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Evolutionary trees of btology are represented by q spectal class of labelled
trees, termed phylogenetic trees, These are characterised by having disjoint subsets
of the labelling set assigned to the points of a tree, in such a vay that no point of
degree less than 3 is assigned an empty set of labels. By a binary tree is meant one
in which every point has degree 1 or 3. The exact and asymptotic numbers of binary
phylogenetic trees are determined under the presence or absence of two additional
conditions on the labelling. The optional constraints studied require nonempty label
sets to be singletons, and that only endpoints be labelled.

1. INTRODUCTION

Biologists often generate phylogenetic (evolutionary) trees from protein

sequence data; see [2],03],0[4] and [8]. Determination of a common ancestor, or
root, is based on separate criteria. [t is common for the directed rooted tree so
created to be binary. The trees considered here are binary trees, in which every
point has degree 1 or 3. An evolutionary tree is labelled with the names of known
species. If two species are not distinguished by the protein sequences under study
then they are assigned to the same point in the tree. Conversely, it is often
convenient to hypothesize common ancestors for whom no direct evidence is known, and
* .se become points to which no name at all is assigned. Of course, a hypothetical
g;nt with no name would not have degree 1, because including such a point would

S€rve no purpose in explaining the biological evidence.

As a mathematical model of an evolutionary tree containing n known species
we take a binary tree labelled by an assignment of the label set {1,...,n} to points
so that every endpoint receives at least one label. Such a tree is called a binary
phylogenetic tree. The number n of labels is termed the magnitude of the
phylogenetic tree, and the number of points in it is termed the order. A planted
binary tree is one with a distinguished endpoint called the root. This corresponds
to the common ancestor in an evolutionary tree. Since the root is already distinguished

We never assign it a label.

The exact and asymptotic numbers of phylogenetic trees with given magnitude,

along with the dverage and variance of their orders, were determined in [5]. This

* The second author is grateful for the support of the Australian Research Grants
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was also accomplished under the restriction to 1-1 labellings. In the present paper
we perform the same analysis for binary phylogenetic trees, but in addition, study
the effect of restricting the labelling to endpoints. This gives a total of four
cases to study. The calculations are facilitated by the particularly simple form of
the most restricted case, and the fact that the other three can then be obtained

by algebraic transformations of the exponential generating functions.

2. LABELLING RESTRICTED TO ENDPOINTS AND 1-1

The simplest case is the most restricted, being binary phylogenetic trees
with 1-1 labelling and no interior points labelled. It is a standard result that the

. : =3 . . .
number of such trees with n endpoints is nn (2i+1). Direct combinatorial proofs of
i=0
this fact appear in [2,p.241] and [3,p.28]; a more elaborate proof involving genera-

ting functions is given in [8,pp.51-521. In [9,p.72] it is pointed out that this is
a corollary of Priifer's proof of Cayley's result that there are nn-2 labelled trees.
Here the labelling is 1-1 onto all the points, and the proof gives a 1-1

correspondence between trees and sequences of length n-2 from the label set. It was

noted by Priifer [10] that each point of degree d is represented in its sequence

exactly d-1 times. Thus if 1,...,n are reserved for labelling the endpoints of a
binary tree and n+l,...,2n-2 for labelling the interior points, then there are
(2n—4)!/2n-2 sequences in which the latter occur exactly twice each. We simply

divide by (n-2)! for the labellings on the interior points, and find that the number

with just endpoints labelled is

213+ ... (2n-5),

(2n-4)1/(n-2)12""
as claimed.
If we denote by Tn the number of binary trees of magnitude n in this case

we have, by the above discussion, Ty =0, T, =1, and

T = nﬁJ (21+1) (2.1)
n .
i=0

for n > 3. It is clear that in a binary tree the number of endpoints exceeds the
number of interior points by exactly 2. Thus each binary tree of magnitude n has
order 2n-2. We denote by R, the sum of the orders p of the binary trees of

magnitude n, so that
R_ = (2n-2)T . (2.2)
n n
for n 2 1. Also, denote by Sn the sum of p(p-1), which gives

Sn = (2n—2)(2n-3)Tn (2.3)

for n > 1. In general, Ry and S are needed in order to determine the average [
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and variance vy of the order for the trees of magnitude n. The relationsforn ; 1

are:

un = Rn/Tn ’

<
1

-2 .4
Sn/TnI'un Yh o (2.4)

Of course in this case un = 2n-2 and vn = 0, but Rn and Sn will be useful for the

three cases considered later.

Let Pn denote the number of planted binary trees of magnitude n. Since the
root is not labelled this means there are exactly n+l endpoints in such a planted
tree. If the root point is labelled with the number n+l and then unrooted, the
result is an ordinary binary tree of magnitude n+l. This process gives a 1-1

correspondence, so that

P =T (2.5)

for n > 1.

In order to obtain asymptotic estimates we need the exponential generating
functions T(x), R(x), S(x) and P(x) for these four sequences. From (2.1) and the

binomial theorem we have

T(x) = _é +x+§(1—2x)3/2. (2.6)

By Stirling's formula it can be seen that the coefficient of <" in (l—xj-S is

n s(s-1) 1
F(S) (1+———2n + O(Hz—)) (2.7)
as long as s # 0,-1,-2,... Thus
n
__nl2 15 1.
T, = FRVRTE A+gr+ 0. (2.8)

Similarly one has
P(x) = 1- @-2x)1/2, (2.9)

and n
n!2 3

P =—(1+-8_]'T+

1
n = 5 172372 0(;z)) - (2.10)

From (2.2) it follows that

R(x) = 2xT'(x) - 2T(x),



so from (2.6) we have

R(x)

§-§(1+x)(1_2x)1/2. (2.11)

Likewise, (2.3) gives

S(X) = 4x°T"(x) - 6xT' (x) +6T(x),

and combining with (2.6) yields

S(O = -2+ 2(1-x) (1-20) 2, (2.12)

3. LABELLING RESTRICTED TO ENDPOINTS

This case differs from the previous one in allowing more than one label
to be assigned to an endpoint. Interior points are still not allowed labels. Thus
whereas the exponential generating function for labelling a single endpoint was X,
it is now eX-1. This is because an endpoint may receive 1,2,3,... labels. For any
k > 1 there is just one way to assign k labels to a point. Interleaving of label
sets is accounted for in multiplying exponential generating functions together; see
[6,Chapter 1] for an account of the uses of exponential generating functions in
labelled enumeration. Thus T(ex-l) is the exponential generating function by
magnitude for binary phylogenetic trees in which interior points are not labelled.
Similarly R(ex-l), S(ex-l) and P(ex—l) give exponential generating functions for the
sum of the order p, the sum of p(p-1) and the number of planted trees, respectively.

We denote these generating functions by ?(x), i(x), E(x) and F(x).

Substitition of ex-l for x in (2.6), (2.11), (2.12) and (2.9) gives

T = - hei-2e9%2,

R = 2-2%G-2e92, .
S00 = -2+ (4-2¢%) (3-2¢%) 12

P = 1- (3-22012

Recurrence relations for ¥n’ ﬁn’ gn and Pn could be deduced directly from these
equations. However for numerical purposes it is easier to start with the simple

expression for Tn, Rn’ Sn and Pn provided in Section 2. From the fact that

(ex-l)k/k! is the exponential generating function

E S(n,k)xn/n!
n=0

for Stirling numbers of the second kind, it follows that



: i .
L. T = kZZ S(n, k)T, (3.2)

for n > 2. The analogous equations hold for En’ Sn and Pn. In the latter case the

sum must include k = 1, and the result is also valid for n = 1. Stirling numbers

are readily calculated from the recurrence
S(n+l,k) = S(n,k-1) + kS(n,k),

which holds for k > 1, and from the boundary conditions §$(0,0) = 1, S(0,k) = 0 if
k> 0and S(n,0) = 0 if n > 0.

Roughly speaking, the asymptotic behaviour of ¥n is dftermined by the
radius of convergence p of the exponential generating function T(x). From (3.1) it
is evident that E = 1ln 3/2, that E is also the radius of convergence of ﬁ(x), §(x)
and 5(x), and that in each case the point x = 3 is the sole singularity on the
circle of convergence. It is then classical (see [1,Theorem 4] or [7,p.489]) that
an expansion of the generating function in powers of (l—x/;)Li can be used in
conjunction with (2.7) to determine the precise asymptotic growth rate of the
coefficients. The first two odd powers are sufficient to give the nth coefficient
with a factor of (1+0(£§)).

Because e” = 3/2 we have

3-26"° = 3F(1-x/3) (1 —g(l-x/ﬁ')t...),

Land so from (3.1)

T(x) =

/2 33/255/2

a2 - Ve

31/2/53/2

Summing the contributions of these two terms according to (2.7) yields

3/2.3/2 ~
~ _ 3775 n! 15(1+p) 1
Th = PRYLIERTP U+ =5 o) - (3.3)

In the same fashion, the other three expressions in (3.1) can be expanded, with the

following results:

1/2.1/2 N
~ RV 3(1+55) 1.,
Ry, = =172 72 0t Tan t O (3.4)
2w n’'p
-1/2.-1/2 N
B nl 14133 1.,
5q ° 172 T7zon & - gt OGP (3.5
T n'’p
1/2.1/2 N
~ 3 ) n! 3(1+p) 1
5 - (1 + « 0(=)). (3.6)
n 2"1/2 nS/ZSn 8n n
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The mean u, and variance U of the number of points in the binary trees of
n

magnitude n in this case are given by the obvious analogue of (2.4)

My = Rn/Tn,
v
n

S /T Y
(Sn/Tn) Yugo-up (3.7
Thus (3.3), (3.4) and (3.5) can be immediately applied, resulting in

_2n 3 1
_ﬁ(l_Q—ﬂ' + O(nz))

n
~ _ 4(1-2p)n 1
\)n = T ¢! +O(ﬁ)). (3.8)

4. 1-1 LABELLING

This case differs from the first case in allowing interior points to be
labelled. Let Th denote the number of trees of magnitude n under this labelling
convention. Likewise, let R, and Sn denote the totals of the order p and of p(p-1)
respectively, over these Th trees. Finally, let 5; be the number of planted trees of
magnitude n. As usual, we denote the exponential generating functions of these four

sequences by T(x), R(x), S(x) and P(x).

Since labelling is optional for interior points, and at most one label can
be assigned to each, the exponential generating function of the labelling possibilities
for an interior point is 1+x. For a tree with n endpoints there are n - 2 interior
points. Each endpoint is labelled, so labelling possibilities for an endpoint has x
as its exponential generating function. Thus each 1-1 labelled basic tree with
magritude n and only endpoints labelled gives rise to a number of compatible versions
in which interior points may be labelled, and these have xn(1+x)n-2 as exponential
generating function. Summing over all Tn basic trees and then over all n > 2, this

gives
T(x) = T(x+x2)/(l+x)2. (4.1)
It is now easy to obtain a recurrence for Th. Putting the equation in the
form

T(x) = -2xT(x) - x2T(x} + T(x+x2)

and comparing coefficients of x"/n! yields
Ln/2)
= _ = = ny n-k..
T, = -2nT | -n(-DT , + kZO G CIKT (4.2)
for n > 2. Here Tg = 0 and T; = 0 are needed as boundary conditions. Exactly the

same transformation gives R(x) from R(x) and S(x) from S(x), so recurrence relations
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{: analagous to (4.2) are valid for E; and 5;.

In a planted tree the root is an endpoint which is not labelled, so with n

labelled endpoints there are n- 1 interior points which might be labelled. This gives

P(x) = P(x+x2)/ (1+x), (4.3)
and

_ _ Ln/2

R ) (E)(“;k)kzpn_k (4.4)

for n > 2 with P} = 1.

Explicit expressions for the exponential generating functions can be found
at once from (2.6), (2.9), (2.11) and (2.12):

1- (l-2x-2x2)1/2.

—ﬁ(X) = T+ x .
372

_ 2 —2(1+x+x2)(1_2x_2x2)1(2

"0 3I(1+x)2 f

S(x) = =2+ 2(1-x-x?) (1-2x-2x2) " 1/%

(L+x)2

In each case the radius of convergence is p = (¥3-1)/2, and x = § is the sole

singularity on the circle of convergence. We have 1+ = 1/205, so that
1 - -
IL+x = — (1-20(6-x))
20

and

1-2x-222 = 2350 (1 -1 (5-x)).
Y3

-k
Substituting into (4.5), one finds the first two odd powers of (l-x/p)*. Finally,
(2.7) is applied, to give the following asymptotic estimates:

1/2.1/4 -3/2
2777377, n! 11/3 - 18 . NN
n = 172 520 4 T 0G)s
m n P
1/2,3/4 -3/2
= 2713 (2-Y3)p n! 5(7/%3-10) . orday.
The = 172 5728 1t g 0
kit n o]
1/2.1/4 -1/2
= _ 277370, n! 19/3-30 .+ orlyy.
Ry = 177 35720 4t T 0 (4.6)
T n 0
1/2,1/4 ~-1/2
- 2773 2/, a! 90-37/3 1
Sy 7 Tr1/2 1/25n (- 24n 0).
n

The mean in and the variance Gn of the order for trees of magnitude n are

found from T;, ﬁh and §£ just as in (3.7) for the previous case. Asymptotic estimates

.
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then follow from (4.6);

- _ n 435 1
un - ;—_ (l _T+ O(HT_))’
P
(4.7)
and
- _ (2/3-3)n 1
Uy T T (1 0().

9
The recurrence relations (4.2) and (4.3) for T and P require 0(n?)
arithmetic operations to compute the values up to n, even given that Tk is available
already for k ¢ n. Improved recurrences can be obtained directly from (4.5) by
differentiating the explicit expressions for the generating functions, simplifying
and then comparing coefficients of xn/n!. In this way one finds:

P
n

(n-s)Fn_l + (n-1) (4n-9)En_2 + 2(n_1)(n-2)(n-3)ﬁn_3 (4.8)

for n » 3, with Py = 0, P, = 1 and P, = 1;

Tn = Pn_]7+ 2(n-1) Pn_2 - (n+1) Tn_1 (4.9)
for n 3 3, with T, = 1;
R o= -R, +2mm-1)F _+nb +P) (4.10)
n n-1 3 n-2 n-1 n :
forn > 3, with Ry = 2;
Sn = nSn_l +4n(n-I)Sn_2+ 2n(n-l)(n-2)Sn_3

- Z(Fn—nﬁn_l—n(n-l)i (4.11)

n—2)

for n > 3, with §é = 2. These relations only require O(n) arithmetic operations
in order to calculate values of Pk, Tk’ ﬁk or §k for k ¢ n.

5. UNRESTRICTED LABELLING

The final case allows all binary labelled trees, including the possibility
of multiple labels and labels for interior points. As for any phylogenetic trees, it
is still the case that each endpoint must be assigned at least one label. This
differs from the previous case only in allowing multiple labels, so the relation of
this section to the previous section is exactly the same as the relation of Section 3
to Section 2. We denote the number of trees of magnitude n by T , and the number of
planted trees by P - Similarly, the sum of the order p and the sum of p(p-1) for
magnltude n trees are denoted R and S . The exponential generating functions are
T(x), P(x) R(x) and §(x) respect1vely These are obtained from T(x), P(x), R(x)

and S(x) by replacing x with e*- 1. Thus the exact numbers are related by



1
P = . 1 + 0
L n 2171/2 nZ’>/26n (L 8n (Fz_))

N R WA MY RPEICETCR T TN

n 21/2"1/2 n5/26n 8n HT ’

(5.3)
R O et R R T (14380056 | o1
n 1/2 3/2.n 8n n2’’
ki1 n P
s . 22 EHER %Y L 3+p (66+13/3) 1
Sn = "1/2 .nT/-Za—n (1 -T + O(FZ—)).

.:‘ n _
i L T = kzz S(n, k)T, (5.1)

for n » 2, which is similar to (3.2). Of course R 0’ én and P are calculated
analogously from the corresponding numbers determlned in the prev1ous section, In

the case of Pn the sum starts at k = 1 and the result is valid for n = 1.

To obtain the exponential generating functions explicitly one need only

substitute eX -1 for x in (4.5). The results are:

ﬁ(x) = _e-X(1+2ex_262x)1/% :

"f(x) =1 _e"‘_ée'zﬂé -Zx(1+2 e 2x)3/2;

ﬁ(x) = ge-Zx ';e_zx(l—ex+e2x)(l+2ex_2e2x)l/2; (5.2) .
|

é(x) = _ze-2x+ 2e_Zx(1+ex-e 2x)(1+2ex-2e2x)_l/2.

In each of these generating functions the radius of convergence is
6 = 1n, ((/_41)/2), and x = 5 is the only singularity on the circle of convergence.

As in the previous three sections we expand the generating functions in terms of

(1- x/p) , and apply (2.7) to the first two odd powers. The asymptotic estimates so
obtained are:

. (/3-1) 3+/5) 1 351/2 n! 3-5(6-Y3)

~

Now the mean [ and the variance On of the order for trees of magnitude n

depend on Tn, ﬁn and Sn as in (3.7). From the asymptotic estimates above one then

calculates
. _2(2-/%n 3-8 1.
o= m (1 - T O(HZ)),
(5.4)
and

o =2 (6. (3+p)H+olly).
952 n
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6. NUMERICAL RESULTS

L The values of Pn' P , P and f’n for 1 £ n < 10 and n 15,20,25,30,35 and 40
n’ 'n ~ - N
are presented in Table 1. The corresponding values of Tn, Tn, Tn and Tn are
presented in Table 2, those of Moo o, ﬁn and ﬁn in Table 3, and those of Un, Gn and
n

o in Table 4. The full range of values for 1 £ n ¢ 40 in all cases is available
from the second author. The calculations are based on the equations giving
recurrences for P , T ,R,S ,p ,T,R,S,P,T,R,S,6,%,R and§ in

n” n” n” "n’ n” n” n” n” n” n’ n” "n* n’ n’”'n n
the previous four sections. Then b and v, are computed from Tn’ Rn and Sn by (2.4),

and U,V , {0, 0, { and 9 are found in the same way. Since v = 0 for all n,
n’ n” "n’ “n’ "n n n

those values are omitted.

Asymptotic estimates for all of these quantities are derived in the
preceeding four sections. In Table 5 the relative errors of the estimates are pre-
sented. If E is an estimate for the quantity Q, we define the relative error to be

- ; P, T FL.T.5.P .7 andi
(E-Q)/Q. The estimates for Pn, Tn, W Pn’ n’ ﬁn, Pn, Tn, Hoo Pn’ Tn and W, are to
second order in 1/n, so that the relative errors are O(l/nz). The estimates for Vo
Gn and ;n are only to first order in 1/n, since the leading terms added out exactly,
and so the relative errors are 0(1/n). Since the estimate for Mo is exact the

relative error is always zero, and those values have been omitted.

The computations were programmed on a PDP11/45 by A. Nymeyer while employed
under an A.R.G.C. grant. Multiple precision integer arithmetic was employed for
the exact results, so no errors should have been introduced by arithmetic operations

‘/ ¥ in the course of the computations. / B ) U
y - A s /

17 G618 G679 oo Ve, =
U |

Y/ L v WY e i ]

( I | |1 l 2 [
> [ 2 14 / ]- 1z
=7 ¢ 1o FI7 2o [ ]
(—IL, 7)6’\ %3 16 G L , YA [ ﬂ‘"'f"‘"“ Z ’ :
206 P akC | [ T tof—

Table 1. Exact Numbers of Planted Trees .

¥

-"“"-._ .
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1

249
2369

1 40020

4951 79769

29 52055 00537
468 78078 22176
61622 23725 36992

488 96013 03686 63401

8 30555 12190 54585 07530

220 45043 83215 09719 97185
64469 94776 42821 80627 78241

82
6030
34162

19256 819
60937 7792
38660 81672
31727 81284

00801 98183
50105 69454
09468 90311
56577 22418

54392 27834
50112 37947
12351 30927
11507 01198

100 98473 64737 86927 09053 02433 22159 25040

4 88849 59488 48468 12925 66057 13518 13962 35628

216 76354 20265 56596 78464 48363 20829 15417 44296
141043 29642 04081 01696 47860 11232 21536 87652 57986

Table 1 concluded

105

| 346
390

945
. 3797
| 4815

10395
—— U
! 73080
ot 2 44315

1 35135
~—8 16356
13 04415
— 51 13208

20
-150
_ 268
e 1233

27025
50581
47450
42166

344
3147
6255

33695

59425
26117
28575
68817

—7I345 80466 76875 [ 1S

5 52134 63465 43307
18 60930 96068 88000
222 49860 76835 28550

00794 53263 78915 59375
06160 20371 20901 60876
88904 24238 71173 19375
89714 77640 85142 98308

74434 12353 99076 40625

38254 77005 19138 11921
90136461171 60891 40625
33962 29379 21916 46717

78233 86499 38771 09375
48868 47524 62475 40292

73071 78464 62136 71875
61629 76250 03040 43432
75473 42274 65921 87500
15512 97655 727108200

62289 55846 36023 59701
91092 26936 17246 0937
44515 59972 16529 95683

62302 66320 27246 093%&\
S

5
946 e
6
13772 }

< ———

10

20

25

30

35

40




Table 2.

T
Nn
T -
_n Al
T (/( "
An -~ Lo
& PV y
n
1 2
|
—1
1 ape
.'l\ iy 1 3
() 4
Al S 1
/ f 4 ~lm—
( ’ 30 4
y - 16
| ==
20 ifmm—
15 5
85
45
155..
105 6
646
465
1716 o
945 7
6664
e 5775
24654 | _ _
. 10395 | 8
d 86731
: 88515
: 4 34155
. 1 35135 9
13 54630
‘ 15 88545
: 90 43990 |
i
A 20 27025 | 10
: ' 246 07816
. 328 52925 f
2174 57456 /
H
-_-___-__.____,_—-_——_.___________-_.-
790 58535 80625 | 15
26178752548 56584 | -
62467 65138 36375
8 98476 50

Exact Numbers of Free Trees




2 21643 09547 66997 71875 | 20

205 49784 36233 45183 15851
842 45483 44899 82007 04375
26682 69789 26535 31333 74235

2537 37913 35626 25794 76576 09375 | 25

6 64178 57351 59954 30396 13789 93560

46 17076 71760 51374 73244 85886 40625
3235 11311 52182 42235 34626 34054 77330

86 87364 36856 17511 99826 95810 02822 65625 | 30

64436 62064 76134 50310 45988 54233 29473 09166

7 55042 77813 17552 31463 00849 57120 96622 65625
1172 90718 32815 25159 49765 43242 31672 39084 02156

7 29791 23935 62140 32155 10863 20493 60872 60628 90625 | 35

15368 80705 80797 59840 80975 60737 16744 65780 96218 14259

3 02580 48379 86006 84198 80394 40559 05889 76656 22199 21875
1043 30147 98740 01154 14781 09291 78957 78854 81627 17151 95629

1 31149 00840 75154 89727 96135 49638 43182 34575 35926 23730 46875 | 40

7850 74372 68277 04558 58143 14560 59876 66156 89466 40712 27350 48676

2 59200 36605 50234 64023 20968 12167 26967 31842 95195 74464 69511 71875
1985 12629 86757 57145 96126 26837 39795 87614 49844 23808 78544 49936 30160

Table 2 concluded
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Yo En ﬁn “n "
2 2.00000 00000 00000 2.00000 00000 00000 2.00000 00000 00000 2
4 2.50000 00000 00000 4,00000 00000 00000 2.50000 00000 00000 3
6 3.50000 00000 00000 4.85714 28571 42857 3.60000 00000 00000 4
8 5.05882 35294 11765 6.66666 66666 66667 4.96774 19354 83871 5

10 6.87616 09907 12074 8.06451 61290 32258 6.34149 18414 91841 6

12 8.67647 05882 35294 9.67272 72727 27273 7.70017 03577 51278 7

14 10.4124 93802 67724 11.2099 64412 81139 9.05386 78582 53389 8

16 12.1104 72970 47902 12.7804 87804 87805 10.4063 90321 08616 9

18 13.7896 80969 65615 14.3440 24162 23213 11,7588 57383 11957 10

28 22.0911 28106 38671 22.1987 85618 08196 18.5248 31560 70087 15

38 30.3436 73372 50291 30.0699 42364 27419 25,2950 68606 39104 20

48 38.5816 66700 12733 37.9475 81912 66192 32.0672 91540 57386 25

58 46.8133 11991 00284 45.8283 62637 25108 38.8405 35372 58541 30

68 55.0416 12908 97430 53.7109 00716 17330 45.6143 66223 76070 35

78 63.2679 34337 78013 61.5945 20432 18619 52.3885 64087 49734 40

Table 3. Mean Order of Trees with Fixed Magni tude
v v ) n

n n n

0.00000 00000 00000 0.00000 00000 00000 0.00000 00000 00000 2
0.75000 00000 00000 0.00000 00000 00000 0.75000 00000 00000 3
2.25000 00000 00000 0.97959 18367 34694 1.84000 00000 00000 4
3.82006 92041 52248 0.88888 88888 88888 2.54734 65140 47868 5
4.55122 73672 70844 1.67325 70239 33404 3.12114 55599 56749 6
4.82810 18289- 66879 1.85652 89256 19834 3.71248 71941 46887 7
5.13028 35400 88531 2.35093 27389 47078 4.31499 16329 3§918 8
5.52204 49273 73383 2.69839 38132 06426 4.92129 87937 60629 9
5.96404 81520 58989 3.10673 00739 16410 5.52838 11503 75196 10
8.38429 32248 87521 5.04591 99744 39442 8.55839 33406 31767 15
10.8925 61215 87343 6.98141 89245 42325 11.5800 79720 01440 20
13.4236 40224 09535 8.91280 60113 55968 14.5975 78794 19007 25
15.9642 03499 83919 10.8420 07039 11216 17.6128 72291 44108 30
18.5096 36929 00962 12.7699 13435 93193 20.6268 81592 54253 35
21.0579 06897 65325 14,6969 92847 02091 23.6400 81773 08085 40

Table 4. Variance of the Order of Trees with Fixed Magnitude



=]

~Quantity 10 20 30 40

‘ P .00198255 -. 000491952 .000218101 .000122529
Fn .00566099 -.00134128 .000586665 .000327466
ﬁh .00130770 .000311656 .000136469 .0000761654
ﬁn .000919071 .000202635 .0000861797 0000474024
T .0290372 -.00739040 .00330385 .00186380
Tn .0716409 -.0173360 .00765566 .004 29481
T; .0107192 -.00277488 .00125092 .000708669
%n .0296345 -.00734383 .00326257 .00183542
. .0134911 .00244101 .000992320 .000535098
ﬁn .00636135 -.00145205 .000623642 .000344765
B .00251239 -.000600032 .000259226 .000143563
Gn .142979 -,0615036 .0394795 .0290935
Vo .238924 .102642 .0650247 .0475617
v .0892020 .0299797 .025646 0188668

Table 5. Relative Error of Asymptotic Estimates

7. RELATED RESULTS

In [5] the numbers of phylogenetic trees were studied with no restriction on
the degrees of the points. There it was noted that the mean and the variance of the
order were both O(n). Therefore as n-— the distribution of orders in trees of
___mitude n becomes gradually sharper as a percentage of mean value. This is also

true of all four cases considered in Sections 2-5.

The methods of the present paper have been applied to other classes of trees
which are relevant to the formation of phylogenetic diagrams in biology. These
classes are determined by applying certain combinations of the following conditions:
no points of degree 2 are allowed; no interior points are labelled; the labelling

is 1-1. It is planned to present those results elsewhere.
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