H W Gould R V Guy and NDAS Corresponders, 10 pages 1987 A 5169 all to \$5 segs (their is a reforme in A 259879, the

West Virginia University

Department of Mathematics

College of Arts and Sciences Morgantown, West Virginia 26506

29 March 1987

A 259 879 A 259 880

Professor Richard K. Guy, Dept. of Mathematics & Statistics, University of Calgary, CALGARY, ALBERTA, CANADA T2N 1N4

Dear Richard,

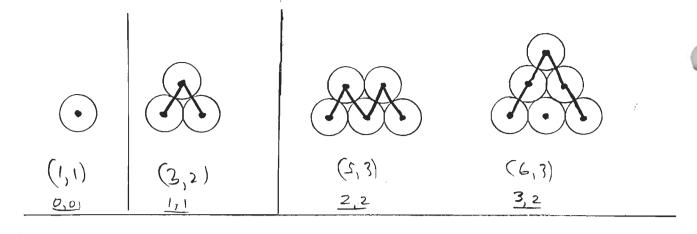
I thank you profusely for all the goodies you have been sending my way that bear on Catalan numbers and their congeners! But most especially the n coins in a fountain is fascinating.

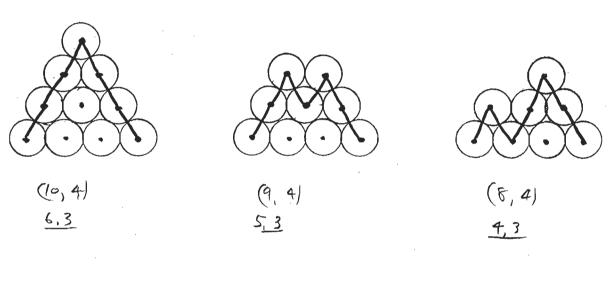
The fact is that I have approached the matter from another viewpoint and it is first of all not surprising that the Catalan numbers arise.

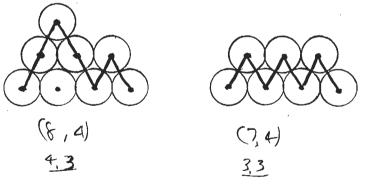
The matter can be viewed from paths in a lattice diagram.

Since Wilf et al like to use the fountain bubbling up, I will set out here how to place the Catalan case into one-to-one correspondence with a well-known equivalent problem that you can find on pp. 71-73 of the 1957 Second Edition of Vol. 1 of Willy Feller's charming "Introduction to Probability Theory and its Applications". (You probably know Feller wrote three versions of Volume 1 before he even did one version of Vol.2.... I recall we joked him about this. By the way I met him at UNC (1957) as he gave a fascinating lecture about Sparre Andersen's work on the inverse arcsine law.)

To get the correspondence we need really a basement layer of n + 1 coins. I think all this will be self-evident to you if I just enclose a couple of pages I drew up a week or so ago to show what is involved. The fountains are analogous to just enumerating the zig-zag lattice paths.


QUERY - QUERY - QUERY: Did you ever get a copy from me of the 1977 master's thesis by my student Mike Kuchinski? I don't have my records at hand to tell. But you may wish to have a copy so I am taking the liberty of sending you a copy to have on hand...we sell these productions at \$10 a copy. The references are keyed to my standard Catalan-Bell Bibliography. Riordan and others have liked the thesis. I am hoping a student now will do the Bell numbers the same way so that we can then put all of this plus extensions together into a book.


Anyway, the relevant Feller Catalan problem involving Catalan numbers manifests itself as Structure S17 - Diagonal Segmented Paths - pp.27-28 of the thesis. It is really also easily seen to be isomorphic to Structure S3 - well-known Staircase Arrays, pp.9-10.


Can you see how to extend all of this to include the Bell or Partition numbers? After all, Catalan is a subset of Bell....all of which flow from some 'fountain'.

k							6	7	8	9	10	11	12	
/	0	1	2	3	<u> </u>	5								
	1													
1		1												
2			1											
3			1	1										
L;				2	1									
5				1	3	1								
6				1	3	4	1						920	
7					3	6	5	1						
8					2	7.	10	6	1					
9					1	75	14.	15	7	1	1			
10					1	5.	17,	25	21	8	1	1		
11						5	16	= 37	41	28	9		1	#
12						3 5	le	40		63	36	10		#
13						2	14	4:	100	ره!!	92	45	11	+
14						1		44	12.0	167	182	129	1	-
15						1		1.10		- 5	351	282	175	11
16							7	37		267	1:1-1	512	4.5 %	
17							5	3%	1:0	300	57.4	804		35
18							3	\$.8	102	326	704	1143	1419 12	- 11
19							2	22	156				i	369
20							1	18	96				3.)21
21							4	13	85		J		<u> </u>	+

: (((a b(= (al)c).8) ((a (LC = ((a(LC)))) (192 (c = (64)(cd)) (a((bc = (a(lc)8)) (a(l(c = (a(l(co))) (= huvit, sogmed Variable Vertical 5-9 mot 12 LAII + 5HI- 19.52 1-1 Correspondence between 'fountains' with 3 Colls in the button flow (4 in the basement) S17 (Diagoral Segmentes Puls) (124 53 (Staircase Arrays) C 57, 60,94, 127, 4/6,4/7 17-1817, 5-5 med = p.s. 5/2 pas sogman ? KUCHIASKI, p.6? Verlied Sognar = Meg. - slyner Sognar

V (8)

FOUNTAONS WITH BASEMERTS

1-1 Correspondences of fountains with basements and Catalan structures called diagonal segmented paths (15,5) 10,4 (2,5) (7, A) (10, s) 3,£ (11,5) (11,5) (6,4 (9,5) 5,4 (10,5) (10,5) (17,5) (13,5) (13,5) 24 (14,5) (12,5) 9,4 7.4

2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Faculty of SCIENCE
Department of MATHEMATICS & STATISTICS

A 5/69

87-04-06

A47998

Professor Henry W. Gould, Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506.

Dear Henry Gould,

Thank you for your letter of 87-03-29. I may have mentioned that John Conway & I are writing *The Book of Numbers* for the Scientific American Library. The Catalan numbers get a mention, along with all other kinds of numbers. We diagrammatically show the correspondences between

frieze patterns (à la Coxeter & Conway; I don't think Kuchinski has these in his thesis, of which I have purchased a copy - if you've sent another I'll try to persuade a colleague to buy it),

parenthesizations,

triangulated polygons,

two kinds of trees,

"mountain (range)s", and

the binomial coefficient definition.

Your relation with "n coins in a fountain" (by adding a "basement") corresponds to what we called mountain ranges (= walks on a chessboard = ballots coming in = ...).

I have checked and extended your table of f(n,k), the number of "fountains" with n coins, k of which are in the bottom row. There are 3 small errors: f(9,5)=7, not 5; f(12,5)=3, not 5 (these 2 errors cancel as far as the Catalan number $h(5)=\Sigma$ f(n,5)=42 is concerned); f(11,7)=35, not 37. So f(9)=45 and f(11)=135, where $f(n)=\Sigma_k$ f(n,k). Other values, supplied by Jim Propp, are

n = 12 13 14 15 16 17 18 f(n) = 234 406 704 1222 2120 3678 6368

A 5169

I have been able to check all but the last two of these (which I get to be 3679 & 6385) by extending your table, including your list of polynomials, which I write in terms of k, rather than n. The array formed by their coefficients may be worth studying:

1 1 A 259879 1 -1 -3 1 -6 17 -18 168 1 -10 59 -1701954 145 -765 -192011224 -27084 25920 295 -2415 -190372 438948 -418320 532 -6160 44359 -28 Y A 259880

Apart from the triangular numbers, and the Catalan numbers, none of the sequences found by reading diagonals in your table, or in the above array, seem to be in Sloane's Handbook. What is included is seq.253, "Auluck's penny partitions", in which all rows of the fountain consist of contiguous pennies.

I will copy this letter to Propp, Wilf, Odlyzko,& Sloane, and take the liberty of copying your letter to them as well.

Best wishes,

Yours sincerely,

Rienart A

RKG:jw Richard K. Guy.

encl: table of f(n,k) } teak to back list of polynomials

φc: Herb Wilf
Jim Propp
Andy Odlyzko
Neil Sloane

```
13 14 15 16
                                                                             17 18 19 20 21 22 23 24 25
                                                         12
                                                                                                                                         4
                                                            of(n,k) = # of "fountains" with n coins, k in the bottom row.
                                                                                                                                         2
                                                                                                                                         3
                 2
                                                                                                                                         5
                      3
5
                                                                              A 47998
                                                                                                                                         9
6
                                                                                                                                         15
                      3
                               5
7
                                                                                                                                         26
                              10
                                   6
8
                                                                                                                                         45
9
                              14 15
                                                                                                                                         78
10
                                                                                                                                         135
                                  35 41
11
                                                                                                                                         234
                                  40 65
12
                                                                                                                                        406
                              14 43 86 112 92 45
13
                                                                                                                                        704
                                   44 102 167 182 129 55
14
                                                                                                                                        1222
                                   40 115 219 301 282 175 66 13
15
                                                                                                                                        2120
                                   37 118 268 434 512 420 231 78
16
                                                                                                                                        3678
                                       118 303 574 806 831 605 298 91 15
17
                                                                                                                                        6368
                                       113 32 20 1149 1419 1297 847 377 105 16
18
                                                                                                                               11081
                                       106 337 813 1515 2174 2383 1958 1157 469 120 17
19
                                                1821 3668 3721 3872 2872 1547 575 136 18
                                    18
                                                                  6786 6073 4108 2030 696 153 19
                                1
                                   13
                                                     1203 4032
21
                                                                      11330 9256 5747 2620 833 174 20
                                                         45% 22%
                                    41
                                       73
22
                                                                           18329 13755 7883 3332 387 190 21
                                    7
23
                                                                               25834 19986 10624 4182 1159 210 22
                                       53
                                    5
24
                                                                                    44242 28460 14093 5187 1350 231 23
                                    3
                                       42
25
                                                                                        66579 39797 18429 6365 1561 253 24
                                       34
26
                                                                                                     23788 7735 1793 246 25
                                                                                             37596
                                        26
                                    1
27
                                                                                                          30344 9317 2047 300 26
                                        26
28
                                                                                                               38290 11132 2324 325 27
                                        15
29
                                                                                                                   47839 13202 2625 351 28
                                        4 4
કેઇ
                                                                                                                        57225 15550 2951 378
                                         7
31
                                                                                                                            72704 18200 3303
                                         5
32
                                                                                                                                 88555 21177
                                         3
 33
                                                                                                                                     107081
                                         2
 34
                                         1
                                             40
 35
                                             29
```

1 1 2 5 14 42 132 429 1430 4862 16796 53786

$$f(k,k) = 1 \qquad (k > 0)$$

$$f(k+1,k) = k-1 \qquad (k > 1)$$

$$f(k+2,k) = {k-1 \choose 3} + {k-2 \choose 3} \qquad (k > 2)$$

$$f(k+3,k) = {k-1 \choose 3} + 2{k-2 \choose 2} \qquad (k > 2)$$

$$f(k+4,k) = {k-1 \choose 4} + 2{k-2 \choose 2} \qquad (k > 2)$$

$$f(k+5,k) = {k-1 \choose 5} + 3{k-2 \choose 3} + (k-3) \qquad (k > 3)$$

$$f(k+6,k) = {k-1 \choose 6} + 4{k-2 \choose 4} + 3{k-3 \choose 2} + (k-3) \qquad (k > 3)$$

$$f(k+7,k) = {k-1 \choose 7} + 5{k-2 \choose 5} + 6{k-3 \choose 3} + 2{k-3 \choose 2} + (k-4) \qquad (k > 4)$$

$$f(k+8,k) = {k-1 \choose 7} + 6{k-2 \choose 6} + 10{k-3 \choose 4} + 3{k-3 \choose 3} + 4{k-4 \choose 2} + 2k-4 \qquad (k > 4)$$

$$f(k+9,k) = {k-1 \choose 8} + 7{k-2 \choose 7} + 15{k-3 \choose 5} + 4{k-3 \choose 4} + 10{k-4 \choose 3} + 6{k-4 \choose 2} + (k-4) + (k-5) \qquad (k > 5)$$

$$d(k+10,k) = {\binom{9}{7}} + f(\frac{7}{7}) + \frac{15}{5} + \frac{1}{5} + \frac{1}{5$$

Faculty of SCIENCE Department of MATHEMATICS & STATISTICS

Telephone (403) 220-5202

87-04-08

Neil J.A. Sloane, AT&T Bell Laboratories, Room 2C-376 600 Mountain Avenue, Murray Hill, New Jersey 07974.

2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Dear Neil,

To save your having to sort through all this, the main sequences of interest are the diagonals (and totals in the right hand column) of the table for f(n,k), which are the values of the polynomials listed on a separate sheet, and perhaps the triangular array on page 2 of my letter to Gould. The table for f(n,k) may contain errors: I don't agree with (my copying of) Jim Propp's totals on the right.

Best wishes,

Yours sincerely,

RKG:jw

Richard K. Guy.

enc1:

the back of the f(n,k) table.