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| ABSTRACT Tm

Evolutionary trees of biology are represented by a special
class of labelled trees. They are characterized by having disjoint
subsets of the labelling set assigned to the vertices of a tree in
such a way that no pendant vertex or vertex of degree two is
assigned an empty set of labels. In this paper exact and asymptotic
numbers are determined for two classes of evolutionary trees. The

first class is characterized by the properties that: (i) its
members have only singleton labels and (ii) there are no vertices of
degree two, and (iii) interior vertices may be labelled. The second
class has properties: (i) there maybe vertices of degree two, and (ii)
all the labels are singletons and (iii) only vertices of degree one
or two are labelled. This paper continues previous work by the
authors on the enumeration of various classes of evolutionary trees.

1. INTRODUCTION

Since the time of Charles Darwin, biologists have postulated
that existing biological species have descended from common ances-
tors. A diagram showing such relationships is termed a phylogenetic
or evolutionary tree.

Here we define an evolutionary tree to be a connected acyclic

graph together with a function sending a given set {1,2,..., n} of
species (called labels) to the vertex set of the tree such that

every vertex of degree one or two is in the image. It follows fron\\
this definition that in general, some vertices may not be assigned a
label and other vertices may have more than one label. The number.\\
of vertices in any tree is called its order, The nuymber of labelsﬁhﬁﬁﬁ
denoted by n, is called the magnitude of the tree. A planted
evolutionary tree is a tree with a pendant vertex distinguished, \

D

\
CONGRESSUS NUMERANTIUM, VOL. 44 (1984), pp. 65-88 \



wh .“‘s called the root, which corresponds to the common
ancestor. As it is already distinguished it is not assigned a
label. The construction of such trees and their biological
significance have been discussed by many authors, but for the most
recent information see the book by Penny, Hendy, and Foulds [10].
Undefined graph theoretic notation and terminology used in this
paper is covered in the book by Harary [6].

The previous mentioned book by Penny et al, gives a detailed
account of currently-used methods for the identification of
evolutionary trees. In the quest for trees satisfyiing certain
optimality criteria, it is of interest to knqw how many possible
trees exist which span n given species. The exact and asymptotic
numbers of evo1ution§ry trees with given magnitude, along with the
average and variance of their orders, was determined by the present
authors in [3]. The effect of requiring that each nonempty label be
a singelton was also studied. In [4] we performed the same analysis
for binary evolutionary trees and also studied the effect of
restricting the labelling to pendant vertices. In [5] the same
analysis was performed for evolutionary trees which do not have
vertices of degree two where the labelling is restricted to the
pendant vertices. The effect of restricting the labels to being
singletons was also studied. In the present paper we perform this
analysis for the first two of the four remaining classes of
evolutionary trees which result from taking combinations of the

above conditions. These classes are:

Case 1: There are no vertices of degree two, all nonempty labels
are singletons, and interior vertices may possibly be
labelled.

Case 2: There are no restrictions on vertex degree, all nonempty

labels are singletons, and only vertices of degree one or

two can be labelled.
Case 3: The same as Case 1 except that labels need not be

singletons.
Case 4: The same as Case 2 except that labels need not be

singletons.
It is planned to publish the analysis of Cases 3 and 4

elsewhere.
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We now introduce some notation, terminc “T!. and objectives
which are common to both Cases 1 and 2. Let T, be the number of
different evolutionary trees of magnitude n. Our first objective in
each case is to derive recurrence relations by which T, can be
calculated for successive values of n. The exponential generating
function defined by

Tx) = 1 Tx"/nt (1.1)
n=1

will be a useful tool in our analysis. In order to establish the
mean and variance of the numbers of vertices in trees of given

magnitude we shall also find recurrences involving the number Tn P

of different trees with magnitude n and order p. The corresponding
generating function is given by

2n-2

I 1 x™P/ar. (1.2)

T(x,y) =
1 p1  ™P

n

"~ 8

Thus T(x) is obtained from T(x,y) by setting y to 1. It is not hard
to see that 1 < p < 2n-2. A short proof is given in [2].

As is usual in tree counting, the numbers are first determined
for trees which have some vertex distinguished as the root. In
particular, let a planted evolutionary tree be a tree rooted at a

pendant vertex and labelled according to the rules of the case under
examination except that the root is not to receive any label.
Likewise the root vertex of a planted evolutionary tree is not
counted in its order. In the biological context, a planted evolu-
tionary tree corresponds to an evolutionary tree in which a common
ancestor is designated. This is represented diagrammatically by
orienting all arcs away from the vertex representing the common
ancestor.

Let P, denote the number of different planted evolutionary
trees of magnitude n, and let Pn‘p denote the number of these of
order p. The associated generating functions are:

e~ g

P(x) = ) Pa x" /a1 (1.3)

1
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n

W‘ P(x,y) = E ¥ Pn’p x"yPrar . (1.4) «-‘

Since an evolutionary tree of magnitude n may have in general,
any order from 1 to 2n-2, it is of interest to determine the mean
Hn and the standard deviation Vn» of the number of vertices among
all such trees. This will be done by finding recurrence relations

for the first and second moments about the origin, namely

2n-2
(1 =7 (1.5)
" a1 P
2n-2
2
(2 .y ety (1.6)
n p=1 P
Then as usual we have "
AL 1.7
un = Tn / Tnv ( )
- (2) 2 .8
A (1.8)

The exponential generating functions for the moments are:

A T R I R (1.9)
Since n=1

T(l)(X) = Ty(x,l). (1.10)
and

T(Z)(X) = Tyy(X,l) + Ty(x,l), (1.11)

we can evaluate the moment generating functions on the basis of

previous equations. Define

s, = 1,02 -1 (1),

R, = T.(1), R(x) = D (x), and s(x) = T (x)-R(x). (1.12
Using the values of P, and .T, found by methods outlined earlier and
the last few relations we can compute values for Tn(l), Tn(z).

Sn, B and \Jn.
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In the next two sections we calculate the above values for
Cases 1 and 2. ‘

2. CASE 1: NO VERTICES OF DEGREE TWO, ALL LABELS ARE SINGLETONS.

OQur first objective in this section is to derive recurrence
relations by which P, can be calculated for successive values of
n. Case 1 differs only slightly from a case published previously by
us. In [5, & 2] we analyzed the situation which is the same as Case
1 except that the interior vertices are not allowed labels. The
obvious approach is to parallel almost exactly the development
outlined in that section, with appropriate changes in certain
details. However there is a simple relationship between the
P(x,y)'s for the two cases which will enable us to obtain the same
results much more quickly.

Once again the exponential generating function P(x,y) is a
useful tool. Let P(x,y) be the generating function for the similar
case in [5, § 2] which is analogous to P(x,y).

Since labelling is optional for interior vertices and at most
one label can be assigned to each, the exponential generating
function of the labelling possibilities for an interior vertex is
(1+x). For an endpoint the corresponding generating function is
just x, since it must be labelled. Hence we can obtain P(x,y) as

P(y) = Pz, (1)), (2.1)

where the term Téf supplied at each endpoint combines with the
factor of (l+x) to give just x for each endpoint. It is shown in

[5] that

Blx,y) = ye! oY) Ly Ly B(x,y) + xy.
Thus

P(x,y)

Cy(e)eP oY) Ly Ly p(x,y) 1 (2.2)
Setting y=1 we obtain:

) .
x(P(x) - ePX)y 2 &P(X) 5 pryy L q. (2.3)
Then differentiating and simplifying to eliminate the exponential
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T

P )L(x+1)% - (x+1) (x+2)P(x)] = 1 + P(x) (2.4)

It is convenient for computational purposes to let Q(x) = 1/2 P(x)2
so that Q'(x) = P'(x)P(x) and the coefficients Q, of x"/n! satisfy

2
Q= I Mop.p o+ 172 (Y ) n o> 0. (2.5)
Ny n/2 i i "n-i n/2'" n/2,
Here Pn/Z is taken to be zero when n is odd. Then (2.4) can be

rewritten in terms of Q(x) as
P(x) = 1+ P(x) - (2#x+x%)P'(x) + (1+x)(2+x) Q' (x).

Given that Py = 0, comparing coefficients of x"/nt in this equation
gives Py =1 and

P = (1-2n)Pn - n(n-l)Pn_1 + ZQn+1 +30Q, + n(n-l)Qn_l, no> 1.

n+l
Then (2.5) and this last equation can be used to compute Py and Q,
efficiently.

The generating function for the unrooted trees represented by
T(x,y) can now be determined in terms of trees in which a vertex is
distinguished (vertex-rooted) and those in which an edge is distin-
guished (edge-rooted). A vertex-rooted tree is associated in a 1-1
fashion with the planted tree obtained by joining a new root vertex
to the original. All planted trees are obtained in this way except
for those in which the vertex adjacent to the root has degree 3 and
has not received a label. The latter are counted by the exponential
generating function 1/2 y(1+x)P(x,y)2, and so vertex-rooted trees

rooted at an interior vertex are counted by
P(x,y) - 1/2 y(1+x)P(x,y)?
Vertex-rooted trees rooted at a pendant vertex are counted by:

xy P(x,y).
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So all vertex-rooted trees are counted by: A“
P(x,¥) +xy P(x,y) - 1/2 y(1+x) P(x,y)2.

An edge-rooted tree can be viewed as the result of identifying the
roots of two planted trees, which are then suppressed to form the

root edge. These are therefore enumerated by

P(x,y)2%/2,
the factor of 2 accounting for the fact that the same edge-rooted
tree is obtained by interchanging the two planted trees. The

difference between the expression for the vertex-rooted and edge-
rooted trees is T(x,y). Thus after simplification,

T(x,y) = (Lexy)P(x,y) - 1/2 (Lsy + xy)P(x,y)? (2.6)
Setting y=1 we obtain
T(x) = (1+x)P(x) - (1+ */2)P(x)2 (2.7)
Replacing 1/2 P(x)2 by Q(x) we have:
T(x) = (1+)P(x) - (2+x)Q(x) (2.9)

We can compare coefficients of x"/n! in this last equation to

determine that Tl =1, TZ = 1 and

To = Pp + 0Py - 2Q, - N0, _ys n>?2 (2.9)

Differentiating (2.6) gives

T (x.y) = x P(x,y) - le P(x,y)2 + [1 + xy - (Lry+xy)P(x,¥) TP, (x,¥)
: (2.10)
Differentiating (2.2) and simplifying gives
21
Py(x.y) = Plx.y) (2.11)
i



Comu.iing (2.10) and (2.11) and simplifying we have
T,00y) = (x + 5 Ploy) - 3 (e)P(xun)? (2.12)
y l.y y » 2‘

Differentiating again and simplifying with (2.11) yields

Tyy(0y) = Plx,y) Z/Ty2(Ley - Plxoy) (1 + y(1+x))] (2.13)
Setting y=1 in (2.12) and (2.13) and using (1.11), we have
R(x) = (x+1)P(x) - 1/2 (x+1)P(x)2, (2.14)
and »
102 () = R(x) + P(x)Z/(1+x-P(x)(2+x)). (2.15)

Recurrence relations are obtained by comparing coefficients of
x"/nl. In order to carry out the computation of the R,'s
efficiently we once again introduce the intermediate sequence Q,
defined in (2.5).

Then

Ry =Py +nPyy -0 -n0ny. no> 1. (2.16)

From (2.15) we have that

S(x)[1+x - P(x){(2+x)] = 20(x).

This implies that Sy = 0, and for n > 1 we can determine S, using

the P,'s and Q's in the recurrence
n-2

n )
Sn = 2Qp - N Sqp 121 () Sn-i{2 Py 1 pi-l}'

(2.17)

From the values of P and T, mentioned earlier, (2.15), (2.16). and
Tn(z) and hence of v, and

’

(2.17) we can compute values of Ry and

V.
n

We now determine the asymptotic behavior of T, My and v, as
n==, Since P, is the basis for the equations defining these

quantities, we start with a study of the exponential generating
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B

x (P(x) - e P(x)y = e P(x) _2p(x) -1,

function P(x). Recall from (2.3) that

from which we can solve for x to obtain
x = (eP(0) _2p(x) - 1)/(P(x)-eP(X)y.

Regarding P as a complex variable, x is clearly analytic for
p oz ep, and the derivative

$oe (- e (pe2)e” - 2p)(p - ef)?
is nonzero when P # e‘P . Also x=0 when P=0, so the inverse

function is analytic in some neighborhood of x=0. The power series
expansion of this function about x=0 is our generating function
P(x), which is now seen to have a positive radius of convergence,
say p. Let q be the unique real number such that g=e~9, one can
calculate that g=0.5671432904... . As Pn >1 for n > 1 we see that
p < =, since P(x) cannot attain the value of q within the circle of
convergence. By Pringsheim's theorem (see Hille [9, p.133]) x=p is
a singularity of P(x). Also 0 < P(x) < q for re2l x, 0 < x < o,

and P(x) is strictly increasing in this interval, so P(p) is defined
and P(p)} < q. In fact P(p) =q, for if not there could be no
singularity of P at x=p. Also, for |x| = p and x#p we have

[P(x)] ¢ q so that x=p is the sole singularity of P(x) on its circle
of convergence. Finally, setting x=p and using the fact

that q # -1 to simplify gives p = (29-1)/(1-q) = 0.3102333359... .
Note that as expected, this is strictly less than the equivlent
value of p (which is 2(1n 2)-1 in the similar case in [5, § 2].

So far we have established the results equired of steps 1-11 in
the 20 step algorithm of [8], by methods which are more direct than
usual for tree counting problems. However the remainder of the
development is standard and so we refer to {8] for the explanations
of the remaining steps and confine ourselves to performing the

necessary calculations.

At P = q the second derivative of x as a function of P can be
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al )ted explicitly and is nonzero. so from steps 12 and 13 we
have that x=p is a branch paint of order 2 for P(x). Thus as in

step 14 one has an expansion of the form

P(x) = q - al(p-x)l/2 + az(p-x) + a3(p->()3/2 ¥ oue. (2.18)
valid in some neighborhood of x=p. Substituting into equation (2.4)
gives a relation that must be satisfied by this expression. One can
1/2, (p- x)O. (p- x)l/2 . to

determine as many of aj.ap,... as required. In particular we find

then compare coefficients of (p-x)

that

-('j' (1+ 1/(2(e+1))

In order for the expans1on around O to agree with the expansion
around p where their circles of convergence overlap. We must take

the positive root of this equation giving a; = 1.017576587... . Two

2
a
. . _ 1 1 R
more comparisons then establish that a2 = - T o
-0.6632609397... and
a, 2 a, a (p+1) a,p
2 2

= —fa - I(ETIT(p+ZY 2a K +2) ZE—(9+1)(37

To evaluate the contribution of a term (p-x} k/2 in expansion
(2.18), note that the coefficient of x" in (l-x)'S is just
r(s+n)/r(s)r{n+1) provided that s is not a nonnegative integer.

From Stirling's formula the latter is

s-1 1 1
e (s =GR w0 ()

as n»=, Thus the term -al(o-x)ll2 contributes

Y2 Uz <32 eng E__ s 0(_2))

1/2 al(n)'
The next term, a,f 32 tributes
v 24 p-x)~ =, con
- - - 1
34 2y (1) 12 32 (52 00 (1 v o)
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= 0.3503501726. ..
3)

"

when taken to the same order. The remaining L\.)S collectively

: -7/2 -n
contribute O(n / P ), as can be seen from Darboux's Theorem (as
in Theorem 4 of Bender [1] or from Polya's Lemma (as in [8]). In

sum we have

p
n -3/2 -n
ar = " o (A + + oL, (2.19)
where n
a 1/2
A= (2 = 0.1598845156
P 2 :ﬁ7f . s
and
8 33191/2 3.3393/2 301/2 a
= + - .
p 161\'1/2 411'1/2 4"1']'2' (T + 330)

= 0.03779276929...

From (2.8) and (2.18) we have directly

T(x) = 1/2(1+0)a + (1/20° - @ - 599 (o) + 2/3(a7 -a) (o-x) ¥

2 1 -
#1782 - 1 (g-qha, e % + 275 (a7 oy

5,2
((1+p)2 - 32)31](9-7()/ toeen .

Following the same reasoning as for the derivation of (2.19), the
first two terms of the asymptotic expansion of T /n! are determined

by the (p x)3/2 and (p- x)s/2 terms, with the result that
T B
n _ _ -5/2 -n T
ST =1 p (AT+ + 0(—2) (2.20)
where
4 -l 32
Ap = 1z (97°- q)p™'° = 0.05932734740 ... ,

and

5/2
15 * ——§§7z ((q'l-q)a3 +a (e, - (1+0)72))

= 0.09321113490... .

Similarly from (2.18) and (2.14) we get
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R(x, D reorts - 2ty - qa,(o-x) /24 (172 ¢ + qya -1)
- (1/2) ai (1+p)(p-x) + (a1 a2(1+p) +qay+ a1(2+p)'1)(p-x)3/2t

In the same manner as (2.19) we get

R ) B 1 (2.21)

ﬁ%_ = n-3/2p n(Au+ —EE + 0(;2))'
rhere B 09067743025

Au = — (i) = 0.09 see o
and

3/2 a,
3p .- = 0.06902139685

B, = (3/8) A —Rpp — (313,(140) + 235 + 55y = 0.0

4

Taking the ratio of (2.21) to (2.20) gives the average number of

vertices in a tree of magnitude n as

B 1
Un =n (A + —n + 0(;2)) (2.22)
where
A= q(q'l-q)’lo'1 = Zq/(alzp(p+2)) = 1.5284262051
and
8 = -1.2379627565 ... .

To analyse the variance similarly we start with exponential
generating function S(x) = T(Z)(x) - R(x). From (2.14) and (Ztls)
we have S(x) = P(x)z/(l-x-(2+x)P(x)). Substituting the expansion

(2.18) for P(x) yields

2 a q2 2q
2
q -1/2 (1-9)q . T
= p-x) + 7 2+p
S(x) al +p ( 312(2 + p)Z al (2+O)
1 1-q 202 2, (L 3 )2
- + + + q
+ 31(2+p) ( 31(2+p) 3 ) q “T+p EN
a
2q a,( 1.9 , _2 )+ a 2, 2qa ](p-x)l/zt ees « (2.23)
IS R a 1 2
1(2+p) 1

As before, (2.19) can be applied in conjunction 1!h Darboux's

Theorem on Polya's Lemma to evaluate the coefficients of S(x)

asymptotically. The result is

0 12 A, + B4 oy

AT P s n oz

A = a%/Ca (2+0)(sm) /2] = 0.1385036962 ... .
" *[(ﬂn)z—q;w‘ ¢ 23q%- 29(k8 + o, + 2,2 + 22))]

7 13,09 2
%ﬁﬂ/QA- 2+p 2 3, 24p ) 2+p 2 1
2a1 (2+o)n§

Finally v, = (Sn/Tn)
and (2.22), giving

v =

where

The O(nz) terms for ¥n

61/2 = (q-

3. CASE 2:

-0.07770161671 ... .

+ -
l-ln un

An+ 0(1)

BS AS BT

—T-_AT-ZAHBH+AU

T
0.33268409010... .

cancelled out because of the relation

L q)/(s%2).

SINGLETON LABELS, VERTICES OF DEGREE 32 UNLABELLED,

Our first objective in this section is to derive recurrence

relations by which Py can be calculated for successive values of

n. Once again the exponential generating function P(x,y), is a

useful tool. There i

magnitude 1, termed the trivial tree, which has order 1.

s just one planted evolutionary tree of

exponential generating function for trivial planted trees is XY .

Thus the

2. so this can be combined with (2.20)

Any non-trivial planted tree can be viewed as the result of joining
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one or more planted trees at their roots, these being jdentified as
a single ordinary vertex which is then joined to a new root, In the
process the original root must receive a label if it becomes a
vertex of degree two but cannot be labelled if it becomes of higher
degree. Thus the generating function for planted trees in which the

vertex adjacent to the root has degree two is

xyP(x,y).

Here xy enumerates the possibilities for the vertex adjacent to the

root, while P(x,y) enumerates the possibilities for completing the

tree. As is usual in 1abelled counting problems the product of the

enerating functions accounts for the number of ways in

exponential g
d from the label

which a set of labels from the parts can be obtaine
set of the unfon. (See for example, chapter 1 of [71.) Similarly
if the vertex adjacent to the root has degree k+l 2 3, the number of

possibilites is enumerated by
yP(x, ) /!

sion y accounts for the vertex adjacent to the root,
There are k planted trees to be
k! because the sequence in

which they are added js immaterial. Summing over k ? 2, adding in
antage of the expontial form of

In this expres
since it must not be labelled.
joined to this vertex and we divide by

the other two terms and taking adv

the sum, we have

pixuy) = yIeP Y+ (e s P14

Setting y=1 gives
p(x) = e )+ (x-1)(1 + P())- (3.2)

Then differentiating and simplifying to eliminate the exponential

yields

P (X)L + (x-2)P(x)] = 1+ P(x) (3.3)
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D

As before we set Q(x) = 1/2 P(x)2 -
= x)¢, so that e 1
rewritten as q n (2.5) can be

P'(x) = 1 + P(x) + (2-x)Q'(x). (3.4)

Sl 1ce P = 0, comparin Coeff] ient £ X“ n! in thi ation ives
0 » p g cle s 0 / qU g
. S e

P = -
nel = Pam MO 20 L, — (3.5)

Then (2.5) and (3.5) together allow P, and Q, to be computed
Tecursive]y in an efficient manner. A1l planted trees are obtained
in the manner explained in section 2 (via vertex-rooted trees)
except for those in which the vertex adjacent to the root has degree
3. The latter are counted by the exponential generating function

Xy P(x.y)z/z

and so the vertex rooted trees are counted by
P(x,y) + (x-1)y P(x.y)2/2

As in section 2, edge-rooted trees are counted by
P(x.y)?/2

and the difference between the expressions for vertex-rooted and
edge-rooted trees is T(x,y). On assembling the terms corresponding
to a particular unrooted tree of magnitude n and order p we find that

P P
px'y /nl - (p-l)xpyp/n! = xnyP/N!
This is because the tree has no automorphisms, having been labelled.

at all its endpoints, so that all p vertices give distinct vertex-

rooted trees while all (p-1) edges give distinct edge-rooted
trees. Thus we have

T(X,.Y) = P(x,y) + (x-l)sz(x,y)/z _ P(x’y)zlz’ (3.6)
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§ ) T(x,y) = P(x,y) + (xy-y-1) P(x,y)2/2 (3.7( )

Setting y=1 and using Q(x) = 1/2 P(x)2 we obtain
T(x) = P(x) + (x-2)Q(x).
Differentiating and using (3.4) to simplify, we obtain
T'{x) = 1 + P(x) + Q(x) (3.8)
We can compare coefficients of x"/n! to determine that T1=1 and

_ na>l. (3.9)
Tn+1 =Pt Q» _

Thus (3.9) can be used in conjunction with (3.3) and (3.5) to
compute exact values of Tg. Differentiating (3.6) gives

0o) = 172 (epion? ¢ T royd) PEn] Byl (310

Differentiating (3.2) we find, after simplification, that

1 (3.11)
== P X ]
P (xy) = 5 PLxY)
with which (3.10) simplifies to
L 3.12)
Ty(x,Y) = [1/2 (x-1)P(x,y) + ] P(x,¥) (
pifferentiating again and simplifying with (3.11) yields
3
T (xoy) = POn)?/ T+ (-1 -1)PLxy) Iy (3.13)
Yy

Setting y=1 in (3.12) and (3.13) and using {1.11) and (1.12) we have
R(x) = [1/2 (x-1) P(x) + 11 P(x) (3.14)

and

M)y = (172 (x-1)P(x) + 11P(x) + POZ/CL + (-2P(0) 1. (3:15)
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Recurrence relations are obtained by comparf- ‘,oefficients of

xV/nl. 1In order to carry out the computation of the Rn's we can use

Q(x) = 172 P(x)2 and (3.8), giving

R(x) = T(x) + Q(x),
so that

Rn 2 Tn + on, no>l. (3.16)

From (3.14) and (3.15) we have that
(1 + (x-2) P(x)] S(x) = 2Q(x).

which can be rewritten in the form
S(x) = 2Q(x) + (2-x) P(x) S(x).
This implies that S, = 0, and
n-1 n
Sq = 2Q, + 2n Sap * kzz (k)Sn_k{ZPk-k Pk_l}. no>1, (3.17)

From the values of P, Q,, and T, mentioned earlier, (3.16), and
(3.17) we can compute values of Ry and Tn(z), and hence of
u and Voo

We now determine the asymptotic behavior of Tn’ L and v,
along the lines of the previous section, i.e. starting with P(x).

We can solve equation (3.2) for x to obtain
P(x)
x =[2P(x) -e + 1] / (P(x) + 1) (3.18)

Regarding P as a complex variable, x is clearly analytic for
P # -1, and the derivative

- L(2-eP)(pe1) - 2p-ePe1)] / (Pe1)?, (3.19)

is nonzero when P # e'P. Also x=0 when P=0, so the inverse function
is analytic in some neighborhood of x=0. The power series expansion

of this function about x=0 is P(x) which then must have positive
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r“" of convergence, denoted by p. As in section 2 let q be the
unque real number such that ged =1, We found that

q = 0.56714329081 .... . By using the same argument as in section 2
we can show that p is the sole singularity of P(x) on its circle of

convergence. Setting x=p in (3.18) yields p=2-q'1 = 0.2367771669.....

Once again following the algorithm in [8], we can establish that
P(x) has form (2.18). We find that

a - (2(1+q)q) /2 = 1.3332627671 ... ,
a, = (1/3)a(2-q) = 0.2708783643 ... ,
ay - (92)3/2 (4q2-q+13) / [9(1+q) /%] = 0.18387997944 ...

The term -a]_(p-x)l/2 contributes

1/2 n'3/2 o " (1+ E% + 0(lz)).
n

/2 a(-)
The next term, a3(p-x)3/2 , contributes

34 ay (072 6202 o1 e o)

when taken to the same order. Once again the remaining terms

contribute O(n'”2 o). 1In sum we have

P 8
I A R M L4 o), (3.20)
: n
where
1/2
A = (1/2)a1(—:) = 0.18301248961 ... ,
and

3a.p

374 -
B, = [3/8 + _28—1__] = 0.4239834558 ... .

Since Q(x) = (1/2)P(x)2, equation (2.18) gives an expansion of Q(x)
about x=p in powers of (p-x)ll . Then just as for the asymptotic

analysis of Pn/n!. it follows that
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Q 1 32
n 4,9 ( p) /2 n'3/2 ) 0 3 (1 ‘)(33-ala2q-al )

[ S MY 7,
1 .
= 0(;2)))- (3.21)
From equation (3.9) we have that
Tn 21 ( Pn-1 + Qn-1
[ Y (IS 3 ) (n-ljf)’ n>2
Now (3.20) and (3.21) imply that
Tn _ -5/2 -n 2
A= n o™ AL (14By/n + 0(1/n)). (3.22)
where
1/2
A; = (1/2)a1(1+q)o(—:-) = 0.06790930042 ... ,
and

BT = 15/8 + (1/24)pq(4q2 + 11q-11)(1+q)_1 = 1.8625936309 ... .

Using (3.16) (3.21), and (3.22) we get

Rn -3/2 -n 1 1
n—!- =N [+ AR(I + E BR + O(n—z)). (3.23)
h
where ; 1/2
AR = (1/2)qa1(—;) = .10379430561 ... ,
and

4
By = 3/8 + ol4q" + 11q3 + 25q2 + 24q + 24] / (24q(1+q)
= 0,9086176934 ... .

Taking the ratio of (3.23) to (3.22) gives the average number of

vertices in a tree of magnitude n as
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‘ by = 0 A (L +%au+ o(:})), (3.26 ‘)

where

b
"

q/(1+q)p = 1.5284254876 ... ,

and

8 -0.9539759374 ... .

- P 2 + 2q + 21 =
u 3/2 + 7q(q+1) [3q q ]
We analyze the variance by starting with
s(x) = 2Q(x)/[1 + P(x)(x-2)].

This yields

S(x) = _EI%ETZT_ (o-x)'ll2 + (1/3)q2(q-6) + Cs(p-x)ll2 t ... (3.29)

where

3/2
12 2 (1+q)

3. 21q2 + 16q + 12).

= 0.12582363303 ... .

Similar to section 2, we can use (3.25) to evalue the coefficients
of S(x) asymptotically. The resuits is

PN o(lz)), (3.26)
n

=1
—3

S

where

A, = a%7a (em 2,

and

B, = -[1/8 + olda" - 31a° - Sq° + a8q + 241 / 24q(1+a).

Finally, (3.22) and (3.24) can be used in conjunction with (3.26) to

produce

84

“n 5
—— = -(437 + 12q

4 15q% - 1097 - 129 + 12),up%(14q) 3 + o(d)

= 0.19173964874 ... + 0(%) (3.27)

4. NUMERICAL RESULTS

The values of Pn, Ths Ry and Sn for 1 <n <0 and n = 15,20,
25,30,35, and 40 for Case 2 are presented in Table 1. The full
range of values for 1 < n < 40 is available from the second author
as well as similar data for Case 1. Computations for P, are based
on (2.5) and (3.5), for T, on (3.9), and for R, on (3.16).

In Table 2 the corresponding values of uy and v, are given,
Asymptotic estimates of the series of exact values in Tables 1 and 2
are provided by (3.20), (3.21), (3.22), (3.24), and (3.27). To
indicate the accuracy of these estimates for moderate values of n
Table 3 gives relative errors in the asymptotic estimates for
n=40. Moreover the expected dependece on n is already exhibited in
each case for values of n is the range 10 < n < 40. The
computations were performed on a PNDP 11/45 by A. Nymeyer while

employed under an A,R.G.C. grant. };\_?‘ C)
\S |

=Ulf :I_Sv

TABLE 1 Exact Nymbers
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f
55018 0 i
4456 ummm—————

—— -—-u’.;--—-__ — . -

]

I _,-‘
n
I|
6
34422
234632
7 1275030
‘ 84974
| 784848
. | 6551090
8 34947564 e
1974904 -
21260780
210000296
9 | 1105740320
' 54233540
| 66773372
| 7606122120
10 ' 8 39661089864
! . 1718280152
- 23752384168
— . e 307 285428592
15 10292371442183694832
= 281576039542538368
6044483929555062160
124412478753780335856
TABLE 1. Exact Numbers
| ‘\
| \~
| n \
\.
20 } 1658651 393866913825412347136
\ 131558482325457407154881024
‘. 9651410476312244702073046400
|, 2724274250747 5022027 36670594 56
\
25 1012217613%3619922800249422869301911552
1594048063672352514 32098 3443298130432
$853385027022205278765117061 1688084992
2101394128209830356067285184657612477440
30 176415483787953754266024299522050740341834 303488
22918826670728264538230908877 0770550425047 04
10174565307012576 316331792822 43374276193693382656
442722385260030638688868287199814,53807405330536704
15 | 731275067701890756295324731 5434744 392016585820547538714624
808499312357932603765637537071209777658571146163727015936
4207120298708457 5718942829 1982049291 364152950829514924687 360
2152163545748567 3486407120814 359808698284 5620833489421 59872
40 | 6340554102253395126759227343400897960338480177 3767941774342
04029059072
; 51012069737 310896276790624496121100929614581843381834791118
301298688
364401366961 5321990664 20794588289 571691296480722079356668745

429032960
21408856632765181715031247 514657 03034481930089 591842850601

783957041152

TABLE 1 Exact Numbers
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n Wy ¥a
1 1.00000... 0.00000. ..
2 2.00000... 0.00000...
3 3.25000... .187500...
4 4.67857... .432398...
S 6.18272... .64767...
6 7.707157... .838353...
7 9.23633... 1.02175...
8 10.7655. .. 1.20445...
9 12.2945... 1.38772...
10 13.8233... 1.57154.,..
15 21.4666... 2.4944, ..
20 29.1092. .. 3.41944...
25 36.7516... 4.34524...
30 44,.3939... 5.27132...
35 52.0362... 6.19756...
40 59.6784... 7.12390...

TABLE 2 Mean and Variance of the Number of Vertices

Pag 2.4193359...  x10-?
Tao -1.8818933...  x1073
Y10 0%uamnnnens X1075
Y40 7.6599...... x1072

TABLE 3 Accuracy of Asymptotic Estimates

5. SUMMARY AND CONCLUSIONS

In this paper we have continued our analysis of the enumeration
of different classes of phylogenetic (evolutionary) trees. The two
cases, which we studied here are: (i) trees with no vertices of
degree two in which all labels are singletons and interior points
may be labelled, and (ii) trees with no restriction on vertex
degree, all nonempty labels are singletons, and only vertices of
degree one or two can be labelled. The exact and asymptotic number
of trees with given magnitude, along with the average and variance
of their order was determined for each case.

In both cases the mean and variance of the order were both O(n)
so that the distribution of orders in trees of magnitude n becomes

gradually sharper as n»=, This is also true in all the earlier
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cas.. studied.
It is planned to publish the analysis of the remaining two

cases (Cases 3 and 4) elsewhere.
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