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From alpha.ces.cwru.edu!somos Sun Jul 25 14:39:32 0400 1993 - f
From: Michael Somos <somos@alpha.ces.cwru.edu> -ﬂ? ] C;x
L) L-’ - v

Dear Neil, »
In my research I have come across a few g-series of which I offly ﬁ ; 2%

know the first few terms. I wonder if you could identify them. They
may even be related to modular forms, but I am not sure how to check.

fi= {1, 7, 15, 71, 106, 273, 486, 961, 1563, 3040} /q“v” ';=*f}é;§2 E

£f2= {1, 13, -45, 748, -10359, 169380, -2945617, 53668795, ‘jg___?
-1010587698, 19510685605, -384118017962, 7682318412651} ==

£3= {1,15,-241,13712,-792287,47727408,-2991954241} C:p—?

f4= {1,31,-2848,413823,-68767135,12310047967,-2309368876639, f}lﬂxgzzczf;
447436508910495, -88755684988520798,17924937024841839390, -I>r*’//’
-3671642907594608226078,760722183234128461061246}

f5= {1,47,-713,37847,-2000310,121185241,-7837254234,530465339249} {Ei ::?

For example, the first would be used as follows:
fl(gq) = g + 7 + 15 g + 71 g +

From alpha.ces.cwru.edu!somos Sun Aug 1 12:28:13 0400 1993
Subject: g-series calculation

Neil,

I finally broke down and automated the calculation. Here 1is the
way I got the series and the results. In my opinion, these sequences
are noteworthy and belong on your list. Note that aside from the last
example using 163 which is based on the j function, I still have not
identified the other sequences = series = functions. Shalom, Michael

(* Mathematica numerical calculation of g-series 1 Aug 1993 by Michael Somos *)

e[x_, n_] := Modulel[{y = Pi*Sqrt(x]}, N[Expl-y], Ceiling[N[(n*y)/Log(10]]]1]]
flx_, g_, n_] := NestList[(#1 - Round[#1])/g & , x, n]
1(x_, s_, n_] := (g=elAbs([x],n];TextForm[Round[f([s[qgq],Sign[x]lq,n]l])

1034/3,198*4~(1/2)&,12] .

{1, 7, 15, 71, 106, 273, 486, 961, 1563, 3040, 4692, 8199, 12774} ﬁ;- @famn
1[-59/3,1060*4~(1/2)&,21]

(1, 5, 27, 41, 146, 243, 510, 887, 1755, 2728, 5052, 7857, 13157, 20253, e{::

32805, 48680, 76568, 112320, 169814, 246263, 365013, 519045} A5
10-89/3,8qrt [300*4~(1/3) 1&,47)

{1, 7, 8, 22, 42, 63, 106, 190, 267, 428, 652, 932, 1367, 2017, 2774,

3950, 5539, 7541, 10342, 14184, 18889, 25435, 33974, 44720, 58952, 77550,

100546, 130780, 169273, 217230, 278636, 356566, 452544, 574548, 726938, (;;’

914742, 1149685, 1441787, 1798740, 2242436, 2788219, 3453787, 4272238, {q 51g5'3:},
1058,396*§~(1/4)&,36] '

(1, 26, 79, 326, 755, 2106, 4460, 10284, 20165, 41640, 77352, 147902,

A 5806

263019, 475516, 816065, 1413142, 2353446, 3936754, 6391091, 10390150, fﬁ%
16497734, 26184098, 40775677, 63394792, 97037170, 148178934, 223351867,

335704742, 499050461, 739575640, 1085723797, 1588726100, 2305778480, {xE;EZQ—L%W
3335492514, 4790460930, 6857634062, 9754445480}

1[(-163,640320*4~(1/3)&,34)
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{1, 248, 4124, 34752, 213126, 1057504, 4530744, 17333248, 60655377,

197230000, 603096260, 1749556736, 4848776870, 12908659008, 33161242504, —
82505707520, 199429765972, 469556091240, 1079330385764, 2426800117504,
5346409013164, 11558035326944, 24551042107480, 51301080086528,

105561758786885, 214100032685072, 428374478862400, 846173187465216,
1651298967150546, 3185652564830016, 6078963644150128, 11480231806541824,
21467177880529689, 39764843702689336, 72997137165153779}

You remember those g-series that I found empirically using the
radix expansion of some numbers like exp(pi*sqrt(163))? Well I have
finally bumped into print references to them. The July issue of MOC
led me to them. 1In fact, there is a nice paper by Harvey Cohn that
lists four coefficients for three variations of the j functions which
includes the standard one. See page 158, table (3.2d).

The story doesn’t end there. I seem to have recently uncovered
another variation of j based on sqrt(5). Look at exp(pi*sqrt(38/5)) ——
for the expansion. The coefficient list is {1,4,22,56,177,352,870, ...} \H)
This was just yesterday. I still have to follow up the reference chain
to see how much is known, but at least the Cohn article can be used as
a print reference for three of the sequences. Shalom, Michael Somos

Subject: Monstrous Moonshine and g-series radix expansions
Status: RO

Dear Neil!

Greetings! I just today looked at "Monstrous Moonshine" for the
first time (that I can remember) and what a revelation! Unlike most
of the other published works in this area, this article actually had
extensive tables with actual coefficients of the g-series. I did a
gglgh_surxgz\ggggggg_ggg_gnd found that all the series that I had just
gotten a few weeks ago via radix expansions were listed! Since the
reference to Fricke (which I haven’t looked at yet) means that this
kind of stuff has been published for over 100 years, it is just about
time I knew about it. By the way, how many of those sequences of
integers do you currently have in your Handbook? Shalom, Michael

Neil,

Sorry that you are sick. I had plenty to do while you took the
time to reply, for which I am thankful. I have been entering data
from table 4 of Monstrous Moonshine up to 10E so far. I realized that
there was really not enough information available (extensive though
it may appear at first glance) in the table.

For example, the actual modular function is not identified that
well, unless I am overlooking the obvious. For example, what does 2B
come from? In an attempt to investigate directly, T used all of the
ten coefficients in the table and tried computing the function. 1In
the process I came across the follwoing remarkable discovery.

Recall my original g-series article of earlier this month:
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e[x_, n_] := Module[{y = Pi*Sqgrt[x]}, N[Exp[-y], Ceiling[N[{(n*y)/Log[10]1]111]]
flx_, 9., n_] := NestList[(#1 - Round[#1])/g & , X, n]
1[(x_, s_, n_} := (g=elAbs[x],n];TextForm[Round[f[s[qgl,Signixlg,nll}])

Now the following calculation is very remarkable:

1[7,Sqrt[2*4~(1/12)]1&,95]
{1, 1, o, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5,5, 5,6, 7,8, 8,9,
11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49,
52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168,
178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385, 408, 437,
471, 501, 530, 568, 609, 647, 686, 732, 784, 833, 881, 939, 1004, 1065,
1126, 1199, 1279, 1355, 1433, 1523, 1621, 1717, 1814, 1926}

This looks fairly innocuous unless you realise just what it implies. By
raising this series to the 24th power, you get essentially 2B in the table
except for the alternation of signs:

{1, 24, 276, 2048, 11202, 49152, 184024, 614400, 1881471,
5373952, 14478180, 37122048, 91231550, 216072192, 495248952, 1102430208,
2390434947, 5061476352, 10487167336, 21301241856, 42481784514,
83300614144, 160791890304, 305854488576, 573872089212, 1063005978624,
1945403602764, 3519965179904, 6300794030460, 11164248047616,
19591528119288, 34065932304384, 58718797964805, 100372723007488,
170215559855424, 286470013685760, 478625723149576, 794110053826560,
1308745319975256, 2143055278039040, 3487563372381816, 5641848336678912,
9074553043554568, 14515166263443456, 23093778743102262,
36552977852071936, 57567784186189368, 90226777113575424,
140752796480416011, 218578429975461888, 337945040343588276,
520271697765971968, 797652526220573580, 1218002527825723392,
1852604006634050072, 2807138079496716288, 4237760460302936433,
6374456847628238848, 9554873766107770560, 14273181657059143680,
21250450411204068910, 31535729115847852032, 46650835290143061624,
68797209365301886976, 101150679669913197462, 148280443106626633728,
216743142763626253712, 315923191441199824896, 459218611940943755226,
665710603285072019456, 962508846974918603904, 1388038765923851599872,
1996639069403279491427, 2864978197116521938944, 4100990608911708903432,
5856297079648098807808, 8343432715970391209502, 11859696700297921757184,
16820105145987654631552, 23802835313046730063872,
33611779636250175278886, 47362494062244172660736,
66600077798590855556532, 93460562353103053049856,
130891485964083426534122, 182952844329494181838848,
255227018229957765044016, 355376219286719031156736,
493899311443420857952845, 685157678128482627354624,
948763597225844233250504, 1311456320500974276980736,
1809633323386495729057992, 2492760414984152205361152,
3427959082742197097793024, 4706168520874397834575896}

Now, doesn’t this give you a whole lot more information than what is in
the table? I hope this information is of interest to you. Shalom, Michael
<somos@ces.cwru.edu>

To: njas@research.att.com
Subject: Ramanujan and Pi and modular equations
Status: R
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Neil,

I was just looking at Ramanujan’s collected papers, and his paper
on Pi and modular equations has equations almost identical to my own,
which he writes are similar to those of Weber. I can extend almost all
of the sequences if enough non-zero terms are given to establish its\
unique identity and I can identify exact values (like integers) for the
sum of the g series for particular values of q.

As for the Mathematica (note spelling) code, I could produce the
equivalent code in Maple or Pari or anything else reasonable. What 1
essentially do is compute the value of g to enough accuracy to produce
the number of terms of the sequence that I want. This is the purpose
of the e[x_,n_] function. Then I iteratively pull "digits" in the
radix expansion to radix g of some number that depends on g. This is
the purpose of the f[x_,q_,n_] function. The final 1[x_,s_,n_] function
puts the two pieces together.

Look, you can write your own code to do the same thing. I can give
the algorithm in standard mathematical notation as follows:

Given: r = a/b (some rational number). Let g = exp{-sqrt(r)) or
perhaps the negative of that.
Given: x0 = c*lgl~{(1/4d) (for some positive integers c,d) such that

x0 is approximately 1. Then define the sequence

s0 = round(x0) , x1 = (x0-s0)/q , sl = round(xl) , x2 = (x1l-sl)/q ,
where round(x) is the closest integer to x . The result is
{s0, sl1, s2, s3, ... }. In practice, stop when the terms of the
sequence get bigger than 1/Igl. Just to give a very simple example
of the general principle (inversion of a power series) look at the
decimal expansion of 1/9899 . You should be able to recognize the
pattern right away where the radix is 100.

Shalom, Michael Somos

From math.Princeton.EDU!conway Mon Aug 30 15:59:51 EDT 1993
Status: R

yes, they are pretty trivial to work out. How many of them you
should give is a problem. Also, the g”0 coefficient is
indeterminate in a certain sense. The value we give is what we
call *"the Rademacher value" - it is the only one that has any
kind of "absolute" definition, but it is not always an

integer, and in any case, no particular value is of real
significance. So (for instance) the j-coefficients are

1, *, 196884, 21493760,
where "*" really is indeterminate. How should you index this? J
From alpha.ces.cwru.edu!somos Thu Sep 2 06:58:56 0400 1993
Received: by ninet.research.att.com; Thu Sep 2 07:00 EDT 1993

Received: by harry.CES.CWRU.Edu (5.64+/ane.09.11.90.2)
id AA05735; Thu, 2 Sep 93 06:58:56 -0400
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Date: Thu, 2 Sep 93 06:58:56 -0400

From: Michael Somos <somos@alpha.ces.cwru.edu>
Message-Id: <9309021058.AA05735@harry .CES.CWRU.Edu>
To: njas@research.att.com

Subject: extending sequences

Status: R

Neil,

In a previous e-mail you asked "can you extend any of the other
sequences in the same way?" The answer is yes, and I have already
begun to do this, but it is a hard job. It would get especially hard
for some of the later sequences with very small number of nonzero
entries. Look at 24J for example, which is listed as all zeros after
the initial 1. 1In any case, The tables 2 and 3 together are supposed
to identify each modular function. I still have not deciphered the
cryptic notation that they used. It seems easier for me (and more
educational) to continue using my own methods. Here is what I have
written so far about some of these sequences. Obviously there is a
great amount which can be done and written about.

Modular Function Notes by Michael Somos
28 August 1993 CWRU

This is a list of empirical facts about certain special functions defined
in the complex plane. The major source for identification of these kind

of functions is Table 4 of *"Monstrous Moonshine" by Conway and Norton which
lists coefficients out to g*10 of head characters of elements of the
Monster group. These just happen to be interesting functions on their own.
The "Monstrous Moonshine" paper is on pages 308-339 of The Bulletin of the
London Mathematical Society, October 1979 issue.

Let t be any complex number with positive imaginary part. The convention
is q(t) = g = exp(pi*i*t) . Although j(t) 1is a function of g*2 , the
intermediate expression need to use just g . The functions that will be
considered have the general form:

j(t) = 1/9”2 + a0 + al*g™2 + a2*g™4 + a3*q"6 + ad*gq™8 +
Note: Table 4 lists values for a0 which are not natural in the context of
this note and automorphic functions. I will use the value which makes more
sense from the theory of functions of a complex variable.
Note: There are two common conventions for g. The other is exp(2*pi*i*t).

1A. The Klein absolute invariant

j(t) = 1/@%2 + 744 + 196884*g"2 + 21493760*q"4 + 864299970*g"6 +
This is the prototypical modular function. Volumes could be written about
it alone. Here is quick summary of its invariance properties:

J(t) = j(-t) = j(e’)’ = j(t+l) = j(-1/t) , where (a+bi)’ = a-bi

A very efficient way of computing the value of this function is the result
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j(t) = f{m(q(t)) , where f(z) = 256*(z*z-z+1)"3/(z*z-2z)"2 ,
m(z) = z*(a(z)/b(z))™4 , gl{t) = exp(pi*i*t) , and

a(z) = 2 + 2*z"2 + 2%z76 + 2*2z712 + ... + 2*z”(n*n+n) + ,
b(z) = 1 + 2*z"1 + 2*z74 + 2*z°9 + ... + 2*z”{(n*n) +

Geometrically, this function arises from functions on lattice shapes. A
lattice in the complex plane is determined by two generators. The ratio
of them is the lattice shape. Since lattices are not uniquely determined
by two generators, we would like a function which produces the same value
no matter which two generators are used. Explicitly, start with a lattice

L = { k1*wl + k2*w2 : k1,k2 integers } , t = wl/w2
Now any other two generators can be given by using the linear transformation

(wl,w2) --> (a*wl+b*w2,c*wl+d*w2) , a*d-b*c =1, a,b,c,d integers

This gives a linear fractional transformation of the lattice shape t, thus
t ——> (a*t+b)/(c*t+d)

The group of all such transformations is known as the modular group and
denoted SI,_2(Z) . It is generated by the two transformations

t -——> t+1 , and t --> -1/t

This is the reason for the last two invariance properties of Jj . The other
two are simpler. The first is based on the fact that negating a lattice
generator yields the same lattice, and the second is a general fact about
complex conjugation. As a consequence of these invariance properties, the
fundamental region can be chosen as a strip of width one centered at the
origin and exterior to the unit circle. The imaginary axis from sqrt (-1)

to infinity is mapped to the reals from 1728 upward. The unit circle from
sqrt(-1) to (l+sqgrt(-3))/2 is mapped to the interval from 1728 to 0 . And
the ray above ({l+sqrt(-3))/2 is mapped to the negative reals.

Some exact values for Jj(t):

t j(t)
sqgrt (-1) 1728 = 1273
sqrt(-2) 8000 = 2073
sqgrt (-3) 54000 = 3073 * 2
sqgrt (-4) 287496 = 66”3
sart (-7) 16581375 = 25573
(l+sqre{(-3))/2 0
(l+sqrt(=-7))/2 -3375 = -15"3
(l+sgrt(-11))/2 -32768 = -3273
(1+sgrt(-19)) /2 -884736 = -96"3
{(l+sgrt(=-27))/2 -12288000 = -160"3 * 3
(l+sqrt(-43))/2 -884736000 = -960"3
(l+sqrt(-67))/2 -147197952000 = -5280"3

(l+sqrt(-163))/2 -262537412640768000 = -640320"3
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27A. The invariant of G(sgrt(2))

j2A(t) = 1/9™2 + 104 + 4372*q"2 + 96256*g"4 + 1240002*g™6 +

Some exact values for Jj2A(t): ;\§
t Jj2A(t) x\

sqrt(-2)/2 256 = 474

sqrt(-4)/2 648 =37 * 8 671{49 -
sqre(-6)/2 2304 =474 * 9

sqrt(-10) /2 20736 = 1274

sqrt(-18)/2 614656 = 2874

sqrt(-22)/2 2509056 = 1274 * 121

sqrt (-58)/2 24591257856 = 39674

(l+sgrt(-1))/2 0

(l+sqrt(-3))/2 -144 = - 1272

(l+sqrt (=-5))/2 -1024 = - 3272

(l+sgrt(-7))/2 -3969 = - 6372

(l+sgrt(-9)}/2 -12288 = - 6472 * 3
(l+sqgrt(-13))/2 -82944 = - 28872

(1+sqrt(-25))/2 -6635520 = - 115272 * 5

(l+sqrt(-37))/2 -199148544 - 1411272



