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1. Introduction P*\ \O 7

Any design problem may be posed as a problem on the construction
of an artifact which has a set of specified functional properties. Some
leesign theorists emphasize the functional properties, and use them to

specify a set of variables which define a solution space. This space is
then searched for a suitable design. In this chapter we take the point
of view that a knowledge of the possible structures or forms which
the designs may take is important. If these possible structures can be
generated, then they may be subjected to analysis to determine their
functional properties.

In architectural design, a central problem concerns the synthesis
of floor plans. Once a designer has a set of possible floor plans
answering the client’s brief, he may then subject these to analytical
tests as part of a selection process. Following this, a smaller number
of candidate designs may be evaluated before a single design is
adopted. In practice, such a procedure tends to be iterative and
cyclical. However, at the first stages in design, how is the set of
possible floor plans arrived at? Alternatively, where do such designs
come from?

Before the advent of modem systems theory, such questions held
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little interest, and gave rise to commonplace answers. Out of an
“infinite” number of possibilities, the designer would have chosen a
set of suitable possibilities through experience and intuition. How-
ever, the systems designer is now inclined to ask: can I find produc-
tion rules to generate all possible designs (of a certain kind), and can
[ enumerate and classify these designs in such a way as to help my
search in the selection of preferred designs? With computer aids,
these questions may be answered for the designer through the use of
combinatorial methods.

In the initial stages, designs are combinatorial objects or pure
structures. The potential designs at these initial stages can often be
exhaustively enumerated in a practical sense. Such designs mature
during the design process as they acquire more character through
spatial, physical and material transformation. The multifarious effect
of these transformations leads the traditional designer to refer to
“infinite possibilities”’. The study of transformations is central to
morphological enquiries in architecture, but this must rest on an
investigation of premorphology or the study of fundamental
architectural forms. In this chapter we investigate the premorphology
of floor plans, and demonstrate certain types of transformations
related to shape and size. This is an exercise in the theory of planar
maps, linear graphs and networks.

Graph theory has been used in previous approaches to floor plan
synthesis, although no systematic presentation has been given which
defines a fundamental set of plans and their subsequent transforma-
tions. Levin [20] introduced a graph whose vertices represent activity
areas or spaces in the plan and whose edges represent adjacency or
contiguity of the spaces, and he demonstrated this graph to be a use-
ful representation in spatial allocation problems current at the time.
Cousin [9] developed the adjacency graph representation, but in
common with Levin, neither the possible plane embeddings of the
adjacency graphs, nor the problem of realizing this adjacency struc-
ture as a floor plan, are dealt with very clearly.

Grason [14] also used an adjacency graph, restricting the realiza-
tions of the adjacency structure to be rectangular dissections — that
is, plans in which each room is rectangular, as is the boundary of the
plan. Teague [30] similarly restricted the type of plan, but represented
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the rectangular spaces by arcs in a network. Mitchell et al. [25]
generated the sets of rectangular dissections for small numbers of
rooms (see also [12]), and it was from this set that they could choose
designs for small house plans; they took the rectangular dissections

as their initial or basic set of forms. In the present chapter, however,
we consider the rectangular dissections as a set derived by transforma-
tion from a more general set of fundamental architectural forms.

2. Floor Plan Arrangements

A floor plan is a finite set of walls in the plane. These walls are of
many types according to their detailed architectural properties, which
typically include the presence of doors and windows, the thermal
and load-bearing properties, and a variety of other features depending
on the context. A plan is constructed to allow a set of activities to
be pursued within a given area. In floor plans, particularly in domestic
dwellings, it is often necessary for individual activity areas to be
enclosed by walls. In open plan schemes, however, the walls or
partitions define the activity areas, but they do not necessarily define
enclosed regions. These open plan schemes are derived from plans
with walls enclosing the activity areas by the removal of certain walls.
Figure 1 shows the Villa Malcontenta by Palladio, in which the walls
learly define enclosed regions, whereas Fig. 2 shows the Farnsworth
House by Mies van der Rohe, which is of the open plan type (see also
Fig. 16).

Although the type, shape, length and orientation of the walls are
exactly specified in a plan, it is our purpose (in this and the next two
sections) to examine the possible arrangements of walls as regards
only their incidence and relative disposition in the plane. For example,
although the walls of the plans shown in Fig. 3 have different lengths
and orientations, we consider them as having the same arrangements.
Our aim is to investigate the underlying structures of floor plans, and
the notions of planar and plane maps are particularly relevant for this
purpose.

A planar map is a connected graph, embedded on the sphere and
separating the remainder of the surface into a finite number of simply
connected regions. Two planar maps are called equivalent if there is a
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homeomorphism of the sphere onto itself taking one map into the
other. Planar maps with one labeled region are equivalent if there is a
homeomorphism of the sphere taking one map into the other, and
preserving the labeled region. Distinct planar maps with a labeled
region correspond to distinct arrangements of walls in floor plans,
with the edges corresponding to the walls, and the labeled region to
the outside. We consider only those floor plans with such arrange-
ments. This includes the assumption that the walls form a connected
graph. In general, the individual components of a disconnected floor
plan may be treated as separate entities, whose arrangement presents
a site layout problem rather than a floor plan problem. We note that
the difference between such problems lies not so much in the type of
underlying structure, as in the interpretation of that structure. In-
deed, the analysis presented in this chapter may be used (with suitable
interpretation) to address problems from the arrangement of furniture
in an office to the layout of a city.

A planar map is rooted (see [33]) by directing an edge R and dis-
tinguishing one side of R. The negative end of R is the root vertex, R
is itself the root edge, and the region on the distinguished side of R is
the root region. Two rooted planar maps are equivalent if there is a
homeomorphism of the sphere onto itself, taking one into the other,
and preserving the root vertex, root edge and root region. Tutte [34]..
noted that rooting a map destroys its symmetry, and in view of this,J
it is much easier to enumerate rooted planar maps than unrooted
ones. A rooted planar map represents a floor plan arrangement with
the root region as the outside region, the root edge as the “facade”,
and a “handedness” given by the direction of the root edge.

[f a planar map with a labeled region is embedded in the plane with
all of its regions finite except for the labeled region, then we obtain a
plane map, and such maps clearly provide a natural representation of
floor plan arrangements. We root a plane map by directing an edge in
the boundary of the infinite region.

Any geometric dual of a plane map is another plane map represent-
ing a floor plan arrangement, but now in terms of the adjacencies
between regions. We note that a region can be adjacent to itself, and
that regions can be multiply adjacent. For each plane map there are,
in general, many dual plane maps, but to each rooted plane map there
corresponds a unique rooted dual plane map in an obvious way.
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Plane maps thus comprise a description or representation of floor
plans, considered as arrangements of walls. However, the architectural
design problem of floor plan synthesis often starts with a set of
adjacency or proximity requirements between various activities, and
the first aim is to construct a suitable arrangement of regions. These
arrangements of regions are represented as arrangements of walls, but
at this stage we are primarily interested in the regions which these
walls define. In other words, it is the broad outline of the plan that is
important, rather than the details. Since we now require the walls to
define regions, the corresponding plane maps contain no vertices of
valency 1 or 2. Figure 4 shows a plane map representing an arrange-
ment of regions, and a plane map with the same arrangement of
regions but with extra walls.

L' Fig. 4

The plane maps representing arrangements of regions thus have all
vertices of valency at least 3. In fact, they are usually trivalent, since
walls generally meet at angles not less than a right angle. Although
four walls often meet at right angles, we consider this as the limiting
case of a pair of trivalent vertices (see Fig. 5).

Fig. 5
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We now classify the floor plan arrangements represented by tri-
valent plane maps according to the presence of bridges and 2-edge
cuts in the map, where a 2-edge cut is a pair of edges whose removal
disconnects the map. A bridge in the map represents either a single
wall joining two parts of the plan, or a single room which forms a
ring (see Fig. 6). A 2-edge cut represents either a “through room” in
the plan, or a pair of rooms forming a ring (see Fig. 7). The existence

of a through room or corridor is certainly a pertinent architectural
feature.

( ) 6

\. J \ J

Fig. 6 Fig. 7

Trivalent maps with neither a bridge nor a 2-edge cut are called 3- __
connected. This terminology is justified since, for trivalent maps with
more than three edges, 3-edge-connectedness and 3-connectedness are
equivalent. The set of 3-connected trivalent plane maps is particularly
useful in approaching the problem of floor plan synthesis, since they
represent (in a sense to be made clear in Section 4) a basic set of floor
plan arrangements from which all others may be derived by sequences
of operations. These operations form the first stages in a process of
“ornamentation” by which detailed floor plans are constructed. How-
ever, before considering ornamentation we examine the floor plan

arrangements represented by trivalent plane maps, and give some
relevant enumerative results.

3. The Enumeration of Trivalent Floor Plan Arrangements

In this section we assume that our trivalent maps have no bridges, and
let A, be the number of floor plan arrangements with » rooms, repre-
sented by the rooted trivalent plane maps with » + 1 regions. The
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numbers A, were determined by Tutte [32], who enumerated rooted

trivalent planar maps:
r-131 —4)!

(r—2)'2r!

The dual plane maps of trivalent maps are triangular maps (see
[27D). If a trivalent plane map has no 2-edge cut, then its dual has no
multiple edges, and is called a triangulation. Let B, be the number of
rooted floor plan arrangements with » rooms, represented by the
rooted 3-connected trivalent plane maps with r + 1 regions. Then B,
is the number of rooted triangulations with » + 1 vertices, as given by

Tutte [31]:
24—
Br= = Gr-a 1 A/?/Qﬁ

We now consider a class of the 3-connected trivalent plane maps,
and we suppose, for the sake of brevity, that the infinite region of a
plane map is considered to be a simply-connected region, as it certainly
would be if the plane map were considered as a planar map with a
labeled region. The class S of 3-connected trivalent plane maps in which
no three regions and their mutual edges are multiply connected is

gmarticularly important from an architectural point of view, since these

Llaps have realizations in which all regions possess a rectangular
boundary. The dual plane maps of members of S are simple triangula-
tions — that is, triangulations in which every 3-circuit bounds a region.
(A 3-circuit which does not bound a region is often called a “‘separat-
ing triangle”.) Conversely, any simple traingulation is the dual of a
map in S. Tutte [31] enumerated rooted simple triangulations, thus
determining the number of rooted versions of maps in S.

A closed bounded region in the plane divided into triangular
regions with s + 3 vertices on the boundary and r internal vertices is
said to be a triangular map of type [r, s]. If there are no multiple
edges, it is an [r, s]-triangulation — that is, a triangulation of an
(s + 3)-gon with r internal vertices. If no interior edge is incident with
two external vertices, then we have a strong triangulation, and if it
also contains no separating triangle, then it is a simple triangulation.

If M* is any dual of a trivalent map M, in which the vertex v* cor-
responds to the infinite region of M, then M* — v* is called the weak
dual plane map. Figure 8 illustrates a trivalent map and its weak dual.
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Fig. 8

Each trivalent plane map has a weak dual whose blocks are single
edges or general [r, s]-triangular maps, and conversely, each such map
is the weak dual of a unique trivalent map. We note that cut-vertices
in the weak dual represent “through rooms” in the floor plan arrange-
ment. Let €y s be the number of rooted floor plan arrangements with-
out through rooms, in which there are r internal rooms and s + 3
rooms adjacent to the outside. Then C;  is the number of rooted
[r, s]-triangular maps (see [27]), and

_ 2725 +3)1(3r + 25 + 2)!
S s+ DIPQ2r + 25+ 4)!

The weak duals of the 3-connected trivalent maps are [r, s]-
triangulations. The number R, ; of [r, s]-triangulations, although nof
given explicitly by Brown [6], may be evaluated from his results. Ry s
is the number of floor plan arrangements represented by the 3-con-
nected trivalent maps, with  internal rooms and s + 3 rooms adjacent
to the outside (see Table I).

Table I. Values of R, ¢

I

’

s v
0 1 2 3 4 5 6 7
1 1 1 4 16 78 457 2938
0 — 1 1 2 5 18 88 489 3071
-_— 2 1 4 14 69 396 2503
_— 3 11 53 295 1867
4 28 178 1196
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We may also derive the number R,, of such arrangements with a total
of n rooms (see Table II).

/ Table 11. 3
n 3 4 5 6 7 8 9 10 ‘
Ry, 1 2 4 16 63 328 1933 12653 GO ?_7
The number J; ; of [r, s]-triangulations with reflection symmetry
may also be evaluated from Brown’s results. J, ¢ is the number of
floor plan arrangements, represented by the 3-connected trivalent

maps which have reflection symmetry, and with r internal rooms and
s+ 3 rooms adjacent to the outside (see Table I11).

Table II1. Values of J, ¢

S r
0o 1 2 3 4 s 6 7
0 1 1 1 3 s 2 e 25 —212
i 12 4 10 29 8 266
2 1 3 7 1 57 16— _ " 5Ses
3 2 6 18 52 166— SSof
L 2 8 26 82 5Ss)
s 18 68
6 5 23 \ ﬂ' (6
7 4o dg 5509 7809

We may also derive the number J,, of such arrangements with a total

of n rooms (see Table I'V).
Table IV. hsSe 27 (mé

n 3 4 5 6 7 8 9 10
7, 1 2 4 12 33 102 312 4006~ | 0]O

We note that for relatively large numbers of rooms, only a small pro- A féT%
portion of the floor plan arrangements, as represented by the 3-con- (mecq)
nected trivalent maps, have reflection symmetry. This gives some

indication of the restriction on possible arrangements which is imposed

if an axis of symmetry is required.
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4. Fundamental Architectural Plans and Ornamentation

In Section 2 we referred to the 3-connected trivalent plane maps as
representing a basic set of plans. However, since they are the result of
labeling one region in the corresponding planar maps, we can take the
set of 3-connected trivalent planar maps as representing the funda-
mental architectural plans (see [22]), and the labeling of a region as
the first step in ornamentation. For an alternative picture of funda-
mental plans we use Steinitz’s theorem (see [15]), which states that a
planar graph is realizable as a 3-polytope if and only if it is 3-connected.
Thus every fundamental plan (except the plan with three regions)
may be represented by a simple 3-polytope — that is, by a polytope
all of whose vertices have valency 3.

The use of ornamentation operations emphasizes the constructive
side of the problem of floor plan synthesis, and it is evidently impor-
tant that the fundamental plans have simple rules for their construc-
tion. In fact, any trivalent 3-connected map with n + 1 regions may
be generated from one with n regions by applying one of the three
rules shown in Fig. 9.

T Il e

Fig. 9

The number F,, of fundamental architectural plans with » regions
was determined by Grace [13], who constructed and enumerated the
simple 3-polytopes with n << 12 (see Table V). Bowen and Fisk [13]
equivalently enumerated their duals — that is, the triangulations of
the surface of a sphere.

Table V.
n 6 7 8 9 10 11 12
F, 1 1 1 2 5 14 50 233 1249 7595
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Fundamental plans with one labeled region (or equivalently, their
projections as 3-connected trivalent plane maps) are called primary
plans. Their weak duals are general [r, s]-triangulations, and are called
primary arrangements, Figure 10 shows the primary plans with up to
six rooms. Those marked T have each room adjacent to the outside.
They are arranged according to the valency-sequences of their regions.

b

R

) S =

i I

Fig. 10
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The main aim of this section is to present a set of operations which
ornament the arrangements of walls in the primary plans so that all
floor plan arrangements may be obtained. These ornamentation
operations modify the architectural features of the floor plan, and
are as follows:

(i) An exchange is the operation on a trivalent plane map shown
in Fig. 11, where the equivalent operation on the dual is also shown.
An exchange operation on a 3-connected trivalent map is used to
create 2-edge cuts. In an architectural context, its main use is to
create through rooms or corridors (see Fig. 12, where the edge in-
volved in the exchange is labeled £).

2 2 2 '
2
1 3 —> 1|3 1 3 —> 1 3 .
4
4 4 4

Fig. 11

-t ><(-Xe

Fig. 12 Fig. 13

(ii) An edge-contraction (see Fig. 13) removes an adjacency
between regions, but brings together regions at a vertex — a feature
possibly relevant for the provision of services.

(iii) A vertex-expansion is the reverse of an edge-contraction. It
can be used to insert vertices of valency 2 into the edges (see Fig. 14),
or to construct bridges in the map. We note that an exchange is a
combination of an edge-contraction and a vertex-expansion, but since
an exchange preserves trivalency, we consider it as a single operation.

(iv) The addition of edges which subdivide a specified region is
needed when the corresponding activity for which it caters is com-
posed of individual sub-activities. Thus it is possible at the initial
stages in floor plan design to consider groups of activities in a single
unit, and then, at this ornamentation stage, to differentiate the
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« L—o—o

Fig. 14

individual activities. However, the arrangement of the additional walls
is really a floor plan problem in its own right, and is often considered
as such. A particular form of such ornamentation which deserves
mention is the addition of trees planted at a vertex on the boundary
of a region (see Fig. 15). The plane embedding of these trees is
important, and the number 7, of such planted plane trees with r > 1
edges (see [18]) is given by

_1(2r—=2
T’_r (r—l).
Q]
—o
¢ o
*—o—o
Fig. 15

(v) The removal of edges may be considered as a means of produc-
ing open plan schemes where the original regions represent distinct
activity areas. Figure 16 shows how the Farnsworth House (Fig. 2)
may be considered as a floor plan arrangement derived by such orna-
mentation.

In the next two sections we move away from the underlying
structures of floor plan arrangements, and address the problem of
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their realization under geometric constraints. We consider this real-
ization as a further stage in ornamentation.

mmm

Fig. 16

5. The Shape of Regions in Floor Plan Arrangements

We now investigate the possible realizations of floor plan arrange-

ments represented by the non-separable trivalent plane maps. Let us
require that in these realizations all regions are bounded by a rectangle,
as is the whole plan. These are called rectangular dissections, and

many architectural plans have this form; for example, the plans in

Fig. 3 are all rectangular dissections. (In what follows we shall ignore
the natural abuse of terminology with respect to the vertices of

valency 2 at the corners of the plan.) The following theorem of Ungax
[35] is important in this context, although it will be improved later J
in the section.

Theorem 5.1. Let M be a 3-connected trivalent plane map, in which
no three regions and their mutual edges have a multiply-connected
union. Then M may be realized by a rectangular dissection/

An equivalent formulation of Ungar’s theorem is the following
corollary:

Corollary 5.2. (i) Each simple triangulation is the dual plane map of
a rectangular dissection;

(ii) each simple triangulation of a polygon is the weak dual of a
rectangular dissection./

Note that some dissections have two rectangles and the outside
region with multiply-connected union, some have 2-edge cuts cor-
responding to corridors or “‘through rooms”, and others do not cor-
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respond to trivalent maps because of the presence of four-way points
(see Fig. 17).

N

Fig. 17

In what follows, unless otherwise stated, a rectangular dissection is
assumed not to have four-way points. In order to obtain the set of all
plane maps corresponding to the rectangular dissections we define a
special dual plane map — its augmented dual, in which the outside
region is divided into four parts (see Fig. 18).

Fig. 18

The augmented duals are simple [r, 1]-triangulations, since no three
rectangles form a ring, thus precluding a separating triangle in the
dual. We may now state a theorem specifying those trivalent maps
which are realizable as rectangular dissections. Its corollaries then
make this more explicit.

Theorem 5.3. A plane map is the augmented dual of a rectangular
dissection if and only if it is a simple [r, 1]-triangulation.
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Proof. = The augmented dual of any rectangular dissection is a simple
[r, 1]-triangulation.

<=The proof is by induction on r. Suppose that each simple [7, 1]-
triangulation is the augmented dual of a rectangular dissection for

r <n, and let T+, be a simple [n + 1, 1]-triangulation. We call a 4-
circuit “non-trivial’” if it has at least one internal vertex. Let v be an
external vertex in Ty+,. Then there are two cases to consider:

Case 1. There exists an edge vw which does not belong to a non-

trivial 4-circuit. Contracting the edge vw gives a simple [n, 1]-triangula-
tion, which (by hypothesis) is the augmented dual of a dissection. A
dissection with augmented dual T}, +, may then be obtained by an
operation of the type shown in Fig. 19.

nnnrihniERESS

Fig. 19 u
Fig. 20

Case 2. 1If every edge incident to v belongs to a non-trivial 4-circuit,
then it can easily be shown that the configuration shown in Fig. 20
occurs. Since T+, is planar and simple, the edge w,w, does not J
belong to a non-trivial 4-circuit. Contracting this edge gives a simple

[n, 1]-triangulation, which, by hypothesis, is the augmented dual of

a dissection. A dissection with augmented dual T4+, may then be
obtained by one of the operations shown in Fig. 21.

i " . Wi mwe
W ———— —> W

! —_— W3 > Wy
u u u u
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Finally the simple [1, 1]-triangulation is the augmented dual of a
single rectangle. The induction holds and the proof is complete./

A diagonal of a triangulation of a polygon is an internal edge join-
ing two external vertices on the boundary polygon. To each diagonal
there corresponds a pair of 2-vertex components, which we call the
diagonal components. A diagonal component is simple if it is itself a
simple triangulation of a polygon. Figure 22 shows a triangulation of
a polygon with diagonal vw, and the corresponding diagonal com-
ponents.

Fig. 22

Corollary 5.4. A plane map is a weak dual of a rectangular dissection
with more than three component rectangles and with no “‘through

b'ooms” if and only if it is an [r, s]-triangulation (s = 1) without
separating triangles and with at most four simple diagonal compon-
ents./

We now consider the generalization to dissections containing
“through rooms”. Let .# be the class of plane maps which satisfy
the following conditions:

(?) each block is either a single edge, a triangle, or an [r, s]-triangulation

(s = 1) without separating triangles;

(#) each cut-vertex is contained in exactly two blocks, and no block contains
more than two cut-vertices.

Figure 23 shows a typical member of .# with blocks To,...,Txand
cut-vertices cg, ¢y, . . ., Ck-1.

InT;(i=1,2,...,k—1), two external vertices v and w are said
to be close if at least one of them is a cut-vertex, or if there is a path
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Fig. 23

joining v and w consisting entirely of external edges of 7; and not
passing through a cut-vertex; for example, the vertices v and w in
Fig. 23 are close. The following corollary completes the characteriza-
tion of those plane maps which may be realized as rectangular dis-
sections:

Corollary 5.5. A plane map M is the weak dual of a rectangular dis-
section if and only if the following conditions hold:

O Me A,
(ii) no pair of close external vertices are joined by an internal edge,
(iii) ¢j-, is not joined to ¢; (fori=1,2,...,k— 1) unless T; is a

single edge;

(iv) in Ty and Ty, either there are three simple diagonal components
one of which contains cq or ck-, respectively, or there are at J
most two simple diagonal components./

If a rectangular arrangement is defined to be a close packing of
rectangles, then the next result follows from Theorem 5.3:

Theorem 5.6. A plane map is the weak dual of a rectangular arrange-
ment without four-way points if and only if its blocks are single edges,
triangles, or [r, s-triangulations (s 2 1) without separating triangles.//

If a rectangular dissection is oriented by labeling the four sides of
the boundary rectangle N, S, E and W, then the augmented dual has
the corresponding external vertices labeled. This is equivalent to root-
ing the triangulation with root vertex W and root edge WN (see Fig.
24).

A coloring of the edges of a rooted simple [r, 1]-triangulation with
two colors (x and y, say) is called a valid coloring if it satisfies the
following three conditions:

I
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N

S Fig. 24

(i) internal edges incident to V and S are colored x, and those incident to £
and W are colored y;

(ii) no 3-circuit has edges of only one color;
(iii) at each vertex, the edges form four groups, two of each color, with each
pair separated by a group of the other color.

[f the edges of the augmented dual of an oriented dissection are
colored x or y according as they represent a “horizontal” (E or W) or
“vertical” (N or §) wall, then the resulting coloring is valid. In fact,
the converse is also true:

Lheorem 5.7. Each valid coloring of a rooted simple [r, 1]-triangula-
tion is the augmented dual of an oriented rectangular dissection in
which the colors distinguish between the N/S and E/W aligned edges.l

We can now define oriented rectangular dissections to be equivalent
if their corresponding colored augmented duals are equivalent.

We have defined the class of trivalent floor plan arrangements
which can be realized as rectangular dissections. However, we note
that to each arrangement in this class there generally correspond
many rectangular dissections. This is because we assign to the arrange-
ment an N, S, E and W setting, and because of the different valid
colorings of the corresponding augmented dual. These dissections are
considered to be ornamented versions of the relevant floor plan
arrangements under the constraint of rectangularity. In the next
section we consider further ornamentation of these rectangular dis-
sections, with ornamentation referring to the possible dimensions
which the regions in the plan may assume.
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6. The Dimensions of Regions in Floor Plan Arrangements

The previous four sections examined possible floor plan arrangements,
and the classes which may be realized under the geometrical con-
straint that all the regions have a rectangular boundary. If those
arrangements are to be realized as floor plans, further geometrical
constraints concerning the dimensions of the regions must be con-
sidered. In the context of floor plan synthesis we require an arrange-
ment not only satisfying certain adjacency constraints, but also
realizable with the regions satisfying dimensional constraints.

Given a rooted simple [r, 1]-triangulation which represents a suit-
able arrangement, each valid coloring gives an oriented rectangular
dissection. We want to examine this set of dissections to discover
which can accommodate a given set of dimensional constraints.

For each oriented rectangular dissection, a network (digraph) can
be defined whose arcs represent the rectangles (see Brooks er al. [5]).
The horizontal sides of the rectangles form a point set whose con-
nected components are the horizontal line segments. We now repre-
sent each horizontal line segment by a vertex. Each rectangle has
upper and lower sides in distinct horizontal line segments, and is
represented by an arc joining the corresponding vertices directed from
the upper side to the lower side. The vertices corresponding to the .
horizontal sides of the boundary rectangle are joined by an arc J
directed from the lower side to the upper side of the boundary
rectangle and representing the outside space, This network is embedded
in the plane as a plane map in which the order of the incoming and
outgoing arcs at a vertex is the same as the order of the rectangles
above and below the corresponding horizontal line segment. The con-
necting arc lies on the boundary of the infinite region, and is directed
counter-clockwise. For each dissection this network is a directed non-
separable plane map; note that it may be derived directly from
the validly-colored triangulation. This directed plane map is called
the vertical network, and the horizontal network is defined similarly;
in Fig. 25 we show a dissection with the corresponding vertical and
horizontal networks. Note that the vertical and horizontal networks
of an oriented rectangular dissection are dual plane maps. In what
follows, vertical networks are considered, although the horizontal
network formulation is equivalent.

We now give some elementary network theory, due to Branin [4].
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Q) &=

Fig. 25

Consider a directed non-separable plane map with vertex-set {v Lreevs Uy}
and arc-set {ey, . . ., e}, and suppose that e,, lies on the boundary

of the infinite region, and is directed from v, to v, with counter-
clockwise orientation. We define the m x n incidence matrix B = (bij),
where

+1, ife;is incident at vj, and oriented towards vj;
bjj =4 —1, ife;isincident at vj, and oriented away from vj;
{ 0, ife;isnotincident at vj.

The matrix B contains redundant information since its rows have zero
sum, and by deleting a column we obtain an m x (n — 1) edge-vertex
matrix By.

Given a fundamental set of circuits, we can now define the
m X (m—n + 1) circuit-edge matrix C = (cij), where

+1, if e; isin the jth fundamental circuit, and the
orientations coincide;
cij =1 —1, ife;isin the jth fundamental circuit, and the
orientations do not coincide;
0, ife;isnot in the jth fundamental circuit.

We may similarly define the m x (n — 1) cut-set-edge matrix D and
the region-edge matrix R.

Let x; and y; denote the “through” and “across” variables on e;.
We can then formulate Kirchhoff’s Laws (see Section 3 of Chapter 4)
as the following set of linearly independent equations:

Blx=0 or DIx=0

(D
Cly =0,
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where X = (X, ..., xm)T andy=(yy,. .- , vm) L. If we also require
that
x;20andy;=>0,fori=1,2,...,m—1,and x;, 20,3, <0, (2)

then the solutions of (1) and (2) specify oriented rectangular dis-
sections with x; and y; (fori=1, 2, ..., m— 1) as the horizontal and
vertical dimensions of the component rectangles, and x,, and y,, as

the dimensions of the boundary rectangle. However, given a dissection
and its corresponding network, a solution of (1) and (2) does not neces-
sarily provide a dissection equivalent to the original one, since the
adjacency structure will impose certain conditions on the dimensions.
In order to examine the possible dimensions the rectangles in a given
dissection may assume, it is necessary to solve (1) and (2) under these
extra conditions.

If we now impose conditions of the type a; <x; < b; and
¢; <y;<d;(fori=1,2,...,m)on the through and across variables,
then the corresponding solutions of (1) and (2) give dissections in
which the dimensions of the rectangles are bounded accordingly.
Conditions of the form A; < x;y; < B; correspond to area constraints
on the rectangles, and we can consider such constraints by defining a
new variable a; = x;y; and expressing the Kirchhoff equations in terms
of a; and x;, or a; and y;. .

Suppose that a suitable solution to (1) and (2) has been found ‘F)
which satisfies all of the requirements. Then a method for reconstruct-
ing the corresponding rectangular dissection is of practical significance,
and we may do this elegantly by deriving sets of vertex-quantities BTy
and region-quantities Rx. Since each region of the network cor-
responds to a vertical line segment, and each vertex corresponds to a
horizontal line segment, these quantities may be used to define the
line segments which specify the dissection. Figure 26 shows a network
with a set of flows satisfying (1) and (2), and the same network with
the derived vertex- and region-quantities. The values on the vertices
and regions represent the distances from horizontal and vertical
datum lines respectively.

If we now remove the orientations from all arcs (except the con-
necting arc) of a network corresponding to a rectangular dissection,
then we obtain a rooted non-separable plane map. Conversely, it can
be shown that each rooted non-separable plane map may be directed
in such a way as to be the network of an oriented rectangular dis-
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Fig. 26

section. Mullin [27] has noted that the number of non-separable plane
maps with r + 1 edges is equal to the number of rooted simple [r, 1]-
triangulations, and it would be interesting if the relationship between
both sets of maps and the rectangular dissections provided an
explanation.

It is now possible to formulate a procedure by which, given a set
of adjacency and dimension requirements, it is possible to derive
rectangular dissection solutions to the floor plan problem (if they
exist). This procedure may be divided into the following steps:

(i) find arrangements which are realizable as rectangular dissections and
[ which satisfy the adjacency requirements;
L’ (ii) express these arrangements as rooted simple [r, 1]-triangulations;
(iif) construct valid colorings for these triangulations;
(iv) derive the corresponding networks;
(v) solve the network equations with the constraints imposed by the
adjacency and dimension requirements;
(vi) construct the rectangular dissections.

We may compare the procedure outlined above with those pre-
sented by Grason [14], Teague [30], and Mitchell, Steadman and
Liggett [25]. Grason used the augmented dual throughout, and assigned
weights to the edges representing the lengths of the corresponding
walls. Teague, on the other hand, used only the network representa-
tion. It seems clear from the previous analysis that the representations
suitable for dealing with the adjacencies and dimensions are the aug-
mented dual and network representations, respectively. Mitchell,
Steadman and Liggett recognized this division of the problem, but
approached it in a different way by means of a catalogue of rectangular
dissections.
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7. Some Other Applications of Graph Theory in Architecture

The road system in a town or city can be represented by a network
in which the usual network analysis of flows and capacities may be
applied. However, at the initial stages in the design of such road
systems, it is often important to consider the spatial disposition of
the roads and the spatial layout which they define. The sets of pos-
sibilities for road networks may be considered in the same way as for
floor plans, but now the edges of the plane maps represent roads.
Different interpretations can be given to the various characteristics
of the map, and the ornamentation operations can be modified to
incorporate the details of road junctions. Rectangular dissections, in
particular, may be considered as road systems laid out in a grid, in
which the roads define the boundaries of rectangular blocks. It is
only after such possibilities for the underlying structures have been
investigated, that network analysis may be applied.

The design of a circulation system in a building is a similar problem
for which a structural approach is desirable.at the initial stages. In
large buildings or building complexes, the circulation system consists
of a series of corridors and halls which may be represented by the
edges of a plane map. In most cases these plane maps are trees, or
have only one or two circuits. The individual spaces have access to
this core structure, and appending such individual units is among the J
ornamentation operations emphasized in this case. A design objective
may be to minimize circulation costs within the building. An early
example concerning the optimal layout of hospitals appeared in
Souder et al. [28]. Typical graph-theoretical problems in this context
are the shortest path problem and related traffic assignment problems.
March and Steadman [23] and Tabor [29] also discuss the mean dis-
tance in the circulation graph as a measure of the “compactness” of
the architectural plan. Recently, Doyle and Graver [10], [11] estab-
lished some theoretical results on the mean distances in graphs and
directed graphs, particularly in trees and rectangular grids. It might
also be of interest in certain situations to interconnect a given set of
locations with a circulation structure in some minimal way. This
corresponds to the Steiner problem in geometry and graph theory,
discussed by Chang [7] and Hanan [16]. The problem for schemes in
which the locations and circulation paths lie on a rectangular grid has
been discussed by Matela and O’Hare [24].
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In conclusion, we mention some considerations of design problems
in general. Manheim [21] represented a design problem as a hier-
archical structure or a decision tree. An architectural problem is then
considered as a branching tree of sub-problems, sub-sub-problems,
and so on. In graph-theoretical terms, the designer needs to make use
of decision tree search methods (see Christofides [8]). However, this
is based on the assumption that the total problem can be partitioned
into sets of sub-problems, and not all design theorists agree that this
may be done without loss of integrity. In other words, is the whole
merely the sum of its parts, or is it more? (see Atkin [2]). During the
early 1960s, Alexander [1] suggested a method for treelike decom-
position of the architectural design nroblem, and illustrated the
approach by means of a graph representing the interactions between
identifiable elements of the problem. This graph was then decom-
posed into subgraphs, each of which could be recognized as a sub-
problem. This technique finds its parallel in the design method pro-
posed by Kron [19] for engineering systems, which he called
“diakoptics™ or “tearing” (see Chapter 4). Finally these decomposition
methods in architectural design were discussed by several authors in
Moore [26], and briefly in Harary er al. [17], in a survey of the uses
of k-colored graphs in design.
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