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Jerrais dans un meandre:
J'avais trop de partis,
trop complique’s, a prendre...
(E.Rostand, Cyrano de Bergerac,
act 1 scene 95)

A highway from West to East several times crosses a river
flowing from South-West also to East. Enumerate the bridges as they
are located along the highway (from West to East). The order of the
bridges along the river determines a permutation. Following
V.I.Arnol'd, we call- the permutation (and a corresponding
geometrical image) a meander.

Obviously, not any permutation can be obtained in this way. In
particular, in meanders even numbers must occupy even positions,
odd numbers, odd positions.

meander 34521 ncx meander 14523

Numerous pictures of meanders can be found in the last paper
by Henri Poincare€ "Sur un theoréme de geometrie” [Poi] where he
tried to prove, by means of meanders, that a transformation of a ring
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into itself preserving the area and shifting border circles into
opposite directions has not less than two fixed points. The theorem
was proved by Birkhoff in 1913 by a different method, but its
generalization on the transformation of a sphere with handles was
proved by Ya.M.Eliashberg in 1978 with the help of meanders [Eli].
"Projective meanders” to be defined below were used by V.I.Arnol'd
[Ar] as a tool for analyzing differential-geometric properties of the
manifold of zeroes of hyperbolic polynomials. In a number of papers
meanders appeared not so much as a tool but as an object of
investigation. For instance in the paper [Ros] "plane permutations”
are introduced and investigated that coincide with “"closed meanders”
to be defined below. Such permutations prove to be sorted in linear
time. In the paper [Ph] a class of mazes is introduced that are in one-
to-one correspondence with meanders.

The problem of enumerating meanders proved to be especially
complicated. In the paper [Koe] for a similar problem of enumeration
for the number of folding a strip of stamps certain recurrent
formulas are introduced. They can serve as the basis for constructing
an algorithm of computation of corresponding numbers but,
unfortunately, they do not yield either explicit formulas or even the
information on the asymptotics of the number sequence in question,
while the algorithm has exponential complexity and does not allow
us to compute a large number of sequence terms. In the paper of
present authors [LaZ] the problem of enumerating closed meanders
was studied. There were received non-trivial upper estimates for the
main term of the asymptotics and the relation between the problem
of meanders and the theory of formal languages and that of Feynman
diagrams in the quantum field theory was indicated. R.Cori [Cor]
attracted the authors' attention to the fact that the problem of
enumerating closed meanders was equivalent to that of determining
the complexity of a class of hypermaps.

Thus the problem of meanders seams to belong to the simply
formulated but fairly difficult problems of combinatorial analysis
related to different sections of mathematics and are a touchstone for
~various methods of enumerative combinatorics.

The present paper examines arithmetical properties of
meandric numbers and also introduces and studies projective
meanders. ' .

The authors are grateful to V.I.Arnol'd, S.V.Chmutov, D.Ivanov,
A.Phillips, R.Cori, and Ph.Flajolet for useful discussions as well as the
organizers of the conference "Formal Power Series and Algebraic
Combinatorics” for their hospitality and goodwill.
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1. Arithmetical properties of meandric numbers

1.1. Definition. Denote the number of meanders passing through
n bridges by my, n = 1, 2, 3 ... and call the n-th me~»dric number.

Assume mg = 1. Sequence m, can be readily shown to increase

monotonously when n > 2.

1.2. Table of meandric numbers.

nl O 1 2 3 4 5 6 7 8 9 10

mpyl 1 1 1 2 3 8 14 42 81 262 538
n |[11 12 13 14 15 16 §5/é

m,l1828 3926 13820 30694 110954 252939

n | 17 18 19 20 21
l :
mpl933458 2172830 8152860 19304190 73424650

n | 22 23 24 25 26 27
S .
mypl ? 678390116 ? 6405031050 ? 61606881612

The table is based on computational results obtained by the
present authors, A.Phillips [Ph], J.Reeds and L.Shepp (ibid.). The
algorithm of enumerating closed meanders given in [LaZ] allows with
a slight modification to enumerate not closed meanders as well.

The figure below shows all the eight meanders of order 5.
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1.3. Statement. The number my, is odd iff n =24,9q=0,1,2,3 ..

To prove that we shall need the following
Lemma. my, = m, (mod 2), n =1, 2, ...

Proof. On a set of meanders of order k define the involution of
"reflection” when permutation (ay, .., a,) corresponds to permutation

(al, - an), a. = k+l-a;, 1 =1, .., k. Geometrically, this is the reflection
with respect to the vertical axis passing through the middle of

segment [1,k] (when k is odd it remains to "correct" the directions of
the curve ends).
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To each symmetric meander of order 2n one can put into
correspondence a meander of order n, its left-hand half. As to non
symmetric meanders, they are divided into pairs, which proves the

lemma.

The proof of statement 1.3 now follows from the fact that
m=1; for all the remaining odd orders k the number my 1S even,
since the involution of reflection on a set of meanders of an odd
order does not have fixed points.

1.4. Closed meanders. By joining the ends of the meandric
curve passing through an even number of bridges we obtain a closed
meander.
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Different meanders passing through 2n bridges may
correspond to the same closed meander.

The number of closed meanders passing through 2n bridges
will be denoted by M.

Statement. My = mpp.1.

Indeed, there is a natural one-to-one correspondence between
meanders passing through 2n-1 bridges and closed meanders passing
through 2n bridges. It can be seen in the picture below.

ek N Ser¢

Thus, numbers M, = 1, 2, 8, 42, ... are actually contained in
Table 1.2.

1.5. Statement (v. [LaZ]). If n = pd where p is a prime, g > 1,
then M, = mp,.1 = 2 (mod p).
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1.6. Systems of closed meanders and their distribution

according to the number of components.

If we omit the condition of connectedness of the curve in the
definition of a closed meander, we will obtain the definition of a
system of meanders. Note that systems of meanders are in one-to-
one correspondence with the pairs of correct parenthesis systems:
the set of arcs in the upper half plane corresponds to one parenthesis
system, the set of arcs in the lower half plane - to the other
parenthesis system. Consequently the number of meander systems of
order n is equal to the square of n-th Catalan number. On the figure
the meander system of order 7 with 3 components is shown.

In the table below the distribution of meander systems
according to the number of components is given (calculations of
D.Ivanov). The order of a system is denoted by n, and k denotes
number of components.

K\ 1 2 3 4 5 6 7
2|\ adin

1 1 2 8 42 262 1828 13820 & 5 ;H: 421 |

2 | 2 12 84 640 5236 45164 € (o > /

3 | 5 56 580 5894 60312 = (6 S

4 | _ 14 240 3344 42840

5 | 42 990 17472

6 I AN ‘[ S8 132 4004

- | AR ¢ _

429 \3} gch[

1.7. Distribution of meandric numbers accc-ding to the number

of the first bridge.

Denote by mp i the number of meanders with n bridges for
which the number of the first bridge equals k. It is obvious from the

)



o - 293 -

figure in section 1.2 that ms; = 3, m5 3 = 2, m5 5 = 3. Below we give

the table of values for number my i forn =1, 2, ..., 18.
k\1 11 2 3 4 5 6 7 8 9 10 11
— —I -
1 11 1 1 2 3 8 14 42 81 262 538./556»!2?
3 1 1 2 3 7 14 36 81 221—>ULD
5 I 3 3 7 11 28 57 155*—7@6{/
7 I A 14 14 36 57 155~—+¢Cé5
9 I A ! o) 81 81 221
11| — T A 538"
K\ 112 13 14 15 16 17 18
l
1 11828 3926 13820 30694 110954 252939 933458
3 1538 1530 3926 11510 30694 92114 252939
5 1353 1003 2458 7214 18575 55880 149183
7 1316 902 2053 6059 14810 44842 112009
9 1353 1003 2053 6059 13827 41908 102555
11 1538 1530 2458 7214 14810 44842 102555
13 | 3926 3926 11510 18575 55880 115009
15 | 30694 30694 92114 149183
17 | 252939 252939
Statement. (1) Mpy1,1 = Mp; Mpg.1,1 = Mk 3.
(2) When n is odd, sequence
mp 1, My 3, ..., My g
is symmetric, i.e. mp g = my n41-x When k =1, .., n-1
(3) When n is even, sequence
Mp 3, My 5, - Mppog
is symmetric, i.e. my x = my nip When k =3, .., n-1

All the above statements are proved by establishing a one-to-
one correspondence between the meandric families under
consideration. Thus, for instance, in proving statements (2) and (3)
the reflect.on operation defined in section 1.3 is made use of.

1.8. Conjecture. For any n sequence myp 1, ...mp 3, ...is unimodal,

i.e. there can be found such k that
mn,l 2 mn’s 2 ses 2 mn‘k S mn,k+2 S vee
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2. Projective meanders

2.1. Definition. Consider 2n points on a circle that divide it into
equal arcs. Enumerate them in succession by numbers 1, 2, ey 21,
Now divide the points into n pairs so that the chords connecting
points in each pair would not intersect. Identify the diametrically
opposed points of the circle thus turning the disc into a projective
plane. Then the set of chords forms a family of closed non-
intersecting curves on a projective plane. We shall call the set of
curves a system of projective meanders of order n. If the family
consists of a single curve, we shall call the latter a projective
meander. The number of projective meanders of order n will be
denoted by pm,. _

As is known, the number of ways of ‘drawing n non-
intersecting chords and, consequently, the number of systems of
projective meanders of order n is equal to the n-th Catalan number

n+l \n
meanders of order 3: the two upper ones are projective meanders,

1
Cat, = — n) In the figure you can see ajl the five systems of

1
(163254)

2 e ?

(2]
(&)
[

1 4

1 .
(14)(2365) (163:4)(25) (1254) (36)



de it into
y ey 20
onnecting
netrically
rojective
ed non-
> set of
c family
jective
will be

n non-
ems of
number

tems of

iers.L

- 295 -

The number of projective meanders in the system is actually
equal to the number of cycles in a permutation on the set of 2n
elements, the permutation being defined by means of two
involutions without fixed points: one involution is given by a system
of chords, the other one, by central symmetry k +— k+n (mod 2n).

2.2 .Table. Below the values of projective meandric numbers
pmy forn =0, 1, .., 15 are given (computed by the present authors).

n 10 1 2 3 4 5 6 7 8 9 10
| 666
404 3

pmy, |1 1 2 2 8 12 52 86 400 710 3

n 111 12 13 14 15

pm, 16316 30888 59204 293192 576018

The algorithms of polynomial complexity for computing
meandric and projective meandric numbers are not yet known.

2.3, Statement. Sequences pmg, pmp, pmg .. and pmy, pmg3,

pms, ... increase monotonously.

The proof is based on the fact that it is possible to make of any
projective meander of order n one or more projective meanders of
order n+2 by means of an operation of "stretching” to be defined
below. The projective meanders of order n+2 thus obtained will be
different.

For convenience we shall further draw an infinitely distant
straight line on a projective plane as a horizontal one. The operation
of stretching consists in the following: (1) cut one of the "upper” arcs;
(2) add points 2n+1, 2n+2 and join them to the ends of the cut arc; (3)
add two points between points n and n+1 and join them by an arc;

re-enumerate the points.
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2.4, Action of group Z,,_and its orbits.

Group Z,, acts on a set of systems of closed meanders of
order n and on a set of systems of projective meanders. Its
generator is given by the cyclic shift k v k<1 (mod 2n). The action
preserves the number of components. Investigation of the orbits of
the action allows us to receive some congruences for meandric

numbers, v. e.g. Statement 1.5.

Statement. (1) If n = p? is a power of an odd prime then pm, =
2 (mod 2p). )
(2) If n = 29, then pm, = O(mod 2n).

In order to prove the above statement we shall need the
following lemma.

Lemma. Let n > 2. Then the order of the orbit of group Zzn
action on the set of projective meanders of order n does not divide n.

Proof. If the orbit order divides n, the system of arcs over the
straight line passes into itself under the shift k i k+n (mod 2n). If

there is at least one arc whose beginning and end are among the first
n points, it is isolated into a separate meander together with the arc
shifted for n (v. Fig.). If there is no such arc, the farthest outside and
inside arcs are isolated into a separate meander (v. Fig.).
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Proof of the statement. (1) Orbits orders divide 2n = 2p9.
Therefore, they are either equal to 2 or are divided by 2p. There
exists the only orbit of order 2 forming a projective meander (v. Fig.),

A aN AN aNa

(2) Order of any orbit divides 2n = 29*1 and does not divide
24, Therefore it equals 29*1,

It is well-known that systems of non-intersecting chords are in
one-to-one correspondence with rooted plane trees, and their orbits
under the action of Z,, correspond to (non-rooted) plane trees.

However, this correspondence does not allow us to determine to
which plane trees projective meanders correspond, and to which,

only their systems do.
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3. Estimates of asvmptotics

3.1. Closed meanders.

We call a system of closed meanders irreducible if there is no
such subsegment [a, a+l, ..., b] € [1, 2, ..., 2n] that through its points
there passes an independent system of meanders. Denote the
number of irreducible systems of closed meanders passing through
2n points by N,.

Any single meander obviously forms an irreducible system so
M < Np. The left-hand figure shows an irreducible system, the

right-hand figure, a reducible one.

In the paper [LaZ] of the present authors the following results
have been obtained.

Theorem.

1) Generating function N(x) = ZNnx“ for the number of-
n=0
irreducible systems of meanders satisfies functional equation

(1) B(x) = N(xB2(x)),
where B(x) is a generating function for square Catalan numbers:

B(x) = Y (Cat,)2xn
- n=0
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2) Function B(x) is expressed by the formula

2
1 1 J‘
2y = — |- — «/ - 2
| B(t2) 4t2[1 + o ; 1-8tcos¢ + 16t d¢]

. ) 4-m 1
3) Convergence radius of series N(x) equals ( 5 jz— 133923

Empirical estimation of ratio Mp,1/M, obtained by means of

pad¢ approximation yields value 12.26... |
Equation (1) allows us to construct a polynomial algorithm for
computing numbers Np. We give below a few initial values:

n|01234'5678

N, Il 1 2 8 46 322 2546 21870 199494

If B (x,u) is a generating function for the system of meanders
classifying them by the number of irreducible components, then by
the methods similar to [LaZ] it is easy to obtain equation

(2) B (x,u) = N(xu B 2(x,u)).

3.2. Projective meanders.

We shall encode a system of projective meanders of order n or,
which is the same, a system of n non-intersecting arcs in upper semi-
plane by a word of n letters in the alphabet {a, b, ¢, d} according to
the following rule. Each point is either the beginning or the end of an

arc. Consider points i and 1+n; the i-th letter of the word will
correspond to them; this letter is defined by the following rule:

(beginning, beginning) —» a
(beginning, end) - b
(end, beginning) - cC
(end,end) : - d

The example is given in the figure.

qs
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It can be seen that the number of all words of length n in the

alphabet {a, b, ¢, d} equals 4" while the number of systems of
projective meanders of order n, i.e. the n-th Catalan number is

1
asymptotically equal to \/——4n n-3/2,
T

It is possible to put into correspondence to each system of
closed meanders of order n a system of projective meanders of order
2n with the same number of components. To achieve that, the
following operations should be made with the system of closed
meanders: (1) "cut off" the lower system of arcs and transfer it by

(A AN D\ A

A (A A LA

the turn of 180° into the upper semiplane; (2) apply reflection
operation to the right-hand half of the system of arcs thus obtained.
Therefore we receive out of closed meanders of order n projective
meanders of order 2n, though not all of them but only those whose
system of arcs is divided into two halves: one ™inhabits” set of points
[1, 2, ..., n], the other, [n, n+1, ..., 2n]. We have proved the following
statement.

Statement. pmp, 2 M.
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‘Note that encoding of systems of closed meanders by words in
the alphabet {a, b, ¢, d} adopted in paper [LaZ] and encoding of
systems of projective meanders adopted in the present paper are
consistent.

We shall further need the following lemma (v. e.g. [GJ], s. 2.8.8).

Lemma. Let the set A of words in the alphabet of k letters
possess the property that any two words u, v € A, u £#v "do not
overlap”, i.e. none of them is a subword of another one and there do
not exist such three words «, B, y with a non-empty B that u = af, v =
By. Let fa = Zanx“ be a generating function for the words of the set
A, i.e. a, is the number of words of length n belonging to the -et A.
Then generating function F(x) for the set of all words in the same
alphabet not containing a single subword from A equals

FA(X) = (1 - kx + fA)'l.

For instance, generating function for the words in the alphabet
{a, b, ¢, d} not containing a single subword ad equals (1 - 4x + x2)-1,

Theorem. For all n large enough
Moy < (—1— +¢)2n
pmap = Rg ’

where € > 0 is arbitrary and Ry is the least positive root of function
1 - 4x + (N(x2) - 1), where N(x) is a generating function for
irreducible systems of closed meanders.

Proof. We have to estimate from below the convergence radius

of the series menxﬂ. The radius will obviously remain unchanged
n=0

if we change in an arbitrary way a few initial coefficients of the

series.

For obvious geometrical reasons the set of words in the
alphabet {a, b, ¢, d} describing irreducible systems of closed
meanders satisfy the condition of non-overlapping formulated in the
lemma. Let A, be a set of such words of length not more than 2m,

except the empty word. Then a set of all words in the same alphabet,



TR TR TR T

- 302 -

not containing a single subword from A, and with a length more

than 2m contains all the words describing projective meanders (as
well as many unnecessary words). Thus, coefficients of the
corresponding generating function

Fo(x) =1 -4x + fAm)'1

grow not slower than numbers pmg, the convergence radius of the
series Fp (x) being equal to the least positive root R, of the
polynomial

l-4x + fAm(x).

Increasing m, we increase the number of forbidden subwords
and thus improve our estimate leaving asymptotically fewer words
of a big length. Polynomials 1 - 4x + fao,(x) converge coefficient-wise

to the series 1 - 4x + (N(x2) - 1) (x2 instead of x appears because
meanders of order n are described by words of length 2n; unity is
subtracted from N(x2) due to the fact that the empty word does not
enter the set of forbidden ones). Since the coefficients of the series
N(x) are positive, Ryt Ry, where Ry is the root of function

1 - 4x + (N(x2) - 1).

Ro
VPR

Foo B

-

The theorem is proved.

A specific feature of the method is the more terms of the series
N(x) we compute, the more accurate is the estimate of the rate of
growth for numbers pm,.

1
Our calculations give the value (R—O)2 = 13.42...
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