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Many remarkable conjecturcs have been made recently concerning‘
exnlicit enumeration of certain classes of tableaux. Most of these
due to or arise from the work of W. Mills, D. Robbins, and H. Rumsey
Here we will survey the most prominent of these conjectures (omittin
some rather technical refinements). We will for the most part not d
cuss the background of these conjectures and their connections with
symmetric Functions and representation theory. We will also for the
most part ignore a host of known results which are very similar to m
of the conjectures and which make the conjectures considerably more
tantalizing. The reader should consult the references cited below for

further information.

We begin with the necessary definitions. A plane partition m 1s
an array mn o= (mw..). . of nonnegative integers n.. with finite sum
’ 1)71,3>1 ij
|n| =2 ﬂjj, which is weakly decreasing in rows and columns [10]. The

nonzero n.. are called the parts of = and normally when writing exam-
© 1] parts ’ V4 g

ples only the parts are displayed. Such terminology as 'number of Tows

of #" refers only to the parts of w . Thus, for example,
443211
43311
321
22
1
is a plane partition w with |m| = 38, and with 17 parts, 5 rows, and 6
columns. We now list some special classes of plane partitions.
column-strict: the parts strictly decrease in each column.
row-strict: the parts strictly decrease in each row.
symmetric: w.. = w.. for all 1,j.
————— 1) J1

cyclically symmetric: the i-th row of m, regarded as an ordinary

partition, is conjugate (in the sense of [4, p. 21]) to the i-th column,

for all i

totally symmetric: symmetric and cyclically symmetric.
(r,s,t)-self-complementary: 7 has < T TOWS, < 'S columns, largest
. = < 1 < 1 < 3 < s.
part < t, and T +oT Si+l,s-j+1 t for all 1 <1 <1, <3 <
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Example. Consider the three plane partitions

4431 4432 44321
3321 4331 4222
321 332 321

2 - 21

The first is cyclically but not totally symmetric, while the second 1is
totally symmetric. Moreover, the third is (3,5,4) - self-complementary.

A Gelfand pattern (see [3]) is a triangular array

412777 g

of nonnegative integers aij which weakly increase in rows and such that

a. . .<a..<a. . for all 2 < i < j <n. A Gelfand pnattern is
i-1,j-1-"1ij—-"1-1,] — — - -

strict if the rows stricly increase. A strict Gelfand pattern with

first row 1,2,...,n is called a monotone triangle of length n

An nxn alternating sign matrix is an nxn matrix whose entries are

0, *1 , whose row and column sums are all eaual to 1 , and such that
the nonzero entries of every row and column alternate in sign. An ele-

ment aij of a strict Gelfand pattern T is special if 2<i < j < n and

ai-l,j—l < aij < ai-l,j Let s(T) denote the number of special ele-

ments of T . There is a simple bijection [6] between monotone triangles
T of length n and alternating sign matrices A of length n , for which
s(T) is the number of -1's in A . There is also a simple bijection

(e.g., [2]) between Gelfand patterns with first row A < A, <=-:< A

and column-strict plane partitions of shape X = (Al,kz,...,kn) (i.e.,

Xi parts in row 1) and largest part < n

fFxample. The seven monotone triangles T of length 3 are given by

123 123 123 123 123 123 123
12 12 13 13 13 23 23
1 2 1 2 3 2 3

All of them satisfy s(T) = 0 except the fourth, for which s(T) = 1.

A shifted plane partition is defined analogously to plane partition,

except that the array [ﬂij) is defined only for 1 < i < j. Such ter-
minology as "column-strict" and "number of rows'" is carried over in an
obvious way to shifted plane partitions. For example,

554331

4322
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is a column-strict shifted nlane partition with 3 rows and 6 columns.
et u be an integer. A column-strict shifted plane partition

(CSSPP) is of class pu if the first entry of each row exceeds the row

length by precisely 2uy . There is a simple bijection [8] between

CSSPP's of class 1 with < n columns and descending plane partitions

(as defined by G. Andrews [1]) with largest part < n+l . There is
also a simple bijection between CSSPP's of class 0 with < n columns
and cyclically symmetric plane partitions with largest part <n (see
[8]). A part ﬂij of a CSSPP of class p is special if u < ﬂij < j-itu o,
and we write s(T) for the number of special parts of T

Example. The seven CSSPP's of class 1 with < 2 columns are given
hy B

41 42 43 44 44
3

A1l of these satisfy s(T) = 0 except the fifth, for which s(T) =1

We now are ready to list the conjectures (as of November, 1985),

h=d
Wl

together with some related theorems.

Theorem (equivalent to [1, Thm. 7]1). The number of CSSPP's of

class 1 and < n-1 columns is equal to

nogag (A
A
Conjecture 1 [6]. The number of nxn alternating sign matrices 1is
equal to A
n
Conjecture 2 [7, Conj. 1][11, Case 10]. The number of totally 4 /

symmetric (2n,2n,2n)-self-complementary plane partitions is equal to 6:

Note. One can give a bijection [7] between totally symmetric (2Zn,
2n,2n) -self-complementary plane partitions and shifted plane
partitions m = (ﬂij) of shape (n-1,n-2,...,1) such that

- .. 1 part .. of m
n-1,< T < n for all parts T

A

Note. It is not known whether the number of nxn alternating sign

matrices is equal to the number of totally symmetric (2n,2n,2n)-self-

complementary planc partitions.

Conjecture 3 [6, Conj. 2]. The number of monotone triangles of

length n with bottom entry a = = T (equivalently, the number of nxn

alternating sign matrices (uij) with o . T 1) is eagual to



-1
2n-2 n+r-2 2n-r-1

A
n-1
n-1 n-1 n-1
Note. One easily deduces Conjecturc 1 from Conjecturc 3
Conjecture 4 [6, Conjs. 4 and 5]. Define An(x) = 1 XS[F) ,
T
where T ranges over all monotone triangles of length n . Define
B7n+1(x) =z xSll), where T ranges over all strict Gelfand patterns
2 T
with fFirst row 1,3,5,...,2n-1. Then there exist polynomials an(x) for
which
' Bn(x)Bn+1(x) , n odd
AL(x) =
2 X 2
2 Bn(\)Bn+1(¥) , N even
Note. lor a conjectured explicit value of B7n+1(1),sce the note
following Conjecture 9.
Note. Conjecture 1 is equivalent to the asscrtion An(l) = An
(5)
Tt is not difficult to show [6, Cor. on p. 358] that An(Z) = 2 - . In fact,

much more can be said concerning the weilght ZS(T) of a strict Gelfand
pattern T , and there are strong connections with the theory of symme-
tric functions. For instance, 1f oi(T) denotes the i-th row sum of T ,

then it can be shown that

S(T)Xal(T)—OZ(T) OZ(T)-OS(T) . On(T)

2 X ceX
T 1 2 n
Sx(xl""’Xn)liigjin(xj+xj),
where 1 ranges over all strict Gelfand patterns with first row
(An,xn_1+1,...,x1+n—l) , and where Sy denotes the Schur function (as

defined, e.g., in [4] or [10]) corresponding to the partition

A= (kl,...,An)
Conjecture 5 [6, Conj. 6]. A (3) st(“)Hn, where
m(m-1) , n = Zm
t(n) =
m2 , n = 2m+l ,

amd where Hn is determined by the recurrence
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_ 2n+1 _ n 2n
Mg =1 = = S50 T %3 Ty
. 2n (2 Mooy 3 em
- ! "
Conjecture 6 [8, Conj. in Sect. 4]. Define Zn(x,u] - 1 3D ,
T
where 'I' ranges over all CSSPP of class u and rows of length < n . ‘Then
Zn(Z,u) is determined by the recurrence Zl(Z,u) = 2,
W T eome2iel solved by
"Zm—l(z’u) =1 e G A../rews'

Z°m+1(2’m m+1
_7m(-,u)

b

Note. A strengthening of Conjecture 1 is given by Zn(x,l) = An(x)

where An(x) is defined in Conjecture 4 (see [8, Sect. 4]).

Conjecture 7. (see [11, Case 4]). The number of totally symmetric

plane partitions with largest part < n is equal to

T = oI 1+j+k-1 1
L n 1<i<j<k<n 1+j+k-2
Note. Tt is not hard to show that the number of totally symmetric

plane partitions with largest part < n is also equal to

a) the number of row-strict shifted plane pnartitions with
largest part < n ,

b) the number of order ideals of the poset L(3,n) of
Pervers diagrams Ffitting in a 3xn rectangle, ordered by inclusion,

¢) the sum of the minors of all orders (including the
void minor equal to 1) of the matrix whose (i,])-entry is (}) for

0<i, j<n-1.

Note. All quantities arising in connection with Conjecture 7 have
natural ¢g-analogues. The q-analogue of Tn is
it 1- i+j+%;i
Tal@) = jcicjeken 1-qH 77X

The ¢-analogue of the number of totally symmetric nlane nartitions with
largest vart < n is the polynomial N (B;q) defined in [11], where

; B = B(n,n,n) and G = 83 . The q- analogue of (a) 1s just ZqI ,

k-v summed over all 7 satisfying (a). The g-analogue of (b) 1is Zq|1|,

summned over all order ideals I of L(3,n) . Finally, the g-analogue of



1+1+ (J 1) .
(c) corresponds to the matrix with (i,j)-entry q ?

0 <1, j<n-1. As in Conjecture 7, the last four quantitles are known

to be cqual, and are conjectured to equal Tn(q)

Conjecture 8 (D. Robbins, et al.; see [11, Case 9]). The number of 04{;9ﬂ
cyclically symmetric (Zn,2n,2n)-self-complementary nlane nartitions is f? .

equal to A;

Note. [t is not known whether the number of cyclically symmetric
(In,In,2n)-self-comnlementary plane nartitions is the square of the
nuaber which are also symmetric (Conjecture 2). Perhans there is a Dhi-
iection which shows the equivalence of Conjectures 2 and 8 without

nroving either one.

Conjecture 9 (implicit in [8]). The number Fn of nxn alternating
siyn matrices which are invariant under a reflection about a vertical

axis is given by the recurrence

6n-2

F. = 1. F = 0 F2n+1 =( 2n )
1 ’ " 2n * F 4n-1
Zn-1 2¢( n )

Note. [t 1s easy to see that F2n+1 = B2n+1(1) , as defined in
Conjecture 4. tloreover, the number of strict Gelfand natterns (aij)
with lIirst row 1,3,...2n-1 which are "flin-symmetric', in the sense
that aij + ai,n+i—j = 2n for all 1 < i <3 <£n, 1s equal to P2n+1’ as
defined in Conjecture 12.

Conjecture 10 [7, Conj. 5]. The number of nxn alternating sign

. . . . 0 . .
matrices which are invariant under a 180  rotation is equal to the

quantity Hn of Conjecture 5,

Note. It is not known whether Conjectures 5 and 10 are equivalent,

i.¢., whether 3 t(n)A (3) is equal to the number of nxn alternating

sign matrices 1nvarlant under a 180° rotation.

Conjecture 11 (D. Robbins; see [9, Sect. 3.5]). The number Qn of
n*n alternating sign matrices which are invariant under a 90° rotation

1s given by the recurrence

3n+1 2

Q4n+3 _( n )
=0 , q = 5 5
4n+1 ( 3)

Q= 1, Qs



2 3n-1
3In+2
Q4n+5 _ ( n ) Q4n ( n )
JanTo o — =
Un+s 2n+l © Upn-1 (0
o AR n
Conjecture 12 (W.tl. Mills; see [9, Sect. 4.21). The number Pn

of n»n alternating sign matrices which are invariant under reflections

in both a horizontal axis and a vertical axis 1s given by the recurrence

b - bl =
L=, =0,
6n-3
on (3n-1) (5 )
Pynes (el (50) Py 2n-1
P N 4n-2
el (aneD) 30 Paner iy GRID)

Conjecture 13 (D. Robbins; see [9, Sect. 3.7]). The number X

of nxn alternating sign matrices which are invariant under reflections

in both diagonals satisfies X1 =1,

(3]1)

_en+l o N
X 2n-1
2n-1 ( o )

2n+1l

Notc. There are no conjectures at present for the cardinalities of
two additional symmetry classes of nxn alternating sign matrices, viz.,
those that arc symmetric matrices (i.e., invariant under a reflection
in the main diagonal), and those that are invariant under the tull sym-
metry group of the square. Call these cardinalities Sn and Kn , Tes-
pectively. Moreover, no conjecture is known for in as defined by Con-
jecture 13.

Note. There are a total of ten symmetry classes of plane partitions
with < r rows, < s columns, and largest part < t [11]. Seven of these

classes have been successfully counted, while the remaining three cor-

respond to Conjectures Z, 7, and 8.

Note. In [9] many of the above conjectures related to symmetry
classes of alternating sign matrices are strengthened by considering
various weights on the alternating sign matrices undur consideration.
There also appear some surprising connections between different symmetry
classes (which follow from the conjectures themselves, but which
perhaps can be proved independently). For instance, it fol-

lows from Conjecture 5 above that HZn = Zn(l,O)An (a special case of



[9, Conj 3.3.1]), and from Conjectures 1,5, and 11 above that
- _ A2 _ a2
Q4n AnHZn Q4n+1 AnH2n+1’ Q4n-l A HZn 1 (a special case of [9,
Conj. 3.5.11).
We conclude with a table listing some of the values of the functions
discussed above. Many of these values are taken from [9]. An entry

marked * denotes a number of eight digits or more whose value we omit.

/}§15T3 1 2 3 4 5 6 7 8
Pk
‘/% 127 42 429 7436 218348 * 70‘5’ >0
51573 ,ﬁ| 123 10 25 140 588 ssas o, Spa s
AsisT VI 2 5 16 66 352 2431 21760 252586 %ﬁQMDE?T.WwQM,}ahL!‘
ﬁgigj J anl,()] > 5 20 132 1452 26741 826540 %
f"%f;((p Jih o, 113 26 646 45885 9304650 % oawfoj
H,g(d;CD /a, 101 2 3 0 12 40 » V) 9)
AciG | ‘/tgn N T 2 6 33 286 4420
” 123 8 15 52 126 568
ﬂS!é
> 16 67 368 2630 24376
R4 m%
1 1 1 2 4 13 46 248
J( E / ,,' _n 1
! > - = = = ’) =
Moreover: Q9 100, Q10 0, Qll 1225, le 6860,
’ = 9 { = / = = =
Xg = 1782, X, = 10436, X;q = 42471, X , = 323144, X 5 = 1706562,
X,y = 16806856
Ky, = 1516
Bl(x) = Bz(x) = BS(X) =1, B4(x) = 6+Xx, Bs(x) = 2+X,
B, (x) = 60+70x+12x"+x>, B (x) = 6+13x+6x°+x>, Bg(x) = 840+

5080x + 3038x% + 1224x> + 195x" + 20x> + x®, By(x) = 24 + 136x + 234x% +

176x°5 + 63x% + 12x° + x°
2
Zl(Z,U) = 2, ZZ(Z,U) = 2(u+3), 23(2,11) = 4(pu+3)7, 24(2,U) =

L) en, g2 = Suen e’



10.

11.

REFERENCES

G.E. Andrews, Macdonald's conjecture and descending plane partitions,
in Combinatorics, Respresentation Theory, and Statistical Methods
in Groups (T.V. Narayana, R.M. Mathsen, and J.G. Williams, eds.),
Marcel Dekker, New York and Basel, 1980, 91-106.

L. Carlitz and R.P. Stanley, Branchings and partitions, Proc. Amer.
Math. Soc. 53 (1975), 246-249,

I.M. Gelfand and M.L. Tseitlin, Finite-dimensional representations
of the group of unimodular matrices (Russian), Dokl. Akad. Nauk.
USSR 71 (1950), 825-828.

I.G. Macdonald, Svmmetric Functions and Hall Polvnomials, Oxford
Univ. Press, London, 1979.

W.H. Mills, D.P. Robbins, and H. Rumsey, Jr., Proof of the Macdonald
conjecture, Invent. math. 66 (1982), 73-87.

W.lf. Mills, D.I'. Robbins, and H. Rumsey, Jr., Alternating sign
matrices and descending plane partitions, J. Combinatorial Theory
(A) 34 (1983), 340-359.

W.H. Mills, D.P. Robbins, and H. Rumsey, Jr., Self-complementary
totally symmetric plane partitions, to appear.

W.H. Mills, D.P. Robbins, and H. Rumsey, Jr., Enumeration of a
symmetry class of vlane partitions, to appear.

D.P. Robbins, Symmetry classes of alternating sign matrices, pre-
print. :

R.P. Stanley, Theory and application of plane partitions, Parts 1
and 2, Studies in Apolied Math. 50 {1971), 167-188, 259-279.

R.P. Stanley, Symmetries of plane partitions, J. Combinatorial
Theory (A), to appear.



