalized by showing not only the quasi-polynomiality of
the particular sequence appearing in [Plo] but also the quasi-polynomiality
of anv other sequence of that kind. This was the case in sections 2.2, 2.3 and
3.1

Since we lacked an elfective tool lor computation with quasi-polynomials,

a bunch of Maple procedures was written which handles all known examples
N a reasonable time. cl. section .



1.5 Examples of Quasi-Polynomials

The abovementioned process allowed us to gather more examples of quasi-
polvnomials than is usual in combinatorial textbooks. We merely quote the
results. references mayv he found by tracking down the appropriate entries in

[Plo].
All of the following quantities are quasi-polynomials:

The number of partitions of a given positive integer n into parts of possible

sizes si.....s, 1s the denuwmerant D(n:sy,....sx), being quasi-polynomial
in 1. (See [Com). chapter 2.6 for details.) [t 1s common to use the notation
pr(n) for Dinclo200. 0. k) and we will do so in section 4. Computing with

denumerants covers the famous monev changing problem. and many others.

The number of distinct integer-sized triangles with a given perimeter n
s (02 +6)/12] = |n/4][(n +2)/4]. (For much more examples on counting
lattice points in multi-dimensional polvhedra. see [Ehr].)

The maximal number ol riangles that may be packed in the clique on 11

vertices (using cach edge of the cligue at most t times) is quasi-polynomial
mn 1.

The postage stamp problem: The maximal integer n = n(h,2) such that
all integer postage values from | to n can be made up by at most & stamps
(with onlv 2 stamp denominations allowed) is n(h,2) = [(h* + 6k + 1)/4].

The crossing number of the complete graph on n nodes is conjectured to
be L/4|n/2][(n — 1)/2][(n = 2)/2][(n = 3)/2].

The wnmber ol non-isomorphic graphs on n vertices having exactly 2
cliquesis |n*/1]. The nunber ol non-isomorphic graphs on n vertices having
cxactly 5 cliquesis [(n+3)(6n" — 18?4+ 340" —42n + 105+ 45(—1)")/1440].

We are coming to the main part of the paper. In the following two sections
we will show 1hat several combinatorial quantities are quasi-polynomial.



2 Restricied Partitions

As has been mentioned in the beginning, some examples can be gathered
together by viewing them as vestricted partitions under an action of a per-
mutation group.

Let G be a finite group acting on a finite set X. This vields a permutation
representation (i of (7. where (G < Sy. Consider the induced action G x
NY o NY defined by (7 f)(2) = f(r~'(2)) for 7 € G. f € NX.

For an [ € NV let

cyi= Z fla)
zeXN

be the content ol f and let
G(f) = {rf|7 e G}

be the crhit of f under (. We say that G(f) is a G-partition of the number
c¢y. The number variition defined this way should not be confused with the
set partition of X" {or YY) into (G-orbits in the action of G on X (or Y.

[nformallv. given a natural number c¢. a permutation group G of degree
[ arising from the action ol a group (7 on a set .X' with cardinality [, then a
G-partition ol the number ¢ is a set T of [-tuples over N where each tuple
sums up to c. and with each ¢ € T. T contains all [-tuples obtained by
permuting entries ol { by permutations from G. (We think of the [-tuples
as indexed by the elements ol X.) Since the length of tuples must be equal
to the cardinality of X' we speak about restricted partitions. We note that
sero parts ave allowed as well. a lact that fits the combinatorial applications
and ensures that the set ol G-partitions ol ¢ is always nonempty.

From the Pélya’s Theorem ([Ker|. p. T1) it follows that the number of
distinct G-partitions of ¢ is the coefficient at z° 1n

s L L
(GX = =) (6)
|- 1 —2? 1 — 2l
The expression (G) denotes the Pdlva’s substitution of 1 + @ + =
ﬁ into C(G N sy s s1x1)- the cvele index of G's action on X. The
cvele mdex is a multivariate polvnomial in all Iis vaitables sy, 59,0 8x).



Hence. (6) meets the conditions (QP 1) and {QP?2). We arrive at the following
theorem:

Theorem 1. Tor each permutation group G, the number Pg(c) of G-
partitions of ¢ is quasi-polynomial in c.

By taking suitable groups i, we can prove quasi-polynomiality of vari-
ous interesting combinatorial quantities. All of the following examples were
treated elsewhere but (with exception of section 2.1) only occasionally the
quasi-polynomial closed forms [or some special cases were recognized. Here
we aim at a unifving treatment of all situations.

2.1 Ordinary Partitions

Let (i be the [ull symmetric group of degree n acting on n, ie. G = Sn-
This is the coutext in which partitions are usually studied. and the number
of these ~ordinary™ partitions into n parts (with zero parts allowed) is well-
known to have the generating tunction L/{{1—.}(1—2?)...(1—z™)). On the
other hand. this series also results fiviu the substitution (6) into the cycle
index of S, which is derived in [Ker], p. 72. Comparing both, we obtain

1 1 LS|
Z H AN T = H ok (7)
S a VAL = 2F) o L=
where the sum extends over all « = (aq, ay....) such that a1 +ay-2+. .. =n.

The identity (7). due to MacMahon ([MacMah]. Vol. II. p. 62), is normally
used as the first step in a partial fraction decomposition of its right-hand side.
This identitv s tvpically derived by means of symmetric functions. even in
the textbooks which introduce Pélva’s counting theory ([Rio]. pp. 118-119).

2.2 Necklaces and Bracelets

Taking (7 = (', 10 be the cvclic group acting on n. the (', -partitions of a
number 1 ave models lor fwo-colored necklaces (black and white. say) with
the fixed number n of black beads and a varving number m of white beads.
The bijection between these two sets is as follows: For a given C,-partition of

the number 1 with a representative (my. .. ... iy ) we construct a necklace

9



with n black beads and n blocks of white beads (of sizes my, riiy, ..., 7.,
respectivelyv) by iuserting one white block between each consecutive pair of
black beads, keeping the cvclic order of m,’s unchanged. Thus the black
beads provide the “marks™ between consecutive C,-parts.

Let N, (m) denote the number of necklaces with n black and m white
beads. Theorem | implies that N, (m) is quasi-polynomial in m. Simi-
larly. when the dihedral group D, is acting, Theorem 1 proves the quasi-
polvnomiality of 3,(1n). the number of two-colored bracelets with a fixed
number n of black beads. The latter values are of interest in diverse appli-
cations. see [HoPe] or [Eth].

Taking n = +. the substitution mto the cycle index of Dy yields the
generating function for bracelets with 4 black and m white beads:
S Bmpen = s 2 b Ll
o S(L—a)t  3(l—u?)2 4+l -t 4(1l —a)¥1—2z?
vt 4|

= =1 +a+3ef +42®+ 827 + ...
(L= )2 (L= ad)(L =2t SR

This is the sequence A5232 in [Plo].

In the casc of ('~ and D, -partitions. the class polynomials can be expres-
sed explicitly by binomial sums. providing this way an alternative proot of the
quasi-polynomiality of the quantities under examination. This approach is
less elegant (comparing to the argument using generating functions). Polya’s
Theorem is now applied for the cvelic and dihedral group of order m + n.
respectively.

Next we =how these computations for the case of ',-partitions. The
number of necklaces with i black and nr white beads is the coefficient at &
i

|
m 4+ n

()( ([)(Ill + l )(777.+‘!L)/L[
d|(m+mn)

which by the binomial theorem turns out to be

L fm+n)/d
d . S
m4n ,“gC%m) ol J( n/d (8)

The basic property of greatest common divisor

orcd i ) —
R L

cel a9 M aa
& Ly e e

(o g
o te

L0



allows us to change the description of summation range in a convenient way:
[t is now clear that the summation range depends just on the value of m mod
n. 1.e. on the resiclue class of m. and that (8) is polynomial in m on each such
residue class. This means that V,(m) is quasi-polynomial with quasi-period
n.

The case when m and n are relatively prime is particularly nice. Think of
a sequence 1" of m white and n black beads and let o denote the cyclic shift.
The smallest p such that o?(T') = T will be called the primitive period of T
Clearly. T is composed ol (im + n)/p =: b identical blocks B. Let B contain
m’ white and n' black beads. Then bm’ = m. bn’ = n and since we assume m
and n to be relativelv prime. b = 1. i.e. p = m + n. This means that for any
such 7. the (rotationally equivaient) sequences o(T). o*(T),..., o™ ™ (T) are
pairwise different. Since there are (’“f”) sequences in total and they form
equally sized orbits of cardinality m 4 n each. it follows as a special case of

(3) that tor relatively prime numbers m and n. the number of necklaces with
m white and n iack beads 1s
1 m 4+ n
m +n n '

The probability that two randomly picked integers are relatively prime is
6/ ([Knu). p. 324.) Hence. in the case of two colors about 60% of the
necklace problem is covered by an easy formula.

2.3 0.1-Matrices and Bipartite Graphs

Many problems in the switching theory can be recast as problems involving
0. l-matrices. In [Har73]. the author develops methods for finding number
of equivalence classes of 0. l-matrices with m rows and n columns under two
definitions of equivalence:

(EL) equivalent matrices are obtained by row and column permutations;

(L2) equivalent matrices are obtained by row permutations together with
column permutations and/or complementations.

5

For the equivaience {21). the number s, , of clroses of m 20 n matrices

may be determined as follows: Consider the action of 5, on matrix rows.

L1



This vields a permutation group S of degree 27, actiug on {0,1}™ and being
a permutation representation of S,. Then each El-equivalence class of m xn
binary matrices is an S’ -partition of the number m. The formula for cycle
indices of 5’ appears in [Har63]. For example, C'(53,{0,1}?) = 1/2(s{ +sis2)
and so the generating function for El-classes of m x 2 matrices is

| . L L 1 '2;
Z S 2t 2 <(1 —1:) +(1 —-L') 1—1'2) v

m>0

1 .
= m 1_2):1+3a:+71‘2+131'3+...
RN YER

This is the sequence A2623 in [Plo].

In order to find ¢, ,. the number of classes under (E2), [Har73| proceeds in
a similar way, arriving at the group S? of degree 2™ which is the permutation
representation of the exponentiation group 5'{0‘1}51.

Taking the group (i in Theorem 1 to be S; and S., respectively, we
conclude that lor a fixed number of column: n, the numbers s,,., and ¢, ,
of E1.E2-equivalence classes of m x 1 binary matrices are quasi-polynomial
in m. It s worth mentioning that for m # n. s, gives also the number of
bipartite graphs with vertex sel partition (m.n). The bijection is achieved
by viewing U. [-matrices of the shape m x n as a special kind of incidence
matrices [or bipartite graphs with m and n vertices. Thus (9) tells us that
we have thirteen non-isomorphic bipartite graphs with vertex partition (3,2).
They are drawn in [HaPal. p. 95 as au illustration for their enumeration via
the cvcle index ol S, x S,. The case m = n needs different treatment, see
[HaPal. pp. 97-99.

2.4 Multigraphs

The famous pair group (or graph group) S is the permutation representa-
tion of the syvinmetric group S, acting on pairs from n. Considering these
pairs as unordered (orcdered), we can enumerate unoriented (oriented) graphs
on n points. [n this instance. Theorem | implies that the number of (un-
oriented. oriented) multigraphs on n points with e edges is quasi-polynomial
in e. Polva’s substitution of —= into the cvcle index of S is (without any

[ AR

urther commenta) mocuiioned in [HaPal. p. 33

[2



3 Other Quasi-Polynomial Quantities

There are some examples which cannot be adjusted into the framework of
generalized restricted partitions. Instead, we must use different methods. In
the first example. we can compute the generating functions directly. In the
latter example. we prove the quasi-polvnomiality by other (albeit elementary)
arguments. \We determine the quasi-period and the degree of the resulting
quasi-polvuomial and then the actual computation of the closed form is done
by interpolation {rom the initial values. (The interpolation idea is used e.g. in
[Com], p. 114. In the general case. this approach may be cumbersome since
it requires a lot of non-trivial data. We tried to avoid it in the present paper
by using generating functions whenever it was possible. )

3.1 Polygon Dissections

By a polygon disscction we mean each subdivision of the interior of the convex
n-gon into smaller polygons by means of nonintersecting diagonals. The
enumeration ol dissections was treated by many authors. In the special case
when all parts happen to be triangles, the number of triangulations of the n-
gon is well-known to be the Catalan number C, _, ([GKP], exercise 7.22). Up
to now. no svimmetries are considered so that. for example, the two possible
triangulations of the square are regarded as distinct.

Restricting the attention to regular n-gons. one can make the problem
more natural by viewing two dissections as identical if one can be obtained
[rom the other by rotating and/or reflecting the n-gon. Depending on whe-
ther the reflection is or 1s not allowed as a possible symmetry, we come to
two different problems. and the counted objects will be called “dissections
with reflection™ and “dissections without reflection”. respectively.

In the general setting when the regular s-gon is to be divided into r
polvgons. the svnumetry classes of dissections were enumerated by R.C. Read
in [Real. We will extend the results ol this article a little bit by showing
that tor lixed . all arising quantities happen to be quasi-polynomials in the
variable . Lirst ol all. we introduce Read’s notation and illustrate it on
a simple example. Since the general idea of [Real is to rirn the dissection
problem into a cell-growth problem. we will use the term cells for the polvgons

L3



arising 1n the dissection. With each pair (r,s) we associate five numbers
counting cifferent kinds of dividing up the s-gon into r polygons:

Vs number of dissections without reflection rooted at an edge
F,s number of dissections without reflection rooted at a cell
H., number of unrooted dissections without reflection

fris number of dissections with reflection rooted at a cell

hos number of unrooted dissections with reflection

Obviously. these values are nonzero exactly if s > r 4+ 2. Additionally, we set
‘/0'1 = l

To enlighten the definition ot these sequences, let us have a look at their
values lor (1.5} = (3.6). The lollowing picture will help us:

200 C

Since each dissection of the hexagon into 3 parts is rotationally equivalent
tooneof 4. B. ('. D. we have H3s = 4. Under reflection, A and B fall into
one class so that hsy = 3. If the reflection is not allowed, we may root each
of A. B and (" at 3 cells and D at 2 cells, which together gives F3¢ = 11.
Allowing the reflection. we must give up one rooting of (' and all rootings of
B. hence f+s = 7. [Finallv. under rotational symmetry we may root A. B,
at any outer edge and D at half of its outer edges which implies V3¢ = 21.

Since we deal with double-indexed sequences. their generating functions

are bivariate:
S Y ety
I S

and similarly for /7L H. [ and h. We recall the formulas derived by Read. for
detailed proots see [Real:

[ i \] {/J' + 5 =]
\-. . = — o l



Fle,y) = =3 ClCV(z,y)) (10)

k>3
Hz,y) = Fley) =5 (UHey) - UEY) (1)
flew) = 5P+ (2T (o) + Ve + THa) Rlz,y) (12)
baww) = flay) =7 () =206 + Woew)) (19

where U(z.y) = V(x,y)—y, 2R(z,y) = (1+2)V (2% y*)—y? and W(z,y) =
T(a.y)—y with
y+ R( y)

We show that lor each fixed r. all five enumerating sequences V', F', H,
f, h are quasi-polvnomial in s. To this end. for each r we introduce five
univariate generating functions V., £, H,, f, and h, in the variable y:

Via.y) =) Vily)a’

»

T(x,y) = (14)

and analogously for the other sequences. Clearly, our goal is to show that
for any r, each ol these five univariate functions meet the conditions (QP1),
(QP2), see section 1.2. This statement is trivial for the functions V, because
for r > 1, V.5 1s polynomial in s of degree 2r — 2, 1.e.

P:(y)
Vi(y) = — ¥ >
W=t 2 (15)
for some polynomial P, ([Stal, p. 202). while for » = 0 we have
Voly) =y. (16)

The simple form ol V4 will consequently play a notable role in our computa-
tions.

The series [, is obtained by a rearrangement of (10):

Fy) = [ Fley)=[2""" ZZ ; \/k/d ¢ )

k>3 d]k

= 7YY vt ),

d'(r=1) md'>3 md!

15



By multinomial theorem and another rearrangement we find

Fly) = Y > >

d'|(r—1) (al,a.g,.._)}—rd—,l

1 m!

- AP Ve (y®) - Ve (y?)
maylay! . .. (m— 3 a;)! ( ) (v* ) 2 (")
where the second sums extends over all (a1, a,, . . .)such that a;-14+ay-24... =
(r—=1)/d". [x] is the ceiling of z and 3" a; = a; + a3 + ... . The multinomial
coefficient multiplied by L/m is a polvnomial in m of degree (3 a;) — 1, let
us call 1t ¢)(m). Due to (16), the innermost sum is

S QUm) L) ey vy

Mm=nlg

where the summation bound was replaced by a symbol. The factors inde-
pendent of 1 may be put apart. which gives

Z Q(m) (17)

with C(y) in the (QP)-form because of (15). Hence, the expression (17)
meets (QP)-form and finally the generating function F, being a finite sum of
expressions of the type (17), must also fit (QP)-form. Hence, we have proved
that for any fixed r, the sequence F, ; is quasi-polynomial in s. Taking r = 3
as an example, we compute

m—1 R 1
Fs:Z/L\/ Z ‘1‘/ +Z " ()
m>3 m>3 H n‘L>2
y oy u2=y) 2 y?

2(y) Ny = 1) +Vaily™) 3T = 47
(y° + y* =5y — 3)y°

= - R — = 3y° 4+ 11y 24y7 4+ 46y° + 75y° + ...
2
(L= (L —y)

(cf. [Rea]. Table 2.)

The functions H, give little trouble since from (11) we directly obtain
L

=1
H,.:F,.—S(ZL; —{Vpaly? })

o=t
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wheic the term in curly brackets is (or is not) present depending on if r is
even (odd). In both cases, the yet known forms of F; and V;’s imply that H,
meet (QP)-form.

Next we must deal with the functions f,(y). (They should not be mixed
up with the bivariate functions fy(z,y) in [Real.) We will show that also the
functions R.(y) and T,(y) happen to be in the (QP)-form which obviously
will settle the problem for f,, cf. (12).

We observe that R, = 0 for r even and R, = Vr41),2(4%) + Vieo1y/2(y?)
for » odd which again meets (QP)-form. The treatment of T, needs a bit of
rewriting of (14):

Ty)=y-Riy)+ > RueR,_,
k=0

where
Ri(y) = [ ZR‘(I.'}/) =) 2] ZRi(:L',y)
=0 3

_ Z (CL1+(L2+...)!R[{1R;2””

lerol
(1,02, ) y.do. . ..

The step ) is possible due to Ry = 0. We conclude that each Rjis in (QP)-
form. Thus. also T, fulfills (QP)-form. Now, by similar means, f, can be
spelled out as a finite algebraic expression in £y, V, o, Ts and R;’s. Hence,
f meets (QP)-form.

The last remaining series are h,. Here, the argumentation is quite similar
as in the case ol their "big brothers™ H,. This concludes the proof that for
any fixed . each of the series V.. F., H,, f, and h, has the (QP)-form.

Finallv we note that the reasoning on univariate generating functions not
onlv proves the existence of certain closed forms for the studied sequences
but also provides a practical method for computing terms of those sequences.
As pointed in [Real, univariate series are much easier to handle than the
bivariate ones. and with the use of modern computer algebra systems it is
quite easy to obtain the functions F,. H,. f. and h, for modest values of r
along the preceding lines. Doing so. we had the pleasure to verify the huge
amount of data contained in [Real. Tables 2 to 5 with the exception of the
three positions 31, fsae and hsys that according £o cur resulte chould hold
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the values 372. 624355 and 334035, respectively. For each of these entries,
the value given in [Rea] and our value differ only in a single digit so the
difference clearly should be accounted to a transcription mistake rather than
to a mathematical errvor.

3.2 3 x 3 Matrices With Constant Row and Column
Sum

This example shows that multiple sums with some simple functions (maxi-
mum.ceiling) as summation bounds may naturally lead to quasi-polynomials.

Let P = [p,,] be a3 x 3 matrix with p;; € {0,1,2,..., 4 — 1} such that
S ik = Zf:l pe; = i, for £ =1,2,3. Any matrix which can be obtained
from P by permuting rows and columns of P or by taking the transpose of P
is said to be equivalent to P. In [Mor], the number n(u) of such inequivalent
madtrices for anv g > 2. is given by a somewhat horrible looking triple sum

1 li/2) li/2)-m

n(p) = Z Z Z Cimr (18)

i=1 m=max{0,2i—p} 7=0

where yt = 3lor . = 3l—lor p = 3{=2forsome ! € N and ¢ipr = p—20+m+1
Hm4r #i/20and ¢ = [1/2(p — 20+ m +2)] if m + 7 =1/2.

This is the sequence A5045 in [Plo|, and its conjectured generating func-
tion matches the form required in section 1.2 with denominator containing
roots of unity with primitive periods 1,2,3 and 4. Thus we suspect n(u) to
be quasi-polvnomial with quasi-period equal to 12, and we will prove this
hypothesis now:

To make things easier for a short while, consider g running over the
congruence classes modulo 24 (instead of 12). The Ansatz p = 24a + b, with
a € N and a fized b € {0....,23}, will make it possible to split (18) into
several triple sums whose bounds are free of functions symbols “max” and
*| ]7. To sketch hiow this is done. note that we know p mod 3 and so we
are able to express u — / by ¢ and b. Also. we can split the first sum into
four sums according to ¢ = 0.1.2.3 {mod 4). This allows not only get rid
ol the flour funciion in upper bounds but also determines the parity of ¢/Z
if this happens 1o be integer. The latter information is needed to split the
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second sum into cases “m even” and “m odd” in order to be able to treat
the values ¢;,,, correctly. Up to now it would suffice to know the residue of
p modulo 12 but there is one more obstacle to overcome: the lower bound
of the second sum needs to divide cases 1 < /2 and 7 > p/2 which can be
done by another split of the first sum by inserting a “middle bound”. To do
this, however. we need to express the integral values in the neighborhood of
p/2 in all residue classes modulo 4. and this is why we need the information
p mod 8. There may be a way to get around this but the author does not see
any at the moment. All together, we need to know g mod 3 and u mod 8,
and this is exactly what b gives us. Once all the splits are done, we arrive
at a couple of triple sums over expressions linear in all variables. Because of
the form ot the bounds. we get rid of one indeterminate at each summation
sign, and finallv we have to add a couple of quartic polynomials in g. This
means that n(u) is a (quartic) polvnomial on each residue class modulo 24,
and so the whole sequence (1(p)), >0 1s quasi-polynomial with quasi-period
being a divisor of 24.

It would he of course too cumbersome to compute the 24 poiynomials
defining (1(u)).>0 by methods of the previous paragraph. (In this sense,
our proof is evistential vather then constructive.) Instead, we compute 24 - 5
initial values by (18) and do the polynomial interpolation on each residue
class. The result turns out to have the quasi-period 12 indeed. The closed
form of n(p) 15 shown 1 section 4.2.

4 Computational Considerations

We shortly imntroduce the Maple package QP developed for easy computations
with quasi-polvnomials. The software may be obtained from the author on
an e-mail request. (Please indicate your Maple version.)

This package, as each computer algebra product. 1s not supposed to re-
place student s knowledge (of working with generating functions, in this case).
Rather. it should support tedious computations by saving time and human
energy. Ior an interesting discussion on usage of such svstems, see [Buc].
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1.1 Functicnality of the Package

We describe the package bv specifications of its functions:

gf2qp takes a rational generating function and decides whether the under-
lying sequence is quasi-polynomial. If this is the case, the quasi-polynomial
coeflicients are computed.

eval_gp evaluates the given quasi-polynomial at a given integer.
denumerant computes the denumerant from given part sizes.
p computes pg (7).

A special message is printed if the result may be represented in terms of
the floor function.

To give some teeling about the performance, we include three examples
with their reference and CPU time needed to compute the quasi-polynomial
closed form (i.e. the class polvnomials) by our package on a DEC-5200 run-
ning Maple V Release 2.

" problem ‘ reference H CPU time ‘
D(n:1.2.3) [Stal], p. 211 1.0 sec
D(n:1.2.3.4.5,6) | [Sta], p. 211 3.5 sec

| D(n:1.5.10.25.50) | [GKP], p. 331 37.9 sec

4.2 Examples of Closed Forms

Finally. we tabulate a couple ol quasi-polynomial closed forms for some of
the sequences treated i this paper. In front of each sequence we include
the number ol the section where it was introduced. The bracket and ceiling
notations for quasi-polvnomials were explained in section 1.1.



2.2 B,y(m) e Emt e 55—+ [0,11—6,—%,%
2.3 S [3(m +2)(m +4)(2m + 3) |
3.1 fas 550 =38+ -1, 3]s+ [4,9] (s=5)
3.2 nlp) 5—;%u4 T553%#31+ %5%#2 : [éjg%}ujg{o,;;%—%,?%,
~5 T5me T 376 "o eb 720 srel (K2 2)
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