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Abstract

We present a known lower bound on the number of spanning trees in cubic graphs
and prove a new simpler result, giving a lower bound on the number of spanning
trees in cubic multigraphs. Then we give a new non-trivial lower bound on the
number of spanning trees in cubic 2-connected graphs and finally we consider
3-connected graphs, and formulate some conjectures based on computational
experiments.
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Chapter 1

Introduction

Graph Theory is the study of graphs, a mathematical structure which models pairwise
relations between objects, and is in that context, a very abstract and general setting.
The focus in this thesis is on counting spanning trees in connected graphs, a subject
in combinatorial graph theory. The number of spanning trees plays a crucial role in
Kirchhoff’s classical theory of electrical networks, for example in computing driving
point resistance [?], and in random walks in graphs [?].

In the second chapter, some general graph theory is described, and methods for count-
ing spanning trees are introduced.

In the third chapter, we present a known lower bound on the number of spanning trees
in cubic graphs, originally presented by Kostochka [?] and prove a new slightly simpler
result, giving a lower bound on the number of spanning trees in cubic multigraphs.

In the fourth chapter, we give a new non-trivial lower bound on the number of spanning
trees in cubic 2-connected graphs.

Finally in the last chapter, we consider 3-connected graphs, and formulate some
conjectures based on computational experiments.






Chapter 2

Notation and Theory

We will give a brief introduction to the notation of this thesis, and introduce some of
the elementary results and theory. Some of this notation and theory is presented in the
same way as in [?] and [?].

2.1 Notation and General Theory

We define a graph G as a pair (V, F) of sets V' and E, where V is called the vertex set,
and E is called the edge set. E C V2, meaning that an edge e € F is a 2-element subset
{vi,v;} of V. When talking about the vertex set or edge set of a graph G, the sets will
be denoted V(G) and E(G). We will denote the number of vertices in a graph G by
v(@) and the number of edges by e(G). We let uv denote the edge joining vertex v and
vertex v. In general, we will not allow multiple edges between a pair of vertices, but a
graph where multiple edges are allowed, will be denoted a multigraph. We will ignore
loops, that is edges from a vertex to itself.

A path P in a graph G is a sequence of vertices vy, vy, ..., vk, such that v;v; 41 € E(Q)
fori = 1,...,(k — 1), and where v; # v; when i # j. For a vertex v, we define
its neighbours N(v) as the vertices joined to v by an edge. For a subgraph G’ C G,
we define a multiset N(G') of its neighbours in G as ,cy () [V (v) — V(G')]. For a
subgraph G’ C G, we define the neighbours of G’ as the vertices in G joined to a vertex
in G'. For a vertex v, we define the degree of v as the number of edges (again ignoring
loops) having v as endpoint. A cycle C' in a graph G, is a closed path vy, ..., v, ..., v1,
where the vertices in C' except v, are pairwise distinct. A cycle chord of a cycle C' is
an edge xy, such that zy ¢ F(C) and such that x € V(C) and y € V(C'). An induced
cycle C is a cycle with no cycle chord. A cycle C in a connected graph G is said to be
non-separating if and only if G — V(C) is connected.

For a vertex v with two neighbours x and y, we define lifting the edges of v, as replacing
xv and yv by xy.
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For a graph G, and a set S of vertices and edges in GG, we will let G — S denote the
graph obtained by removing the elements of S from GG. Removing a vertex from a graph,
is defined as removing the vertex, and all edges incident to it. For a graph G, and a
set of vertices and edges S, we will let G + S denote the graph obtained by adding the
elements of S to G. For a graph G, and an edge e € F(G), we denote a contraction
of e by G/e. A contraction of an edge corresponds to glueing its ends together, and
removing the loops created. For a graph GG and a set of vertices S C V(G), we denote
a contraction of S as G/S, and define it as contracting every edge e € E(G) which is
joining two vertices in .S.

A graph G is said to be k-regular, if every vertex in G has degree k, that is, every vertex
has k edges incident to it. A 3-regular graph is called cubic. A cubic graph has an even
number of vertices.

A graph G is said to be k-connected, if the removal of any (k — 1) vertices will not
disconnect G, but there exist a set .S of k vertices such that G — S is disconnected.

An edge e in a graph G is called a bridge, if the removal of e increases the number
of connected components of G. We define a block in a graph as either a bridge, or a
maximally 2-connected subgraph.

A graph G is said to have girth £, if the smallest cycle in G has & vertices.

To describe the growth rate of a function, we will introduce the so-called Big O-notation
[?]. We define Big-O-notation as follows

Definition 2.1 We say that a function g(n) is O(f(n)) if and only if there exists two
constants ¢ and ng such that g(n) < cf(n) for all n > ny.

If we have two functions f(n) and g(n), and we want to compare their growth rates,
we consider the limit

lim G

n—o0 g(n)

if this limit is equal to 0, then g(n) grows asymptotically faster than f(n). If the limit
is equal to oo, then f(n) grows asymptotically faster than g(n). If the limit is equal to
a constant ¢ > 0, then the two functions are defined to be asymptotically equal, since
they only differ by a multiplicative factor.

2.2 Spanning Trees

A spanning tree in a graph G is a spanning subgraph of G, which is a tree. We define a
spanning tree formally as follows.
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Definition 2.2 A spanning tree T of a graph G = (V, E) is a graph T = (V, E') such
thatT isa treeand E' C E.

Figure 2.1: A spanning tree (emphasized with bold edges) in a graph.

2.2.1 Counting Spanning Trees

The number of different spanning trees in a graph G turns out to be a very useful number
leading to interesting results and applications. We denote the number of spanning
trees in a graph G by 7(G) and in this section, we will investigate different methods
for calculating 7(G). If G itself is a tree then 7(G) = 1, and if G is disconnected, then
7(G) = 0. As an example, the 16 spanning trees of K are shown in ??.

) B (| ZONIN
ZNX XXX X

Figure 2.2: The 16 different spanning trees in K.

Theorem 2.1 The number of spanning trees 7(G) in a graph G containing an edge
e is equal to 7(G /e). The number of spanning trees in a graph G not containing an
edge e is equal to 7(G — e).

A useful Lemma is

Lemma 2.1 IfG is a connected graph, then for any e € E(G), there is a spanning
tree containing e.

This follows easily from ??, since contracting an edge in a connected graph does not
disconnect the graph.
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Contraction-Deletion

Theorem 2.2 (Contraction-Deletion) The number of spanning trees in a graph G,
is the number of spanning trees in G where some edge e is deleted, plus the number
of spanning trees in G where e is contracted.

7(G) =7(G —e) + 7(G/e)

One way to compute the number of spanning trees in a graph, is to recursively degener-
ate the graph by removing and contracting edges. In this way, the number of spanning
trees of a graph G is reduced to a sum of the number of spanning trees in small graphs
which can be computed by hand. A Contraction-Deletion degeneration could look like

T -0

The Matrix-Tree Theorem

Another way to compute the number of spanning trees in a graph is using linear algebra.
By a theorem of Gustav Robert Kirchoff from 1847, the number of spanning trees can
be computed by finding the cofactor of a special matrix called the Laplacian matrix.

Degree Matrix The degree matrix D of a graph, is a diagonal matrix with the vertex
degrees in the diagonal. As an example, consider the labelled graph in ??.

5 6

VAN

1 2 3 4

Figure 2.3: A graph with 6 vertices. We will compute the number of spanning trees of this
graph by the matrix-tree theorem.

which has the degree matrix

OO OO OoON
O O OO = O
O OO w oo
S O N O OO
S W o o oo
_ o O O OO

Adjacency Matrix The adjacency matrix A of a graph, is a (0, 1)-matrix, where 1’s
represent adjacent vertices. A has a row for each vertex, and a column for each
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vertex. If a vertex v is connected to a vertex u, the entry in row v, column u is 1,
and so is the entry in row u, column v. The graph in ?? has the adjacency matrix:

0100710
101011
010101
001001
11000 1
01 11 1 0]

Laplacian Matrix The Laplacian Matrix @) of a graph is the difference between its
degree matrix D and its adjacency matrix A.

Q=D-A

Which for the graph in ?? gives
2 0 0 00 0] [0O1 0 0 1 O] [2 -1 0 0O -1 0
040000 101011 -1 4 -1 0 -1 -1
Q= cos306000 (010101 _ 0 -1 3 -1 0 -1
1000200 0oo01oo01 [0 0 -1 2 0 -1
000030 110001 -1 -1 0 0 3 -1
000004 (011110 [0 -1 -1 -1 -1 4

Now we can state the final theorem

Theorem 2.3 (Kirchoff’s Matrix-Tree Theorem) The number of spanning
trees in a simple graph G, is the absolute value of any cofactor of the Laplacian
Matrix of G.

Where a cofactor of () can be obtained by removing an arbitrary row, and an
arbitrary column from () and then computing the determinant. For our example,
we find a cofactor by removing the last row and column,

2 -1 0 0 -1
-1 4 -1 0 -1
0 -1 3 -1 0
-1 -1 0 0 3

and then taking the determinant
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7@ =det| |0 -1 3 -1 0]|]|=55
-1 -1 0 0 3

For multigraphs, the definition of @ is slightly different [?].

2.3 Recurrence Relations

If we have a homogeneous linear recurrence relation of the form

k
an = g Ciln—q
=1

involving k terms, and we want to find a closed form for a,, - that is, a function - we
can solve the recurrence relation. We guess that a,, is on the form o, and substitute
this into the recurrence relation to obtain

k
a” = Z o
i=1
and we divide by o %, giving us
k
o = Z ciah
i=1
This is a polynomial of degree k with distinct roots {c, ..., a;} € R¥, and now a,, can

be written as

k
an = § 5104:1
i=1

where 3 to B is constants which can be found by using & different initial conditions
for the recurrence.

In general, solving a recurrence relation can be much more difficult. We have only
described homogeneous linear recurrence relations, and we assumed that the roots
{aq,...,ax} were distinct real numbers - but this is all we need for the recurrence
relations involved in this project.



Chapter 3

Cubic Graphs

In this chapter, we will consider cubic graphs, that is graphs where every vertex has
degree 3. We will look at some graph classes, and find a lower bound for the number of
spanning trees in graphs of each class.

3.1 Cubic Multigraphs

We consider cubic multigraphs, that is cubic graphs where we allow multiple edges
between a pair of vertices. We introduce the following Lemma, which has previously
been described, in a slightly different form, in [?].

Lemma 3.1 Let G be a cubic connected graph, then G contains a non-separating
induced cycle C. Additionally, if G has girth > 5, C' can be chosen such that all
neighbours of C are pairwise distinct.

Proof Choose C to be a cycle in G maximizing the size of the largest connective
component of G — V(C). We will start by showing that G — V(C) is connected.
Assume that G — V(C) is disconnected and has connective components A and B
(and maybe more), where B is the largest connective component. This is illustrated
in ??.

Since A and B are different components, there are no edges between them. Now
we have two cases.

A contains a cycle C’: Consider G — V(C"). Since G is connected, at least one ver-
tex v on C'is joined to a vertex in B, so G — V' (C”) has a connective component
containing B and v, which contradicts that C' was the cycle maximizing the
size of the largest connective component of G — V' (C'). Thus A can not contain
a cycle.

A is a forest: Since A does not contain a cycle, it must be a forest. Now consider
a leaf [ in A. Since G is cubic and [ is a leaf in A and there are no edges

9
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A C
B

Figure 3.1: The two components A and B which would be created when removing V' (C') from
G under the assumption that C is separating. All vertices on C have degree 3, so
some of them are connected to A, some to B and maybe some of them to each
other.

between the connective components of G — V(C'), | must have two edges
going to vertices on C. Denote these vertices joined to [ by = and y. At least
one vertex on C'is connected to B, denote this vertex w. This is illustrated in ??.

B

Figure 3.2: The leaf [ in A, joined to = and y on C.

There are two paths from z to y on C. Consider the path from x to y on C not
using v and extend it to a cycle by including /2 and ly. Denote this cycle C’,
and look at G — V(C”), which has a connected component containing B and .
This contradicts that C' was the cycle, which removal was maximizing the size
of the largest connective component of G — V(C). Thus C is non-separating.

Now we show that C' can be chosen to be non-separating and induced. Consider
a non-separating cycle C, such that G — V(C) is maximal. Assume that C' is not
induced, thus C must have a chord zy. Singe G is cubic, there must be a vertex on
C, different from x and y joined to a vertex in G — V' (C), denote this vertex u. This
is illustrated in ??.
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G- V(C)

Figure 3.3: A chord zy in C, and a cycle (emphasized in bold) which removal leads to a
contradiction.

Consider the cycle using zy and the path between = and y on C not containing w,
denote this cycle C’. Since V(C") c V(C), C’ is non-separating. G — V(C’) has a
connected component containing G — V(C') and u, contradicting that C' was the
cycle, which removal maximizes the size of G — V(C). Thus, C' is induced.

Now assume G has girth > 5, then we show that it is possible to choose a non-
separating induced cycle C such that all neighbours of C' are pairwise distinct.
Consider a non-separating induced cycle C, such that G — V(C') is maximal. Assume
that C contains two vertices = and y which have a common neighbour z not on C.
Since G has girth > 5, one of the paths from z to y on C' contains more than one
vertex, denote two of the vertices on this path u, v. Since C is induced, both v and v
are joined to vertices in G — V/(C). This is illustrated in ??.

Figure 3.4: Since G has girth > 5, one of the paths from « to y on C contains more than one
vertex, in this case v and v.

Consider the cycle using zz, yz and the path from z to y on C not containing either
u or v, denote this cycle C’. Since C' is induced and G is cubic, C’ is also induced.
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Since z is a leaf in G — V(C'), and since every vertex on C not contained in C’ is
connected to vertices in G — V(C”) through u and v, C’ is non-separating. Since
both « and v are joined to vertices in G — V(C'), this contradicts that C' was the
cycle, which removal maximizes the size of G — V(C). Thus, all neighbours of C' are
different. [

We will use ?? in the proof of ??.

Theorem 3.1 For any cubic, connected multigraph G with n > 2 vertices, 7(G) >
3.2m/2,

Proof We do the proof by induction over the number of vertices n.

Basis of the induction All cubic graphs on < 6 vertices is used as basis of the
induction. These are listen in ??.

Intuition We will assume that all graphs on k vertices, where k < n, have at least
3-2%/2 spanning trees. Then we will consider some cubic graph G on n vertices. Now
we want to show that G has at least 3 - 2"/2 spanning trees. To show this, we will
perform some operation on G to create G’, reducing the number of vertices. Now
we have, by induction, a lower bound on the number of spanning trees in G’. Then
we take every spanning tree in G’, and extend it to a number of different spanning
trees in G, thus showing that G has at least 3 - 2"/2 spanning trees.

Induction step Let G have n vertices. Our induction hypothesis states, that all
graphs on k < n vertices, have at least 3 - 2¥/2 spanning trees. Now choose a cycle C'
in GG in the following way (possible by ??).

G has girth 2: Let C be any 2-cycle

G has girth 3: Let C be any 3-cycle

G has girth 4: Let C be a non-separating induced 4-cycle

G has girth > 5: Let C be a non-separating induced cycle such that all neighbours
of C are different.

Case 1 - v(C') = 2: Then C looks like one of the two cases in ??.
u v

w x z w Yy
z

T Yy
(a) Subcase 1.1 (b) Subcase 1.2

Figure 3.5: The two different types of 2-cycles

If we have Subcase 1.1, we create G' = G — {u, v, w, z} + xy, this operation is shown
in ??, and is denoted Operation 1.
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u (%
w
z

@G ) &

Figure 3.6: Operation 1, used when G has a 2-cycle as in Subcase 1.1.

Operation 1 reduces the number of vertices in G by 4, so we want to show, that if 7"
is a spanning tree in G’, and we use Operation 1 backwards, then we can extend 7’
to at least 4 spanning trees in G, since this implies

on/2

:3271/2
4

7(G)>47(G') >4-3-2"F =4-3.

We need to consider the case where xy € E(T") illustrated in ??, and the case where
zy ¢ E(T') illustrated in ??. When zy € E(T"), we apply Operation 1 in reverse,
removing xy from 7”. To extend 7" to a spanning tree 7" in G, we need both xz and
zy to make 7" connected. There are two ways of choosing an edge in C, and for each
of those, we have to chose either uw or vw, thus giving the 4 needed spanning trees.

x Yy
T 15
@T =T1+T;+zy C b)Y T —zy CG.
G

Figure 3.7: The case when zy € T'. When zy € T’, note that 7" — xy will be disconnected with
connective components 77 and T3, and that zz and zy need to be included to make
T connected.

When zy ¢ F(T"), and we apply Operation 1 in reverse, we do not disconnect 7".
To extend 7" to a spanning tree T  in G, we can only use one of zz and zy. There
are two ways of choosing an edge in C, a choice between uw and vw, and a choice
between zx and zy. This gives 8 spanning trees, but only 4 is needed.

If we have Subcase 1.2, we create G’ = G — {z,w} + zy., this operation is shown in
??, and is denoted Operation 2.

Operation 2 reduces the number of vertices in G by 2, so we want to show, that if 7”
is a spanning tree in G’, and we use Operation 2 backwards, then we can extend 7’
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Tl
@717 Cq. T -2y CG.

Figure 3.8: The case when xy ¢ T’. When zy € T”, note that 7" — xy will be connected, and
that using both xz and yz would yield a cycle.

T sz Yy

(@ d b) &

o8
ow

Figure 3.9: Operation 2, used when G has a 2-cycle as in Subcase 1.2.

to 2 spanning trees in G since this implies

on/2

7(G)>2-7(G)>2.3.2" =2.3. 2 —3.2"/?

When zy € E(T"), we can extend 7" to a spanning tree in G in two ways since we
have a choice for one of the edges joining z to w. When zy ¢ E(T"), we can extend
T’ to a spanning tree in G in at least 2 ways, since we can choose an edge joining z
to w, and either zz or wy.

Case 2 - v(C') = 3: Then we have one of the four cases shown in ??.

Ab g S

(a) Subcase 2.1 (b) Subcase 2.2 (c) Subcase 2.3 (d) Subcase 2.4

Figure 3.10: The four different types of 3-cycles

Subcase 2.1 is K, which has 16 spanning trees, and this is greater than 3 - 22. When
we have Subcase 2.2, we construct G’ = G/V (C). This operation is shown in ?? and
is denoted Operation 3.

Operation 3 reduces the number of vertices by 2, so we want to show, that if we
have a spanning tree 7" in G’, and use Operation 3 backwards, then we can extend
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A

@G (b) &

Figure 3.11: Operation 3, used when we have Subcase 2.2.

T’ to 2 spanning trees in G. No matter which edges 7’ uses, we can pick some
spanning tree in the triangle, and some additional edges. Since the triangle has
3 spanning trees, this gives at least 3 spanning trees in G for each spanning tree in G’.

When we have Subcase 2.3, we construct G’ = G — {V(C), t} + vu. This operation
is shown in ?? and is denoted Operation 4.

v b ~0 o

v u
@G b &

Figure 3.12: Operation 4, used when we have Subcase 2.3.

Operation 4 reduces the number of vertices in G by 4, so we want to show, that

if we have a spanning tree 7" in G/, and use Operation 4 backwards, then we can
extend 7" to 4 spanning trees in G since 2" = #. We need to consider the case
where vu is in 77 and the case where vu is not in 7. Note that the Diamond Graph
(K4 — e) has 8 spanning trees. In either case, we can choose some spanning tree in
the diamond, and some additional edges. Since the diamond has 8 spanning trees,

this gives more than 8 spanning trees for G in all cases.

When we have Subcase 2.4, we construct G' = G — {V(C),t,w, 2z} + xy. This
operation is shown in ?? and is denoted Operation 5.

Operation 5 reduces the number of vertices in G by 6, so we want to show, that if we
have a spanning tree 7" in G’, and use Operation 5 backwards, then we can extend
T’ to 8 spanning trees in G. We need to consider the case where xy is in 77 and the
case where zy is not in 7”. In either of the cases, choose some spanning tree in the
diamond, and some additional edges making the tree connected. This gives more
than 8 spanning trees in both cases.

Case 3 - v(C) = 4: Since C is induced, we can have the 3 cases shown in ??.
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4
T Y T RY

(@G (b) G’

Figure 3.13: Operation 5, used when we have Subcase 2.4.

L A

(a) Subcase 3.1: (b) Subcase 3.2: C has three dis- (c) Subcase 3.3: C has
has  four dis— tinct neighbours a, b, c. two distinct neigh-
tinct neighbours bours u, v.

T,Y, 2, Ww.

Figure 3.14: The three different types of 4-cycles

When we have Subcase 3.1, we construct G’ = G — V(C') + {zy, zw}. This operation
is shown in ?? and is denoted Operation 6.

Y : :w Y > <w
x z x z
@da b) &
Figure 3.15: Operation 6, used when we have Subcase 3.1.

Since C' is non-separating, G’ is connected. Operation 6 reduces the number of
vertices in G by 4, so we want to show, that if we have a spanning tree 7" in G’, and
use Operation 6 backwards, then we can extend 7” to 4 spanning trees in G. 7" can
use none of the edges xy, zw, one of them or both of them. In either case, we can
choose one of the four spanning trees in C, and some additional edges. This gives at
least 4 spanning trees in G for each spanning tree in G'.

When we have Subcase 3.2, we construct G’ = G — V(C) + {ab, bc}. This operation
is shown in ??, and is denoted Operation 7.
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a b Ve am

@G b) &

Figure 3.16: Operation 7, used when we have Subcase 3.2.

Operation 7 reduces the number of vertices in G by 4, so we want to show, that if we
have a spanning tree 7" in G’ using some combination of the edges ab, bc, and use Op-
eration 7 backwards, then we can extend 7" to 4 spanning trees in G. In either of the
cases for ab and be, we can pick one of the four spanning trees in C, and some addi-
tional edges. This gives us at least 4 spanning trees in G for each spanning tree in G’.

When we have Subcase 3.3, consider the cycle shown in ??. This cycle has three
distinct neighbours, and thus we have Subcase 3.2.

Figure 3.17: When we have Subcase 3.3, we also have Subcase 3.2 and consider that cycle
instead.

Case 4 - v(C) > 5: Now C is a non-separating, induced cycle in G, such that all
neighbours of C are distinct. Let k denote the number of vertices in C, that is
k = v(C). Now we construct G’ by removing V (C), and by lifting the vertices of
degree 2. This is shown in ??. We will let x1, z9, ..., x; denote the vertices on C,
and let y; denote the neighbour of x; not on C. We let e1, e, ..., e; denote the new
edges we create by lifting the vertices of degree 2.

G’ is a cubic, connected graph on n — 2k vertices. By the induction hypothesis,
7(G') >3- 22" . We will show, that for any spanning tree in 7" in G', we can extend

T’ to at least 2 spanning trees in G.

We start by considering the case where 7" contains all of the edges ey, e, ..., €.
In this case we can extend 7" to a spanning tree in GG, by using some of the edges
T1Y1, T2V, - - ., LrYk, and some additional edges from C. We can choose to have 1 to
k of the edges x1y1, x2yo, ..., xry, in T, and for each number of edges, we have (k)

)
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@G ) ¢
Figure 3.18: Construction of G’ by removal of C.

ways to choose them. So in total we have

>(5)

=1

possible choices of the edges z1y1, z2y2, - . ., xxyr. When i of the k edges are chosen,
we need to choose some of the edges on C to be in 7', and some not to be in 7. The
case which gives us the fewest possible choices, is when the i edges we choose from
T1Y1, T2lo, - - - , TiYyg are mutually adjacent to each other on C. In this case, we can
only choose the edges on C' in (k — (i — 1)) ways, since this is the number of ways to
choose an edge to exclude from 7. Since this holds for any i, we get the inequality

() > 2; Kf) (k—i+ 1)] (@) > z; [(’;) (- Z-)] (@)

We use combinatorial identities from [?], and reverse the order of summation to
obtain

HG) > zk; Kk g ZH (@) = zk; K’;) l] (G = k25 (G

where k2F—1 > 9k since k > 5. Now we have that

n—2k
2

7(G) > 2"r(G") =2F.3.272 =3.2F

Now assume 7" does not use all of the edges x1y1, 2y2, . . ., Txyx. Then we have the
same choices as before, but after that, we still have to choose some extra edges to
make 7" span all the vertices. These extra choices increases the number of ways to
extend 7" to a spanning tree in G, thus also satisfying the inequality.
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For all even n > 6, we can create a graph with % - 2"/2 spanning trees by taking a path
of n — 3 edges, where the first and the last edge are replaced by a triangle with a double
edge, and where every second edge is replaced by a double edge. This construction can

be seen in ??.
% oo O—o@

Figure 3.19: A construction of graphs with % - 2"/2 spanning trees.

The number of spanning trees in this construction has the same asymptotic growth as
the lower bound on 3 - 2/2, This shows that our bound is asymptotically tight.

3.2 Cubic Simple Graphs

Now we consider simple graphs (no multiple edges), and find a lower bound for the
number of spanning trees in simple cubic graphs. This result has been given by [?], and
we repeat their proof with slight moderation.

Theorem 3.2 If G is cubic, connected, simple and G # K4, then 7(G) > %8”/ 4,

Proof We do induction on the number of vertices n.

Basis of the induction In ??, it is tested and documented, that all connected, cubic,
simple graphs with 6 to 12 vertices have at least %8”/ 4 spanning trees.

Induction step Let G have n vertices, n > 12. Assume the induction hypothesis,
that is, all graphs on k& < n vertices have at least %Sk/ 4 spanning trees.

Case 1 - G has a triangle: If G has a triangle {z, y, z} with neighbours {2/, v/, 2'},
where 2/, ¢/, 2’ are pairwise distinct, construct G’ = G/{x, y, z}, thus reducing the
number of vertices by 2. This reduction is shown in ??.

@G b) &

Figure 3.20: The contraction of a triangle.
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By the induction hypothesis, 7(G’) > %8(”_2)/ 4, so we want to show that for every

spanning tree 7" in G’, we can extend this to at least [1/8] = 3 spanning trees in G
i 9 g(n—2)/4 _ 9 84 v Dol o .

since \/g8 NV T ca‘n u.se some of the edges vz’, vy’, v2’, and in any of

the cases, we can extend 7" by picking two of the three edges xy, yz, zz, and some

of the edges z2/, yy/, 22z’ without creating a cycle, thus giving more than 3 possible

ways to extend each spanning tree in G’ to a spanning tree in G.

Case 2 - GG has a diamond: If G does not have a triangle with distinct neighbours,
but still have girth 3, it has a diamond {z, y, z, w} with neighbours {z’, 3}

Figure 3.21: Case 2 when G contains a diamond. Note that it might be the case that 2’ = y'.

Now there are two possibilities for 2’ and y/'.

Subcase 2.1 - 2/ # y/: We construct G’ = G — {z,y, z,w} +{2'y’'}. By the induction
hypothesis, 7(G’) > %8(”_4)/4, so we need to extend each spanning tree 7" in G’
to 8 different spanning trees in G. T’ can use 2y’ or not. If 7" uses the edge z'y/,
we can choose any spanning tree in the diamond (recall that the diamond graph has
8 spanning trees) for 7', and both of the edges xz’ and yy'. If T’ does not use z'y/,
we can again choose any spanning tree in the diamond, and one of the edges z2’
and yy’. Both cases give us at least 8 ways to extend every spanning tree.

Subcase 2.2 - 2/ = ¢/ In the case that 2’ = 3/, G looks like ??.

Figure 3.22: Case 2 when 2’ = /.

Now there are again two cases, either uwv € E(G) or uwv ¢ E(G).

Subcase 2.2.1 - uv ¢ E(G): Ifthisis the case, we construct G’ = G—{z,y, z,w,a,b}+
{uv}. By the induction hypothesis, 7(G’) > %8(”_6)/ 4. so we need to extend each

spanning tree 7" in G’ to at least 23 different spanning trees in G. Let H denote
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K4 with one edge subdivided, which have 24 spanning trees. H is isomorphic to
the subgraph with vertices {z, y, z, w, a} and edges {zz, zw, zw, zy, wy, xa,ya} in G.
We can choose any spanning tree in H and some of ub and vb, for T'. This gives us
at least 24 ways to extend every spanning tree.

Subcase 2.2.2 - wv € E(G): If this is the case, G must look like ??

Figure 3.23: G when wv € E(G).

Now there are two cases, either v’ = v’ or v’ # /. If v/ = v/, we have Subcase 2.1.
If v’ # v/, we have Case 1.

Case 3 - GG has girth > 4: Let e = uv be a non-cut-edge, i.e. e is contained in some
cycle, where N(u) = {v,z,y} and N(v) = {u, z,w}. Since G has girth > 4, xy and
zw are not in F(G). By the same argument, {z,y, z, w} are pairwise distinct. We
now construct G’ = G — {u,v} + {zy, zw}, as illustrated in ??.
Cz
w

x z x}
:u vi
Y w Y
Figure 3.24: The construction of G’ when G has girth > 4.

@G ) &

By the induction hypothesis, 7(G’) > %8(’“2)/ 4. so we need to extend each span-
ning tree 7" in G’ to at least 3 different spanning trees in G.

There are three possibilities for 7", it can use none of the edges xy, zw, it can use
one of them, or it can use both.

Subcase 3.1 - T” uses none of the edges zy, zw: Since T’ does not use zy or zw,
the vertices z, y, z, w are connected when considering 7" in G. This is illustrated in
??. We can extend 7" in four ways, by using one of the edges zu, yu, and one of the
edges zv, wv. It is possible to extend 7" to more than 4 trees, but that is all we need.
Subcase 3.2 - T’ uses zy but not zw: When considering 7" in G, it consists of 2
connective components. Since zy was in 7° when considering G’, and was then
removed, x and y are in different components when considering 7" in G. This is
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zal N7
yd Pow
T/

Figure 3.25: When 7" does not contain zy or zw, the vertices z,y, z, w are connected in 7"
after reversing the construction of G'.

illustrated in ??. Since u is adjacent to both components, we extend 7" in three ways
by including zu and yu and one of the three edges incident to v.

zQ (02

Tl

Figure 3.26: The vertex u is adjacent to two connective components of 7" after reversing the
construction of G’.

Subcase 3.3 - T uses both zy and zw: Since T” is connected in G’, there must
exist a path from one of x,y to one of z,w, assume there is a path from y to
w. This is illustrated in ??. Now we extend 7" by adding either {zu, yu, zv, wv},
{zu, wv, zv,wv} or {xu,yu,uv, zv}. Thus giving us three different spanning trees in
G by extending T".

zQ (02

Tl

Figure 3.27: The vertices « and v are adjacent to two connective components of 7" after
reversing the construction of G'.

In each of the subcases, we can extend a spanning tree 7" in G/, to at least 3 spanning
trees in GG, concluding the proof.

For all even n > 10, we can create a graph with é}% - 8"/4 spanning trees by taking a
path of § — 2 edges, where the first and the last edge are replaced by K with an edge
subdivided, and where every second edge is replaced by a diamond. This construction

can be seen in ??.

The number of spanning trees in this construction has the same asymptotic growth as

the lower bound on % - 8"/4. This shows that our bound is asymptotically tight.
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Figure 3.28: A construction of graphs with 855% - 8"/4 spanning trees.






Chapter 4

2-Connected Graphs

4.1 Simple 2-Connected Graphs

We use a Lemma from [?] stating that

Lemma 4.1 Let G be a 2-connected graph with at least 4 vertices, and let e € E(G).
Then either G — e is 2-connected or GG /e is 2-connected.

We will use ?? to show a trivial lower bound on the number of spanning trees in
2-connected graphs. When we have a 2-connected graph, we can keep deleting and
contracting edges until we reach a 2-connected graph with 3 vertices, namely Cs.

Theorem 4.1 If G is 2-connected, 7(G) > e(G).
Proof We do induction on the number of edges m.

Basis of the induction: We will start the induction with the triangle C3, that is, a
cycle with 3 edges. 7(C3) = 3 = ¢(C3). The only 2-connected graph on < 3 vertices
is Cg.

Induction step: Let G be a 2-connected simple graph with m edges. Now we
assume the induction hypothesis, that all graphs on k& edges, where k& < m, have at
least k spanning trees. Let e be any edge in GG. Since G is 2-connected, we know by
?? that either G — e or G//e is 2-connected.

G — e is 2-connected: By the induction hypothesis, 7(G —e) > e(G — e). Inserting e
in G does not disconnect GG, thus every spanning tree in G — e is also a spanning tree
in G (avoiding e). Since G is connected, we know by ??, that there is a spanning
tree T in G using e, which therefore can not be a spanning tree in G — e. Since we
can find at least one more spanning tree in G than in G — e, we know that

T(G)>7(G—e)+1>e(G—e)+1=¢e(G)

25
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G/e is 2-connected: By the induction hypothesis, 7(G/e) > e(G/e). Splitting a
vertex to create e does not disconnect G, thus every spanning tree in G/e is also a
spanning tree in G (using e). Since G — e is connected, we know by ??, that there is
a spanning tree 7' in G not using e, which therefore can not be a spanning tree in
G/e. Since we can find at least one more spanning tree in G than in G//e, we know
that

7(G) > 17(G/e) +1>e(G/e) + 1 =e(Q)

We can construct 2-connected graphs with exactly this number of spanning trees by
considering the cycles, so the bound is best possible.

4.2 Simple Cubic 2-Connected Graphs

We show a lower bound on the number of spanning trees in cubic 2-connected graphs.
To achieve this, we define a diamond path.

A diamond path is a set of diamonds, joined in a path-like structure. More formally, a
diamond path is a path vy, v9, ..., v, where k is even, and where every second edge
V12, U3y, - . . , Vg1V is Teplaced by a diamond. In ?? the bold vertices and edges show
a diamond path. When we talk about diamond paths, we will only consider maximal
(non extendable) diamond paths, that is diamond paths where the neighbouring ver-
tices at the ends (a and b in ??) are not part of a diamond.

We denote the removal of a diamond path D from G by G — D, and define it as removing
V(D) from G and lifting the vertices getting degree 2. An example can be seen in ??.

T z

Yy w

Figure 4.1: A maximal diamond path with 3 diamonds. When removing this diamond path, we
remove all inner vertices and «a, b and join x to y and z to w.

To achieve a lower bound, we will remove diamond paths. ?? shows that we can find
removable diamond paths in special graphs.

Lemma 4.2 If G is simple, cubic, 2-connected, and if G has at least one vertex
which is not in a diamond, and if every edge of G has an end vertex which is in a
diamond, then G contains a diamond path D, such that G — D is also 2-connected.
Additionally, D can be chosen such that v(G — D) > v(D).

Proof We first prove that the diamond path D can be chosen such that G — D is
2-connected. Consider therefore any diamond path D and assume that G — D has
a bridge e (otherwise we have finished). Choose D such that the largest block M
of G — D is as large as possible. Let K denote the block on the opposite side of e,
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joined to D by an edge.

Take a diamond path D’ in K. Such a diamond path exists because G has a vertex
not in a diamond (in fact G has at least 3 diamond paths). Since K is a block, there
is no bridge in K, and thus K — D’ is still connected. If we can find a cycle in G — 7/,
that goes through inner vertices of M and K, then we come to a contradiction since
we assumed that the largest block M of G — D was as large as possible. Denote the
endpoints of e by z and y and let a and b denote the cut-vertices of G — e insinde K.

Since G is 2-connected, it does not contain a bridge, and thus G — e is connected.
Now look at G — D’ — e. Take the path P, from z to a. Since K — D’ is connected,
there is a path P, from a to b inside of K — D’. Now take the path P; from b to y
(this path goes through M and D). Together P, + P, + P53 forms a path from x to y
inG—D' —e,and P, + P, + P; + e forms a cycle in G — D’ using vertices from M,
and additional other. This cycle contradicts that the largest block of G — D was as
large as possible, since we can choose D’ instead to achieve larger block.

Now we prove that it is possible to choose D such that v(G — D) > v(D). Let D be a
diamond path in G, such that G — D is 2-connected, and such that v(G — D) is as
large as possible. If v(G — D) > v(D), then we are finished. Otherwise, consider
another diamond path D’ in G, such that the block in G — D’ containing D is as
large as possible. Since v(G — D) < v(D), we know that v(D’) < v(D). If G — D’
is 2-connected, then we have a contradiction since we chose D in such a way, that
G — D was as large as possible. If not, then G — D’ must contain a bridge e, and since
G — D is 2-connected, e can not be in D. Let A denote the component in G — D' —e
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containing D, and let B denote the block on the opposite side of e. Let x denote the
endpoint of e in B. Let y denote the endpoint of D’ in B.

<Po—o<Po—oP>o
D
yw
B D’ A

Since G is cubic, two different diamond paths D; and D, (different from D’) must
leave y inside B. Since G is 2-connected, there must exist a cycle through every
vertex of D; and D,. Now G — D; contradicts that the block in G — D’ containing D
was as large as possible, since removing D; instead of D’ would result in a larger
block containing both A and Ds. |

Theorem 4.2 If G is 2-connected, cubic and simple, 7(G) > 1—1171 . 8n/4,
Proof We do induction on the number of vertices n.

Basis of the induction Since %8”/ 4> Ln.8"4forn < 35, we know from ?? that

7(G) > ﬁn . 8"/4 is true for all cases where n < 35.

Induction step Let G have n vertices, n > 35. Assume the induction hypothesis,
that is, all graphs on k& < n vertices have at least %/@ - 8%/4 spanning trees.

Case 1 - G has a triangle: If G has a triangle {z, y, z} with neighbours {z/,y/, z'},
where 2’ i/, 2’ are pairwise distinct, construct G’ = G/{z,y, z}, reducing the number
of vertices by 2.

@G b &

For every spanning tree 7" in G’, we can extend it to three spanning trees in G by
the argument given in Case 1 of ??. Since we can extend each spanning tree in G’ in
three ways, we know that 7(G) > 37(G’), and now we have
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HG)>3-7(C) >3- %(n )82/ > %n8n/4

where the last inequality is true for n > 35. Since we assumed, n > 35, this is fine.

Case 2 - GG has an edge, not adjacent to a triangle: If G has an edge uv not
incident to a triangle, where the neighbours of u are x, y, v and where the neighbours
of v are z,w, u, construct G’ = G — {u,v} + {xy, zw}. Since wv is not incident to a
triangle, x, vy, z, w are pairwise distinct.

X z X z

Yy w Yy w
(@ (L)Nes

We remove 2 vertices when constructing G/, so we need (by the same argument as
in Case 1) to extend each spanning tree in G’ to three spanning trees in G. Since G
is 2-connected, this is possible by the argument given in Case 3 of the proof of ??.

Case 3 - All edges in G are incident to a vertex in a diamond: If G does not
contain any triangle not part of a diamond, and does not contain any edges not
incident to a vertex in a triangle, G must consist of diamonds.

Subcase 3.1 - GG is a closed diamond cycle: If every vertex of GG is in a diamond,
then G is a closed cycle of diamonds as illustrated in ??.

Figure 4.2: A closed diamond cycle.

In this case, the number of spanning trees can be counted in the following way. Let
q be the number of diamonds in G, that is v(G) = 4¢. To obtain a spanning tree
in G, we need to decide which edges to exclude to avoid creating a cycle. We can
either exclude one of the edges joining two diamonds or we can exclude some edges
inside a diamond. An edge between to diamonds can be chosen in ¢ ways, and for
each choice, we can choose the rest of the spanning tree in 87 ways since we have
8 possibilities for each of the ¢ diamonds. Likewise, we can pick a diamond in ¢
ways, and choose the rest of the spanning tree in 8¢ ways, since we can break the
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diamond in 8 ways (use ??, and count the number of spanning trees in K, with an
edge contracted), and have 87~! choices for the rest of the diamonds. In total, this
gives 7(G) = 2(q-87) = 5 - 8"/4, which is greater than the desired bound.
Subcase 3.2 - (G is multiple joined diamond cycles: If G contains vertices which
are not in a diamond, G consists of diamond cycles, joined together like illustrated
in ??.

Figure 4.3: Multiple diamond cycles joined together.

In this case, G has a diamond path D. Now construct G’ by removing D. By ??, we
can choose D in such a way that G—D is 2-connected and such that v(G—D) > v(D).
We denote the number of diamonds on D by ¢, and thus the number of vertices in
G’ is v(G) — 4q — 2. For every spanning tree 7" in G’, we extend it to a number of
spanning trees in G. Let a be the left neighbour of D and b be the right neighbour of
D. Let a have neighbours z, y outside of D and let b have neighbours z, w outside of
D. The way we extend a spanning tree in this case is like Case 3 in ??.

Subcase 3.2.1 - 7" uses both zy and 2w: Since G — D is 2-connected, there is a
path from one of z, y to one of z,w in G — D, assume z to z. Now a spanning tree
in G’ can be extended to a spanning tree in G in the following ways. Include ay
and bw but avoid one of za and zb, and choose a spanning tree for D, this results in
2 - 87 spanning trees. Otherwise, choose a spanning tree for D excluding a single
edge between two diamonds. This gives (¢ + 1) - 87 spanning trees. At last, choose
a spanning tree for D which is disconnected inside a diamond on D. This gives
additionally ¢ - 87 spanning trees. In total, this gives

2-87+q-87+(g+1)-87
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spanning trees in G for each spanning tree in G’. Now we need to show that

(2-87+¢-87+ (g+1)-89) - 7(G") > 7(G)

n—4q—2

1 1
9. __(n— — > __n-
(34 2q)8 11(n 4q—2)8 4 > " 8

ISH]

4q

(3+2¢)8% (n—4g—2)8" 1 >n.8i

8n/4 n
3+29)87-(n—4g—2 >n-84
(3+2q)87-( q )8‘1\/§_

1
3+2q¢)-(n—4¢g—2)—=2>n
(3+2q) - ( q )\/g—

By ??, we can pick D in such a way, that n > 8¢, and such that G — V(D) is still
2-connected. When this is the case, the inequality holds.

Subcase 3.2.2 - T’ uses neither xy nor zw: In this case, choose one of the four
edges za, ya, zb, wb, and for each of these, we can choose 87 spanning trees for the ¢
diamonds on D, this gives us 4 - 87 spanning trees. We can also choose one of za, ya
and one of zb, wb, and then choose a spanning tree in the diamond path excluding
one edge, this can be done in (¢ + 1)8% ways, giving us 4(¢q + 1)87 spanning trees. At
last, we can again take one of xa, ya and one of zb, wb and choose a spanning tree
in D where one of the diamonds is disconnected in the spanning tree. This can be
done in 4¢87 ways. This gives us a total of

4.8744(g+1)-81+4-q-8

spanning trees in G for each spanning tree in GG’. Since this is more than in Subcase
3.2.1, we have enough spanning trees in G.

Subcase 3.2.3 - T’ uses xy but not zw: In this case, we can extend a spanning
tree in the following ways. We can choose a spanning tree for D, excluding both zb
and wb, this can be done in 87 ways. We can use zb or wb and exclude az, and then
choose a spanning tree for D, giving additionally 2 - 87 spanning trees. We can use
zb or wb, and then choose a spanning tree for D excluding a single edge between
two diamonds, giving 2(q + 1)8¢ spanning trees. At last, we can use zb or wb, and
then choose a spanning tree for D which is disconnected inside a diamond on D
giving additionally 2¢8¢ trees. In total, this gives

3-8142.¢-87+2-(q+1)-87

ways to extend each spanning tree in G’ to a spanning tree in G. Since this is more
than in Subcase 3.2.1, we have enough spanning trees in G.

We have shown that, if G is 2-connected, cubic and simple, 7(G) > %8”/ 4 but it seems
like the correct bound is 7(G) > %8”/ 4, It is possible to construct graphs with this exact
number of spanning trees, by taking a cycle, and replacing every second edge with a
diamond, illustrated in ??. The number of spanning trees in such a closed diamond cycle
is %8"/ 4, which shows that our bound is asymptotically tight. We believe that the closed
diamond cycles are the 2-connected cubic graphs with the fewest possible spanning
trees.
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3-Connected Graphs

5.1 Another Counter Example to a Conjecture by Tutte

W. T. Tutte conjectured ! the following

Conjecture 5.1 Among all 3-connected planar graphs with 2m edges, the graph
with the smallest number of spanning trees is the wheel W,,,11 on m + 1 vertices.

But in 1976, [?] found an infinite series of graphs for which the number of spanning
trees is smaller than the wheels Tutte conjectured. The smallest graph in their con-
struction which was a counter example to Tutte’s Conjecture had 12 vertices and 30
edges.

5.1.1 The Counter Example

I present a graph (shown in ??) on 20 vertices and 30 edges, which has 1.755.600
spanning trees, this is less than W4 which also has 30 edges, but has 1.860.496 spanning
trees, and it is less than the smallest counter example presented in [?] which has
1.815.792 spanning trees.

5.1.2 A Construction

We describe the construction from [?]. Let P, be a path on k vertices. Define A,, (where
n > 3) to be P, o P,_5, where G o H is the graph consisting of G and H, where every
vertex in G is joined to every vertex in H. Thus, A,, has n vertices and 3n — 6 edges
and is illustrated in ??.

To show that A,, is a counter example to Conjecture ??, we need to determine 7(A4,,).
We use ?? on A, by contracting and deleting the edge in P, which we will denote e.

!This conjecture is not stated in any article published by Tutte. In [?], it is claimed that Tutte has
confirmed his conjecture in private communication with the authors.

33
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Figure 5.1: A 3-connected graph with 30 edges and 1.755.600 spanning trees.

AN <>

Figure 5.2: Different embeddings of Ag constructed by P, and Ps

Deleting e from A,, gives us a graph we will denote S,,, while contracting e in A,, gives
us a graph we will denote H,,_;. Thus we split the problem of determining 7(A,,) into
two cases, namely finding 7(S,,) and 7(H,).

AN <>

(a) anlen/e (b)S :Anfe

To find 7(H,,), we will find a set of recurrence relations and solve them. We consider
the following three graphs H,,, B, and C,, where n denote the number of vertices.

AN AN AN

(a) H; (b) B (o) Cr

By using ?? on H,,, we can - by contracting and deleting the bold edge - get the following
expression 7(H,) = 7(By) + 7(Cr—_1). In the same way, we can get expressions for
7(Byp) and 7(C,). In total, we get the following system of coupled linear recurrence
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relations.

T(Hy) = 7(By) + 7(Cp-1)
T(Bn) = T(Hn_l) + T(Cn_l)
7(Cp) = 7(Hyp) + 7(Cp-1)

Our goal is to find a single reccurence relation for H,,, which can be found by solving
the system of recurrence relations using regular substitution. We solve for 7(C),) in the
first relation, and plug this into the other equations
7(Bp) = 7(Hp—1) + 7(Hy) — 7(By)
T(Hn41) = 7(Bn1) = 27(Hn) — 7(By)

Then we solve for 7(B,,) in the first of these relations, and plug it into the other to
obtain a relation involving only H,,.

T(Hn) =+ T(Hn_l)

T(Bn) = 5
T(Hpy1) — 27(H,) = T(Hnﬂ); T(Hn) 7(Hn) +27(Hn1)

This gives 7(H,) = 47(H,—1) — 7(H,—2). We now have a single linear recurrence
relation for 7(H,) which we can solve using the theory described in ??. We guess that
7(H,) is on the form o™ so we get the equation

a® = 40/171 o an72

Let a; and ay be the two roots of this equation, then the general solution is on the
form Aaf + Bal. We divide by a2, so we get a? = 4a — 1, which we can solve to
get a = 24 /3. Now we know that 7(H,) = A(2 ++/3)" + B(2 — v/3)", where we can
solve for A and B by computing 7(H3) and 7(Hy).

(b) 7(H4) =30

Since 7(Hs) = 8 and 7(H,) = 30, we get A = 2v/3 — 1 and B = —%+/3 — 1. Thus, we
get the following expression for 7(H,,)

7(Hy,) = @\/3 - 1) 2+V3)" + (—zx/é— 1) (2-v3)"

We want to compute 7(A,,), this can be done using electrical network theory [?], and
the same approach is used in [?]. If we look at A,, as a two-terminal electrical network
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with the edges as branches of unit resistance, the vertices as nodes, and the vertices in
P, (during the construction of A,,) denoted s and ¢ as terminal nodes, then the quotient
Ry, called the driving point resistance between s and ¢, can be computed as

T(An/st)  T(Hp—1)

Bt = =040 = 74y

So if we can compute this quotient R, then we can also find 7(A,,) by the formula

T(An) = T(iztl)

This network can be visualized as shown in ??.

S

/A
o/
MAMA
VWY

t

Figure 5.3: A visualization of the electrical network used to compute the quotient R;. The
resistors are of unit resistance and the edge which is not a resistor is a voltage
generator.

When we have this network, we can compute Ry; by the methods described in [?, ?].
We start by inserting a voltage generator from s to t. Now the node-voltage in s is
1, and the node-voltage in ¢ is 0. Since the edge st is joined directly to s and ¢, the
voltage drop over this edge must be 1 — 0 = 1. If we consider one of the vertices
in the middle of the network (on P, _5), then we will compute the node-voltage in
this vertex. By [?], the node-voltage in a vertex v, can be found as the probability
that a random walk starting in v, reaches s before ¢. Now we can use the symme-
try of the network, to see that the node voltage must be 1/2 in all vertices except s and ¢.

The voltage drop over an edge, is the difference between the node-voltage in the
endpoints of the edge. This gives us the edge-voltages shown in ??.
Since all resistors in the network are of unit resistance, Ohm’s law gives us that I = V.
So every edge in the network, has the same current going through it, as the voltage
drop over it. Now we will calculate the current going from s to ¢. One unit of current is
flowing over st, and 1/2 unit over each of the other paths of length 2 going out of s.
There are n — 2 edges from s not going directly to ¢, so the total current is

1

I=-(n—-2)+1=

n
2 2
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Figure 5.4: The label on the edges show the voltage drop over the corresponding resistor. Since

V = R- I, and since all resistors are of unit resistance, the current through an edge
is equal to the voltage drop over the edge.

NI
[V

So we can find that R = r%/z = 2 and thus

) = NGt = ) B, )

where we can plug in our formula for 7(H,,_1)

T(An) =n <(15\/§(2 FV3) o é\/g@ B \/§)n—1>

To show that the graphs constructed in [?] has fewer spanning trees than the wheels,
we need a closed form for 7(W,,). This has been approached by first [?], and later

by [?, ?], but we will do the calculations ourselves. We consider 5 different graphs,
denoted w,,, ay, by, dy, €, Where n denote the number of vertices, shown in ??

LAV AViATeY

(a) we (b) as (c) bs (d) ds (e) es

Figure 5.5: The five families of graphs we use to find an explicit formula for the number of
spanning trees in the wheel. We use the Contraction-Deletion Theorem on the
emphasized edges, to find a system of recurrence relations.

Now we find the following set of recurrence relations by using the Contraction-Deletion
theorem on the bold edges, marked in the graphs.

) = 7(dn-1) + 7(wn-1)
T(bn) = 7(en) + 7(bn—1)
7(dn) = 7(dp—1) + 7(€n-1)
T(en) = 7(dp) + 7(en—1) = 7(en—1) + 7(bp—1)
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Our idea is, to show that 7(a,) and 7(d,) follow the same recurrence relation, and
then use that their sum 7(w,,) must also follow that recurrence relation. We start by
considering the two last equations for 7(d,,) and 7(ey,).

T(dp) = 7(dp-1) + 7(€n—1)
T(en) = 7(dp) + 7(€n—1)

Now we isolate 7(e,_1) in the first equation, and plug it into the second equation to
obtain
(7(dnt1) = 7(dn)) = 7(dn) + (7(dn) — 7(dn-1))

which reduces to
T(dnt1) = 37(dy) — 7(dp—1)

When we have this, we change the index and get the following equation
7(dn) = 37(dp—1) — 7(dp—2) = 0 = 7(dy) — 37(dp—1) + 7(dp—2)
we change the index again, to get
0=7(dn-1) — 37(dp—2) + 7(dp—3)
and then we subtract these two equations with different index from each other to get

0—0=(r(dyp) — 37(dn-1) + 7(dn—2)) — (7(dp—1) — 37(dp—2) + 7(dn—3))
0=17(dp) — 47(dp—1) + 47(dpn—2) — 7(dn—3)

which is our final recurrence relation for 7(d,,). From the last relation, we can see that
T(bp—1) = 7(dy). Which we plug into the first relation 7(w,) = 7(an) + 7(bn-1)

T(wnp—1) = 7(an-1) + 7(dp-1)
Now, we plug this into the second relation 7(a,) = 7(d,—1) + 7(w,—1) to obtain
T(an) = 7(dp-1) + 7(wp-1) = 7(dp—1) + (7(an-1) + 7(dn-1)) = 7(an-1) + 27(dp—1)

thus giving
T(an) — T(an-1) = 27(dp—-1)
We showed that 0 = 7(d,,—1) — 37(dp,—2) + 7(dr—3), and from this we obtain

2-0=2(1(dp-1) — 37(dp—2) + 7(dy—3))
0=27(dp—1) — 2-37(dp—2) + 27(dp—3)
0= (r(an) — 7{an 1)) — B(r(an1) — 7(an-)) + (r{an_2) — 7(an_3))
0=7(ay) —47(an—1) +47(an—2) — 7(an—3)

which is the final recurrence relation for 7(a, ). Now we have that both 7(a,) and 7(d,,)
follow the recurrence relation 0 = x,, — 4x,,_1 + 4x,,_2 — z,,_3, and therefore, their
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sum 7(wy) must follow the same recurrence relation. Now we guess for a solution
T(wy) = a™.
0=a" — 40(”71 4 40("72 o anf?)

and divide by a3 to get
0=0—4a’+4a—1

Now, if a1, a9, a3 are the three roots of this equation, then
Ao’ + Bay + Cay

is the general solution to the recurrence relation. We see that a; = 1 is a root in the
equation, and isolate (a — 1) to get

0=(a—1)(a®—3a+1)

where the last factor has roots

3+v9—-4 3++5
a: =
2 2

So we have the general solution

A (32\/5) +B (3 _2\@) +C

We compute the initial conditions and get

T(W3) =16 7(Wy) =45 7(W5) =121

Now we solve with these initial conditions, to obtain the values A=1,B=1,C = -2,
giving the final equation for the number of spanning trees in the wheel on n vertices

(W) = <3+\/5> . (3—\/5> y
2 2
If we consider A, which has 30 edges, and the wheel W5 on 30 edges, we get the

following number of spanning trees 7(A12) = 1815792, and 7(W1) = 1860496. This
shows, that A,, is a counter example to ??.

Not only is the graphs constructed in [?] a counter example to the conjecture by Tutte,
but they actually have a smaller order of growth than the wheel graphs. We want to

compare N "
(5 ()

7(An) =n (éx@(z +V3) - é\/§(2 _ \/g)m)

to
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We start by determining their individual asymptotic growth

345\
w=o((*57) )

7(A) = O (n(2+ V)" )

Since Tutte’s Conjecture is based on the number of edges in the graph, we will rewrite
7(Ay) and 7(W,,) to depend on the number of edges m. The wheel graph on m edges,
has mT” vertices, and the graphs constructed by [?] with m edges has mT*G vertices. So
we will compare

m—+2

3+v5\ 345\
naeof(357)7) o

with

7(An) =0 <mg+6(2 + x/§)m§6) -0 <m(2 " \/5)%)

We consider the limit

since )
<3+\/5>5
—t=>1.04>1
(24V3)3

this implies that A,, grows asymptotically slower than W,,.

5.2 Generating All Minimal 3-Connected Graphs

To achieve a lower bound on the number of spanning trees in 3-connected graphs,
one can generate all 3-connected graphs on n vertices for small n. Unfortunately, the
number of 3-connected graphs on n vertices, grows very fast, so even for relatively
small n, generating them all is impossible.

One key observation to make, is that the 3-connected graph on n vertices with the
fewest possible spanning trees is minimally 3-connected. Here minimally 3-connected
means that the graph is 3-connected, but that the removal of any edge would reduce
the connectivity. If it was not the case that the graph with fewest spanning trees was
minimal, there would - by definition - be an edge which could be removed without
losing 3-connectivity. Removing an edge in a 3-connected graph will reduce the number



CONNECTED GRAPHS WITH FEWEST SPANNING TREES 41

of spanning trees (can easily be seen by the contraction-deletion theorem). The number
of 3-connected graphs is given by the sequence A006290 in OEIS? and the number of
minimally 3-connected graphs, is based on our computations.

Vertices | 3-connected graphs | Minimally 3-connected graphs
4 1 1
5 3 1
6 17 3
7 136 5
8 2.388 18
9 80.890 57
10 5.114.079 285
11 573.273.505 1.513

So instead of generating all 3-connected graphs, one can create all minimal 3-connected
graphs on small n, compute the number of spanning trees in each, and in that way,
find the 3-connected graphs with fewest spanning trees. The naive way to generate
the minimally 3-connected graphs, is to create all 3-connected graphs, and then check
minimality for all of them. A better way to approach the problem, is to only generate
the minimally 3-connected graphs. A constructive characterization of the minimally
3-connected graphs has been given by [?]. The construction uses three operations, and
only need K, as the starting set. We will describe the construction, and use a slight
variation of it to generate the minimally 3-connected graphs for small n.

5.2.1 The Construction

To describe the construction, we need some definitions.

Definition 5.1 (Chording path) In a graph G, a path P is said to be a chording
path, if some edge e € E(P) chords a cycle C in G, such that C' has no intersection
with P other than at the end-vertices of e.

The construction uses 3 operations, and to perform these operations, the following
definition of a 3-compatible set is important.

Definition 5.2 (3-compatible set) Let G be a graph. A set S of vertices and/or
edges in G is 3-compatible if it conforms to one of the following three types

Type 1: S = {x,ab} where z is a vertex of G, ab is an edge of G, x # a and x # b,
and no za-path or xzb-path is a chording path of G — ab.

Type 2: S = {ab,cd} where ab and cd are distinct edges of G, and no ac-path, bc-
path, ad-path or bd-path is a chording path of G — ab — cd.

2The On-Line Encyclopedia of Integer Sequences: http://oeis.org/A006290
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Type 3: S = {x,y,z} where x,y and z are distinct vertices of G and no xy-path,
xz-path or yz-path is a chording path of G.

The starting set of the construction, is the smallest 3-connected graph, K. From
this starting set, the three operations are used to construct precisely the minimally
3-connected graphs.

Operation 1 Let x be a vertex and ab be a non adjacent edge. Operation 1 subdivides
ab with a new vertex y and joins x to y.

a a
pae; — T

b b
Figure 5.6: Operation 1

Operation 2 Let ab and cd be edges. Operation 2 subdivides ab with a vertex x and
subdivides cd with a vertex y and then joins x and y.

a C a C

b d b d
Figure 5.7: Operation 2

Operation 3 Let z,y, z be distinct vertices. Operation 3 adds a new vertex w and joins
z to w, y to w and z to w.

Yo Y
e} — T

Z0O z

Figure 5.8: Operation 3

If one wishes to construct exactly the minimal 3-connected graphs, then the 3 operations
can only be applied to 3-compatible sets. Let H be a 3-connected graph, and assume
we want to construct G from H. If we construct G by applying an operation to any set
S in H, then G is also 3-connected. But if H was minimally 3-connected, and the set S
was not 3-compatible, then G is not guaranteed to be minimally 3-connected.
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5.2.2 Implementation

We want to use the construction to generate the minimally 3-connected graphs. In
practice, determining if a set S is 3-compatible can be done in polynomial time, but is
not simple to do. We will use a simpler - yet not as effective - way to find the minimally
3-connected graphs.

Suppose we have all minimally 3-connected graphs on n vertices, and want to construct
all minimally 3-connected graphs on n + 1 vertices. Instead of only applying the three
operations on 3-compatible sets, we will apply them to all possible sets. This results in
all the minimally 3-connected graphs n+ 1 vertices, but also results in some 3-connected
graphs on n + 1 vertices which are not minimal. To reduce the set to only contain the
minimally 3-connected graphs, we will perform a minimality check on each of them.
Determining whether a graph is minimally 3-connected, can be done in polynomial
time, and is simple to implement (using Mengers Theorem and Network Flow [?]).
When the non minimally 3-connected graphs have been removed, we are left with
all the minimally 3-connected graphs. If we compare all the minimally 3-connected
graphs for isomorphism, we will reduce the set to consist of exactly the non-isomorphic
minimally 3-connected graphs on n + 1 vertices.

A simple Python program was implemented to generate the set of minimally 3-connected
graphs on n vertices, and to find the 3-connected graphs with the fewest spanning trees.
The program is in ??. The 3-connected graphs with fewest spanning trees on 4 — 13
vertices are shown in ??.

AXDPry

@r=16 (b) 7 =45 (©7="75 (d) 7 =209 (e) 7 =336
) = 928 (g) 7 = 1.445 (h) 7 = 3.965 () 7 = 6.000 G) 7 = 16.555

Figure 5.9: The 3-connected graphs with fewest spanning trees for n = 4...13, and for each,
its number of spanning trees.
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5.3 Open Problems

Here we present some open problems and conjectures. It seems intuitively correct, that
the 3-connected graphs with fewest spanning trees, have as few edges as possible. The
computational experiments in ?? also suggest this.

Conjecture 5.2 The 3-connected graphs on n vertices with the fewest spanning
trees, has [3n] edges.

The connected graphs with fewest spanning trees are trees, and the 2-connected graphs
with fewest spanning trees are cycles. It is not clear what we can say about 3-connected
graphs, but planarity seems plausible.

Conjecture 5.3 The 3-connected graphs on n vertices with the fewest spanning
trees are planar.

It seems like the bound given in ?? is too low.

Problem If G is 2-connected, cubic and simple, is it possible to find a better lower
bound than 7(G) > n - 87/4?



Chapter 6

Concluding Remarks

The bound given on the number of spanning trees in 2-connected cubic graphs does
not seem as tight as possible, and perhaps it is possible to choose a different set of
degenerative operations, leading to a better bound.

Many classes of graphs exist for which we have no tight lower bounds on the number
of spanning trees, and the 3-connected cubic graphs is one of the simplest which gives
rise to some interesting complex questions. The structural properties of a graph leading
to a large number of spanning trees is very difficult to get an intuition about, and
for 3-connected graphs, it was not even possible to state a conjecture about which
graphs give the lower bound. It is possible that further numerical experiments might
help formulate a conjecture for the 3-connected graphs, but it is also possible that the
behaviour is so complex that this will never happen.

We employed an inductive proof technique to show the lower bounds, but there might
be more suitable methods for proving lower bounds in more complex classes of graphs.
One example is the Laplacian Matrix, which utilizes linear algebra to count spanning
trees.

45






Chapter A

Small Connected Cubic Multigraphs

We show the cubic connected multigraphs on 4 and 6 vertices. These were found by an

exhaustive search by hand.

(@) r=12 (b) =16

Figure A.1: Connected cubic multigraphs on 4 vertices

LOHLN

(@A 7r=25 (b) - =36 (c) T=45 (d) 7 =56 (e)T=75 ) r=281

Figure A.2: Connected cubic multigraphs on 6 vertices
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Chapter B

Small Connected Cubic Simple Graphs

Here we show all simple, connected, cubic graphs on 6 to 12 vertices, and their number
of spanning trees. These have been found using Mathematica. Here is the Mathematica
code for finding the graphs on 8 vertices.

count [name_] := GraphData[name, "SpanningTreeCount"];

showCount [name_] :=Show [GraphData@name, PlotLabel -> count@name];
showLabeledCount [name_] := Tooltip[showCount@name ,name] ;

graphs = GraphData[{"Cubic","Connected"}, 8];

pics = ArrayPad([pics, {0,2}, Graphics[]];
GraphicsGrid@Partition [pics, 3]
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Chapter C

Python Code

The following code was implemented to generate the small minimally 3-connected
graphs. It uses the construction described in ??.

C.1 specialGraphs.py

from igraph import *

def CompleteGraph(mn):
g = Graph(n)

for i in range(n):
for j in range(i+1,n):
g.add_edges ([(i,3)])

return g

def Wheel(n):
g = Graph(n+1)

# Create spokes
for i in range(l,n+1):
g.add_edges ([(0,1i)]1)

# Create circle

for i in range(l,n):
g.add_edges ([(i,i+1)])

g.add_edges([(1,n)])

return g

def Prism(n):
g = Graph(2%*n)

53



54 CHAPTER C. PYTHON CODE

# Create outer circle

for i in range(n-1):
g.add_edges ([(i,i+1)])

g.add_edges ([(0,n-1)1)

# Create inner circle

for i in range(n,2*n-1):
g.add_edges ([(i,i+1)])

g.add_edges ([(n,2*n-1)1)

# Connect circles
for i in range(n):
g.add_edges([(i,i+n)]1)

return g

C.2 spanningTree.py

from igraph import =*
import numpy

def numberOfSpanningTrees (g):
# Get Laplacian Matrix
la = g.laplacian()

# Get Cofactor

del 1a[O0]

for r in la:
del r[O0]

# Compute determinant
return numpy.linalg.det(la)

C.3 minimal.py

from igraph import =*

import os

from specialGraphs import *
from spanningTree import *
import numpy

import cProfile

visual_style = {}
visual_style["vertex_size"] = 10
visual_style["vertex_color"] = "white"
visual_style["edge_width"] =
visual_style["layout"] = "kk"
visual_style["margin"] = 20
visual_style["vertex_label"]

[

None
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minNumberOfSpanningTrees = [0 for j in range(20)]
minGraphs = [0 for j in range (20)]

treemap = {}

def

def

def

def

saveGraph(g) :
found = False

numspan = int (round (numberOfSpanningTrees(g))+0.1)

if treemap.has_key(numspan):
for h in treemap[numspan]:
if g.isomorphic (h):
found = True
return

if not isMinimal(g):
return

if found == False:
if treemap.has_key(numspan):
treemap [numspan] . append (g)
else:
treemap [numspan] = [g]

operationl1(G,x,a,b):
G.add_vertices (1)

y = G.vcount ()-1

G.add_edges (((x,y),(a,y),(b,y)))
G.delete_edges (G.get_eid(a,b))
return G

operation2(G,ab,cd):
.add_vertices (2)

G.vcount () -1

= y-1

= ab[0]

ab[1]

= cd[0]

= cd[1]

.delete_edges ((G.get_eid(a,b),G.get_eid(c,d)))
.add_edges (((a,x),(b,x),(c,y),(d,y),(x,y)))

return G

Q Q0 TP X< Q
1]

operation3(G,x,y,z):
G.add_vertices (1)

w = G.vcount ()-1
G.add_edges (((x,w), (y,w),(z,w)))
return G
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def buildGraphs0fSize(n):

print "Starting", n
global treemap
treemap = {}

if not os.path.isdir("./" + str(n) + "-vertices"):
os.mkdir("./" + str(n) + "-vertices")
numn = len(os.listdir("./" + str(n) + "-vertices"))
if n>4:
numnminusl = len(os.listdir("./" + str(n-1) + "-vertices
ll))
if n>5:
numnminus?2 = len(os.listdir("./" + str(n-2) + "-vertices
ll))
if numn !'= O:
print "Already computed on ",n,"vertices"
return
if n > b5:
print "Building on", numnminusl + numnminus?2, "graphs"
elif n == 5:
print "Building on", numnminusl, "graphs"
else:

print "Not building on any graphs"

if numnminusl !'= 0:
for i in range (numnminusil):
if i%10 == O0:
print i
g = Graph.Read_Pajek("./" + str(n-1) + "-vertices/
graph" + str(i) + ".net")

#0peration 1 - Find a vertex, and a non-adjacent
edge
for x in range(g.vcount()):
for e in g.get_edgelist ():
if e[0] != x and e[1] != x:
# Perform Uperation 1
saveGraph (operationl(g.copy() ,x,e[0],e[1
1)

#0peration 3 - Find three distinct vertices
for x in range(g.vcount()):
for y in range(x,g.vcount ()):
for z in range(y,g.vcount ()):
if x != y and y '= z and x != z:
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if x not in g.neighbors(y) and x not
in g.neighbors(z) and y not in g
.neighbors(z):
# Perform Operation 3
saveGraph (operation3(g.copy() ,x,

y,2))
else:
print "Need Graphs of size",(n-1),"first"

# For every graph on n-2 vertices (Operation 2)

if n > b5:
if numnminus2 != O0:
for i in range(numnminus?2):
if i%10 == 0:
print i
g = Graph.Read_Pajek("./" + str(n-2) + "-
vertices/graph" + str(i) + ".net")
for ab in g.get_edgelist():
for cd in g.get_edgelist():
if ab != cd:
# Perform (Operation 2
saveGraph (operation2(g.copy () ,ab,cd)
)
else:

print "Need Graphs of size",(n-2),"first"

n

#print "There is ", len(graphs_1lib[n]), graphs on ", n,

vertices"

def saveGraphs(n):
global treemap
print "Saving", n
i=20
if n>4:
print treemap.values ()
for g in treemap.values () :#graphs_lib[n]:
#plot(g, **visual_style)

gl0] .write_pajek("./" + str(n) + "-vertices/graph" +
str(i) + ".net")
i=1i+1

def isMinimal (G):
for e in G.get_edgelist():
temp_edge = e

if G.degree(e[0]) > 3 and G.degree(e[1]) > 3:
G.delete_edges (G.get_eid(e[0],e[1]))
if G.vertex_disjoint_paths(e[0],e[1]) == 3:
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def

return False
G.add_edges (temp_edge)

return True

findMinimumGraph (n) :
global minGraphs

for

n

i in range(len(os.listdir("./" + str(n) + "-vertices")))

g = Graph.Read_Pajek("./" + str(m) + "-vertices/graph" +
str(i) + ".net")

numspan = numberOfSpanningTrees(g)

if int(numspan) < int(minNumberOfSpanningTrees[g.vcount (

)1) or int(minNumberOfSpanningTrees[g.vcount()]) == 0
print "Found graph on ", g.vcount(), " vertices with
", numspan, " spanning trees"
minGraphs [g.vcount ()] = [g]
minNumberOfSpanningTrees [g.vcount ()] = numspan
elif int(numspan) == int(minNumberOfSpanningTreesl[g.

vcount ()]):

print "Found another graph on ", g.vcount(), "
vertices with ", numspan, " spanning trees"

minGraphs [g.vcount ()] .append(g)

def myPlotter (G):
G.layout_kamada_kawai ()
G.layout_fruchterman_reingold ()
plot (G,**visual_style)

def

plotGraphList (Graphs):
width = 200
cols = 3

num
for

el
]

for

=0
G in Graphs:
if G !'= 0:
if type(G[O0]).__
num = num+1

name__ == "Graph":

Plot("test.png",bbox=(0,0,cols*width, (1+int((num-1)/
cols))*width))

G in Graphs:
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if G !'= O:
if type(G[0]).__name__ == "Graph":
hpos = iYcols
vpos = int(i/cols)

p-add (G[0], (hpos*width, vpos*width, hpos*width+
width, vpos*width+width) ,**visual_style)
i=1i+1

print (0,0,cols*width, (1+int((i-1)/cols))*width)
p-show ()
p-save()



