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Divisor Product Representation for Natural Numbers
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Abstract

The unique representation of positive integers in terms of divisor products is presented. The

computation of the minimal polynomials of cos
(

2 π

n

)
, given elsewhere, is based on this representation.

The minimal polynomial Ψ(n, x) of the algebraic number cos

(
2π

n

)

, for n ∈ N, are listed as

coefficient array in [4] A181875/A181876, where also details, references [1], [3] and [5], as well as a W.
Lang link in A181875 are given. The computation of these minimal polynomials Ψ(n, x) is based on a
formula of the following type which is due to the recurrence given in [5],

Ψ(n, x) =
t(n, x)

∏k
i=1 t(ni, x)

∏l
j=1 t(mj, x)

, (1)

with certain sets of numbers {ni}
k
i=1 and {mj}

l
j=1. The structure numbers k and l will be determined

later on, and

t(n, x) :=







1

2
n
2

(
T (n

2 + 1, x) − T (n
2 − 1, x)

)
if n is even ,

1

2
n−1

2

(
T (n+1

2 , x) − T (n−1
2 , x)

)
if n is odd ,

(2)

with Chebyshev’s T -polynomials (see A053120 for their coefficient triangle). The sets of numbers ap-
pearing in eq. (1) are determined from the representation of n in terms of the divisor products a(k) =
A007955(k) (see τ(n) = A000005(n) for the number of divisors of n). This representation will be called
dpr(n), and it has the form

dpr(n) =
a(n)

∏k
i=1 a(ni)

∏l
j=1 a(mj)

. (3)

Here one should keep the a(.) and not replace them with their values A007955, and it is essential that a(1),
although it evaluates to 1, is not omitted. This is because in eq. (1) the polynomial t(1, x) = x − 1, and
not 1. We also use ‘lowest terms’, meaning that common a-factors in the numerator and the denominator
are canceled. See, e.g., the case n = 6 given later. This representation will become unique if we also
require decreasing arguments of the a-factors in the numerator as well as in the denominator. This divisor
product representation of n is immediately found from the recurrence

dpr(1) = a(1) , (4)

dpr(n) = a(n)
1

∏
d|n
d 6=n

dpr(d)
, n ≥ 2 . (5)

This follows from the triviality n =
a(n)
∏

d|n
d 6=n

d
. Later we shall use D(n) for the set of all divisors of n,

and D′(n) for the one without n (see Definition 2).
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It is clear that for any prime number p one has dpr(p) =
a(p)

a(1)
. For pure powers of any number, i.e.,

n = mq, q ∈ N0, m ∈ N, one has dpr(n) =
a(n)

a(mq−1)
, e.g., dpr(27) =

a(27)

a(9)
. See Table 1 for a list of

the representations dpr(n), n = 1..80, where also the pair (k, l) from eq. (3) is given.

An example with numerator-denominator cancellations appears already for n = 6:

dpr(6) =
a(6)

dpr(3) dpr(2) dpr(1)
=

a(6)

(a(3)/a(1)) (a(2)/a(1)) a(1)
=

a(6) a(1)

a(3) a(2)
, (6)

where (k, l) = (1, 2).

Next, we state Proposition 1 with the solution of the recurrence eqs. (4) and (5) in the case when n is the
product of N pairwise different prime numbers. We use the notation pk for some prime number which
should not be confused with the k-th prime number, which will be denoted by p(k) later on.
In the inductive proof (over N) of this proposition we shall employ a Lemma which will be proven with
the help of the induction assumption.

Proposition 1:

dpr





N∏

j=1

pj



 =
O (a(n)Π a(.(N − 2).)Π a(.(N − 4).) · · · )

O (Π a(.(N − 1).)Π a(.(N − 3).) · · · )
, (7)

with pairwise different prime numbers p1, ..., pN , and a(.k.) stands for a( . ... .
︸︷︷︸

k times

). A product Π a(.k.) is

taken over the
(N

k

)
factors with k distinct primes from {p1, ..., pN} inserted as arguments of the divisor

function a. a(.0.) := a(1). The last factor in the numerator is Π a(.(N − 2
⌊

N
2

⌋
).), and the last one

of the denominator is Π a(.(N − (2
⌊

N−1
2

⌋
+ 1)).). The symbol O in the numerator and denominator

demands to order the evaluated arguments of the a-functions in a (strictly) decreasing way in order to
achieve uniqueness. Note that it is not sufficient to order only within each of the a- products, as the
following example shows: N = 4, n = 71 · 7 · 5 · 2 which has in the denominator the products for a(...)
and a(.), and the smallest a(...) is a(7 · 5 · 2) = a(70) but the biggest a(.) is a(71). This also holds for the
primorials n = prl(N) := A002110(N), for which pj is replaced by p(j). In this case the smallest a(...)
is always a(30) and the largest a(.) could be a(31) if N = 31. A product Π a(.(N −k).), k ∈ {1, 2, ..., N},
has

(
N

N−k

)
a-factors.

Lemma 1:

Π dpr(.(N − j).) =

O

(
∏⌊N−j

2
⌋

k=0 [Π a(.(N − j − 2 k).)]e(j,2k)

)

O

(
∏⌊N−j−1

2
⌋

k=0 [Π a(.(N − j − (2 k + 1)).)]e(j,2k+1)

) . (8)

We use for dpr arguments the same convention for the number of factors as above for the a-arguments.

Here a product Π a(.(N−j−l).) has
(

N
N−j−l

)
factors, and the exponents are e(j, l) :=

(j + l)!

j! l!
=

(
j + l

l

)

.

Before giving the proof, some examples may be helpful. In the proposition take N = 4 and n = 11·7·5·3.
The numerator of dpr(1155) has, besides a(n) = a(1155), the products Π a(.2.) and Π a(.0.) which are
a(11 · 7) a(11 · 5) a(11 · 3) a(7 · 5) a(7 · 3) a(5 · 3) (6 factors) and a(1) (1 factor). The ordered version of
the numerator is thus a(1155) a(77) a(55) a(35) a(33) a(21) a(15) a(1). Similarly the numerator in ordered
form is a(385) a(231) a(165) a(105) a(11) a(7) a(5) a(3). For this example (k, l) = (7, 8), with the notation
from eq. (3).

In the lemma the structure of Π dpr(...), e.g., N = 5, j = 2, n =
∏5

k=1 pk, is in the numerator
O
(
[Π a(...)]1 [Π a(.)]6

)
, and in the denominator O

(
[Π a(..)]3 [Π a(1)]10

)
. Here Π dpr(...) has 10 factors,

and the products in the numerator have factors 10 and 5, and in the denominator 10 and 1. To proceed one
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would have to distribute the five primes over the open places, determine the value of each a−argument,
and order in the numerator as well as denominator. We leave the computation of the final answer as an
exercise to the reader.

Proof of Proposition 1:

This is done by induction over N with the help of the recurrence formula (5), together with (4). For
N = 1 the proposition is true due to dpr(p) = a(p)/a(1) . We assume that the proposition is true for
all N -values 1, 2, ..., N − 1. After the first step one finds for n =

∏N
k=1 pk, if we leave out the order sign

O for the moment, reinstalling it at the end of the proof,

dpr(n) = a(n)
N∏

l=1

1

Π dpr(.(N − l).)
, (9)

with the last factor being Π dpr(.0.) = dpr(.0.) = a(1). Here it becomes clear why we formulated
Lemma 1. It can be applied, due to the induction assumption, for each of the l = 1, 2, ..., N − 1 factors
of the product. The last factor, the one for l = N , is, as just seen, a(1). The proof of Lemma 1 will be
given separately but it should to be placed here because it uses the induction hypothesis. If the N − 1
factors are replaced with the help of Lemma 1 one will find for each l a numerator/denominator block.
Note that a product Π a(.(N − 2 k).), with k ∈ {1, 2, ..

⌊
N
2

⌋
}, appears in the numerator for the blocks

l = 1, 3, ..., (2 k − 1), and in the denominator for l = 2, 4, ..., 2 k. Note also that in the l-block the first
exponent in the denominator is always e(l, 0), and the first exponent in the numerator is e(l, 1). A specific
a-factor will appear with a certain multiplicity (exponent) in the numerator as well as denominator, and
we now show that there are cancellations such that every a(.(N − 2 k).) or a(.(N − (2 k + 1)).) appears
exactly once, in the numerator or the denominator, respectively. This is because for a(.(N − 2 k).) one
finds for the exponents the following alternating sum with + signs for the numerator, and − sign for the
denominator:

2k∑

l=1

(−1)k+1 e(l, 2 k − l) =

2k∑

l=1

(−1)k+1

(
2k

l

)

= −0 + 1 = +1 . (10)

This is due to the fact that the alternating sum of every even numbered row in Pascal’s triangle A007318
vanishes. For example, if 2k = 4 the product Π a(.(N − 4).), with

(
N

N−4

)
factors, appears in the

numerator for the block l = 1 as the second factor, for l = 3 as first factor, and in the denominator for
l = 2 as second factor.

Similarly, the product Π a(.(N − (2 k + 1)).), k = 0, 1, ...
⌊

N−1
2

⌋
, appears in denominator for the blocks

l = 1, ..., (2 k + 1), and in the numerator for the blocks l = 2, 4, ..., 2 k. Therefore the exponent count is

2k+1∑

l=1

(−1)k+1 e(l, 2 k + 1 − l) =

2k+1∑

l=1

(−1)k+1

(
2k + 1

l

)

= −0 + 1 = +1 . (11)

Here one uses the fact that the odd numbered rows (not the first one, of course) have also vanishing alter-
nating sum.

Proof of lemma 1:

As already mentioned above, this proof should be placed inside the proof of Proposition 1 because
the induction hypothesis of the latter is used. First the general structure is considered, giving rise to
multiplicities (exponents) m for the a-factors in the numerator and denominator. Then it is proved that
the exponents of the various a-factors are the ones stated in Lemma 1.

The recurrence is used in the first step, and if we omit the order symbols O for simplicity, we find for
j ∈ {1, 2, ..., N − 1},
∏

dpr(.(N − j).) =
∏

a(.(N − j).)
1

Π dpr(.(N − j − 1).)Π dpr(.(N − j − 2).) · · · Π dpr(.0.)
, (12)
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where the product on the l.h.s., like the overall product on the r.h.s., has
(

N
N−j

)
factors, and the products

in the denominator have
(

N−j
N−j−k

)
factors if the argument is .(N − j − k). . The last product in the

denominator is Π dpr(.0.) = a(1). Consider, e.g.,N = 5, j = 2, where we give the number of factors as
indices on the products:

∏

10

dpr(...) =
∏

10

a(...)
1

Π3 dpr(..)Π3 dpr(.) a(1)
. (13)

Each quotient
1

Π dpr(.(N − j − l).)
is called block Bl, for l ∈ {1, 2, ...., N − j}. For each block the

induction hypothesis of Proposition 1 holds. We now count how often, for given k, any a(.(N − j − 2 k).)
or a(.(N − j − (2 k + 1)).) appears in the numerator and denominator. For a(.(N − j − 2 k).), which
appears in the assertion of Lemma 1 in the numerator, one counts the exponents in the numerator as
positive and the ones in the denominator as negative. For a(.(N −j−2 k+1).) the exponents are counted
in the opposite way.

Case a(.(N− j−2k).): Any such divisor product appears in the numerators of the odd numbered blocks
Bl, for l ∈ {1, 3, ..., 2 k − 1}, and in the denominators for the even numbered blocks for l ∈ {2, 4, ..., 2 k}.
Define the multiplicity for a(.(N − j − 2 k).), i.e., the number of appearances of divisor products with
N − j−2 k factors, as m(N, j, 2 k). From the above mentioned number of factors indicated by the various
product signs one finds immediately

m(N, j, 2 k) =

(
N

N − j

) {(
N − j

N − j − 1

)(
N − j − 1

N − j − 2 k

)

−

(
N − j

N − j − 2

)(
N − j − 2

N − j − 2 k

)

± ...

−

(
N − j

N − j − 2 k

)(
N − j − 2 k

N − j − 2 k

)}

. (14)

Therefore,

m(N, j, 2 k) =
N !

(N − j − 2 k)! j! (2 k)!

2 k∑

l=1

(
2 k

l

)

=
N !

(N − j − 2 k)! j! (2 k)!
. (15)

In the last step the fact that the even numbered rows in Pascal’s triangle A007318 have vanishing
alternating sum. Because a divisor product a(.(N − j − 2 k).) comes only in

(
N

N−j−2k

)
different versions

one finds its exponent from

e(j, 2 k) =
m(N, j, 2 k)
(

N
N−j−2 k

) =
(j + 2 k)!

j! (2 k)!
=

(
j + 2 k

2 k

)

. (16)

Case a(.(N − j − (2k + 1)).): This type of divisor product appears in the denominators for the blocks
l = 1, 3, ..., 2 k + 1 and in the numerators for l = 2, 4, ..., 2 k. The multiplicity, counting with the
denominator appearances taken positive, is

m(N, j, 2 k + 1) =

(
N

N − j

) {(
N − j

N − j − 1

)(
N − j − 1

N − j − (2 k + 1)

)

−

(
N − j

N − j − 2

)(
N − j − 2

N − j − (2 k + 1)

)

± ... +

(
N − j

N − j − (2 k + 1)

)(
N − j − (2 k + 1)

N − j − (2 k + 1)

)}

. (17)

Therefore,

m(N, j, 2 k + 1) =
N !

(N − j − (2 k + 1))! j! (2 k + 1)!

2 k+1∑

l=1

(
2 k + 1

l

)

=
N !

(N − j − (2 k + 1))! j! (2 k + 1)!
.

(18)
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Here the vanishing of the odd numbered rows of Pascal’s triangle for 2 k + 1 ≥ 3 was used. Again, the
exponent of Π a(.(N − j − (2 k + 1)).) is then

e(j, 2 k + 1) =
m(N, j, (2 k + 1))
(

N
N−j−(2k+1)

) =
(j + 2 k + 1)!

j! (2 k + 1)!
=

(
j + 2 k + 1

2 k + 1

)

. (19)

It is clear by now that only the structure of dpr(n) is important and not the special primes used in
the decomposition of n. Therefore, it is sufficient to consider in Proposition 1 the primorials n :=
∏N

j=1 p(j) = A002110(N). For example, the structure of dpr(3 · 7 · 11) is like the one for dpr(2 · 3 · 5) =
a(2 · 3 · 5) a(5) a(3) a(2)/(a(3 · 5) a(2 · 5) a(2 · 3) a(1)) (see Table 1), where the primes 2, 3, 5 have to be
replaced by 3, 7, 11, respectively. In Table 2 the result for dpr(A002110(N)), for N = 1, 2, ... , 7 is
shown in an abbreviated version were only the arguments of the divisor products a for the numerator
and denominator are listed.

For the general prime number decomposition n = pe1

1 pe2

2 · · · peN

N it is for the same reason sufficient
to consider n = p(1)e(1) p(2)e(2) · · · p(N)e(N), with positive integers e(j) which may be collected as
components of the N -tuple ~eN := (e(1), e(2), .., e(N)).

For the following Theorem we need the definition of uniform multiplication of all a-arguments in a divisor
product representation.

Definition 1: ∗-multiplication.

If in dpr(n) the argument of all a-factors is multiplied by some number m this is denoted by m ∗ dpr(n).
Example 1:

32 ∗ dpr(10) = a(90) a(9)/(a(45) a(18)) . (20)

It is clear that this ∗-multiplication satisfies: m1 ∗ (m2 ∗ (m3 ∗ dpr(n))) = (m1 ·m2) ∗ (m3 ∗ dpr(n)) =
(m1 · m2 · m3) ∗ dpr(n) . Therefore, no brackets are needed in ∗-products, and m1 ∗ (m2 ∗ dpr(n)) =
m2 ∗ (m1 ∗ dpr(n)). The identity operation is 1 ∗ dpr(n) = dpr(n). It is obvious that the ∗-multiplication
respects the order O as well as the structure numbers (k, l).

Theorem: Reduction of divisor product representation

For N ∈ N, e(j) ∈ N, j = 1, 2, ..., N , one has

dpr





N∏

j=1

p(j)e(j)



 = p(1)e(1)−1 ∗ p(2)e(2)−1 ∗ · · · ∗ p(N)e(N)−1 ∗ dpr





N∏

j=1

p(j)



 = (21)

(
N∏

k=1

p(k)e(k)−1

)

∗ dpr





N∏

j=1

p(j)



 . (22)

With the help of this theorem all divisor product representations are reduced to the explicitly known
result from proposition 1 .

Example 2:

dpr(23 · 32 · 51) = 22 ∗ 3 ∗ 1 ∗ dpr(2 · 3 · 5) = 12 ∗ dpr(30) =
a(360) a(60) a(36) a(24)

a(180) a(120) a(72) a(12)
. (23)

For the proof of the Theorem we first need the following

Proposition 2:

dpr(pm
1 p2 · · · pN ) =

pm
1 ∗ dpr(p2 · · · pN )

pm−1
1 ∗ dpr(p2 · · · pN )

, m ∈ N, N ∈ N . (24)
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The case N = 1 uses dpr(.0.) := a(1), and it has already been considered after the recurrence relation eq.
(4). The case m = 1 is known explicitely from the Proposition. For the proof we shall use the following
Definition 2 and Lemma 2.

Definition 2: Set of divisors D(n) and D′(n)

For n ∈ N, the set of divisors of n is denoted by D(n), and the set of divisors of n, excluding n, is denoted
by D′(n) .

Lemma 2:

D′(pm
1 p2 · · · pN ) = pm

1 • D′(p2 · · · pN )
m⋃

k=1

pm−k
1 • D(p2 · · · pN ) , m ∈ N , N ∈ N . (25)

Here the • symbol indicates that pm
1 has to be multiplied to all of the τ(2N−1) − 1 elements of the

set D′(p2 · · · pN ), and similarly for pm−k
1 and the τ(2N−1) element set D(p2 · · · pN ) . Remember that

τ(n) = A000005(n) = |D(n)|.
E.g., p1 • D′(p2

1 p2) = {p3
1, p

2
1 p2, p

2
1, p1 p2, p1} .

Proof of lemma 2:

For N = 1 the first set involving D′ is empty, and in the union the set D has to be put to
D(1) = {1}. Then the statement is clearly true. For other N and m the proof is also obvi-
ous: just write, for given N ≥ 2, the elements of the set of the l.h.s. into a union of sets
which have in turn the elements pm

1 , pm−1
1 , ..., p1

1 = p1, and those without element p1 which ap-
pear formally for p0

1 = 1. In the first set take pm
1 out, being left with D′(p2 · · · pN ), and in ev-

ery of the other sets take out the corresponding pm−k
1 , leaving in each case the full set D(p2 · · · pN ).

E.g., D′(p2
1 p2) = {p2

1} ∪ {p1 p2, p1} ∪ {p2, 1} = p2
1•D

′(p2)∪ p1•D(p2) ∪ 1•D(p2) , where D′(p2) = {1}.

Notation:

In the recurrence, eqs. (5) and (4), the set D′(n) appears. In the following we will write for
∏

d|n
d 6=n

dpr(d)

also Π dpr(D′(n)). The same notation will be used also for other sets.

Proof of proposition 2:

Double induction on N and m is used for the proof. For given m we show the statement for all N
by induction over N , using the induction hypothesis on m, i.e., assuming that the statement is true
for all m-values 1, 2, ...,m − 1. For N = 1 and m = 1 the statement reduces to the known result
dp(p1) = a(p1)

a(1) . In the induction step one uses first the recurrence for any m. After employing Lemma 2

for the denominator we find, with the new notation,

dpr(pm
1 p2 · · · pN ) =

a(pm
1 p2 · · · pN )

Π dpr(pm
1 • D′(p2 · · · pN ))

∏m
k=1 Π dpr(pm−k

1 • D(p2 · · · pN ))
. (26)

In all the products in the denominator only up to N −1 elements appear and by the induction hypothesis
on N we can use the statement of the proposition for any m → m′ ∈ {1, 2, ..,m}. The last product, for
k = m, is not replaced. This leads to

dpr(pm
1 p2 · · · pN ) = a(pm

1 p2 · · · pN ) ·

·
Π pm−1

1 ∗ dpr(D′(p2 · · · pN ))

Π pm
1 ∗ dpr(D′(p2 · · · pN ))

Π pm−2
1 ∗ dpr(D(p2 · · · pN ))

Π pm−1
1 ∗ dpr(D(p2 · · · pN ))

· · ·
1

Π dpr(1 • D(p2 · · · pN ))
.(27)

The last denominator is Π dpr(D(p2 · · · pN )). Now this reduces as a telescopic product to

dpr(pm
1 p2 · · · pN ) = a(pm

1 p2 · · · pN )
Π pm−1

1 ∗ dpr(D′(p2 · · · pN ))

Π pm
1 ∗ dpr(D′(p2 · · · pN))

1

Π pm−1
1 ∗ dpr(D(p2 · · · pN ))

. (28)
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Next, in order to cancel also the first numerator one replaces D(p2 · · · pN ) in the last denominator by
D′(p2 · · · pN ) ∪ {p2 · · · pN}, to obtain, after writing a(pm

1 p2 · · · pN ) = pm
1 ∗ a(p2 · · · pN ),

dpr(pm
1 p2 · · · pN ) =

(

pm−1
1 ∗

a(p2 · · · pN )

Π dpr(D′(p2 · · · pN ))

)
1

pm−1
1 ∗ dpr(p2 · · · pN )

, (29)

which becomes finally, after employing the recurrence,

dpr(pm
1 p2 · · · pN ) = (pm

1 ∗ dpr(p2 · · · pN ))
1

pm−1
1 ∗ dpr(p2 · · · pN )

. (30)

Corollary to proposition 2:

dpr(pm
1 p2 · · · pN ) = pm−1

1 ∗ dpr(p1 p2 · · · pN ), m ∈ N, N ∈ N . (31)

This is clear from dpr(pm
1 p2 · · · pN ) = p1 ∗ dpr(pm−1

1 p2 · · · pN ), used repeatedly.

Example 3:

dpr(120) = dpr(23 3 5) = 22 ∗ dpr(30) =
a(4 · 30) a(4 · 5) a(4 · 3) a(4 · 2)

a(4 · 15) a(4 · 10) a(4 · 6) a(4 · 1)
=

a(120) a(20) a(12) a(8)

a(60) a(40) a(24) a(4)
.

(32)
Before coming to the proof of the theorem we state two more propositions.

Proposition 3:

dpr(pn
1 pm

2 p3 · · · pN ) =
pn
1 ∗ dpr(pm

2 p2 · · · pN )

pn−1
1 ∗ dpr(pm

2 p2 · · · pN )
, n,m ∈ N, N = 2, 3, ... (33)

Proof:

This proof runs along the same lines like the one of proposition 2. After using the recurrence, eqs. (5)
with (4), an analogon of lemma 2 is formulated by just replacing there pm

1 → pn
1 and p2 → pm

2 . Its proof
is implied by lemma 2. Then induction over N for given n and m is used. As mentioned above, one could
replace pj by p(j), for j = 1, ... N .

In order to prepare further for the general case we note that a general product p
ej

1 · · · peN

N with the
ej ≥ 1 can, without loss of information, be rewritten using the following multiset convention as
p(1)e(1) p(2)e(2) · · · p(N)e(N) with (not strictly) decreasing exponents e(j) ≥ 1. An example will
make this clear: p1

1 p3
2 p5

3 p3
4 is transformed into p(1)5 p(2)3 p(3)3 p(4)1 with the obvious substitutions

of the pjs by the p(k)s. In this way it is sufficient to assume in the theorem non-increasing sequences
~eN = {e(1), e(2), ..., e(N)} without zero entries.

If we write n ≡ n(N,M) := p(1)e(1) · · · p(M)e(M) p(M + 1) · · · p(N) with positive non-increasing expo-
nents, and similarly n̂ ≡ n̂(N − 1,M − 1) := p(2)e(2) · · · p(M)e(M) p(M + 1) · · · p(N), one can prove in
the same vein the more general result of

Proposition 4:

dpr(n(N,M)) =
p(1)e(1) ∗ dpr(n̂(N − 1,M − 1))

p(1)e(1)−1 ∗ dpr(n̂(N − 1,M − 1))
, N ∈ N, M ∈ {1, ... N} . (34)

Proof:

Here lemma 2 has to be used in the generalized form

D′(n(N,M)) = p(1)e(1)•D′(n̂(N−1,M−1))

e(1)
⋃

k=1

p(1)e(1)−k•D(n̂(N−1,M−1)) , N ∈ N , M ∈ {1, ... N} .

(35)
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Then the proof runs like the one for proposition 2 with double induction over N and M .

Corollary to proposition 4:

dpr(n(N,M)) = p(1)e(1)−1 ∗ p(2)e(2)−1 ∗ · · · ∗ p(M)e(M)−1 ∗ dpr(p(1) · · · p(N)), N ∈ N, M ∈ {1, ... N} .
(36)

See the remark to the corollary to proposition 2.

Proof of the theorem:

As mentioned above, one may assume also in the theorem, modulo substitutions of the primes involved,
positive, non-increasing exponents ~eN . Then, with the definition of n(N,M) from above the theorem is
nothing but the corollary to proposition 4 with M = N .

The theorem and the property of the ∗-multiplication show that the structure numbers (k, l) of a divisor
product representation of any number n = pa1

1 · · · paN

N are the same like the ones for n = p1 · · · pN

which, in turn, are the same like the ones for the primorials n = p(1) · · · p(N) = A002110(N). Because
proposition 2 for m = 1 allows a further reduction of dpr(p(1) · · · p(N)) one can prove the

Proposition 5:

The structure numbers (k, l) from eq. (3) for dpr(pe1

1 · · · peN

N ) are the same as those for dpr(p(1) · · · p(N)),
and they are (2N−1 − 1, 2N−1). Thus, every pdr(n) formula for n ≥ 2 is balanced, i.e., the number of
a−factors in the numerator coincides with the one of the denominator.

Proof:

The only eq. left to show is l = 2N−1, because the balance property k + 1 = l is already clear. This
is done inductively with the help of the m = 1 case of the formula of proposition 2 with appropriate
renaming

dpr(p(1) · · · p(N)) =
p(N) ∗ dpr(p(1) · · · p(N − 1))

dp((p(1) · · · p(N − 1))
, for N ∈ N . (37)

Start with dpr(2) = a(2)
a(1) with l = 1 = 20. Assume the validity of l = 2N ′

for all dpr(p(1) · · · p(N ′)),

for N ′ = 1, 2, ... , N −1. Then because of this formula one has a quotient of two balanced fractions, each
with structure number l = 2N−2. Because there are no cancellations on obtains one quotient with the
doubled number of factors in the numerator as well as in the denominator, hence l = 2 · 2N−2 = 2N−1 .

Note that we have just shown that l ≡ l(n) = 2N(n)−1, where N(n) is the number of distinct primes in the
prime number decomposition of n. N(n) = A001221(n), with N(1) := 0, and l(n) = A007875(n), n ≥ 2.

In Table 2 we list the primorial dpr(prl(N)) results for N = 1, ... 7 in an abbreviated form, where only
the arguments of the divisor products a are given. This table leads us to formulate the following

Proposition 6: Parity of a-arguments for divisor product representation of primorials

1) In the numerator as well as in the denominator of dpr(prl(N)), for N > 2, there are as many even as
odd a-arguments, viz 2N−2.

2) For each of the 2N−2 even numerator (resp. denominator) a-arguments q of dpr(prl(N)), for N ≥ 2,
there is precisely one odd denominator (resp. numerator) a-argument q/2.

Proof:

1) From proposition 1 with the substitutions pj → p(j), in order to obtain primorials, the parity of the
numerator a-arguments is the following. Primorials are even, therfore the first (the largest) a-argument
is even. In each of the following Π a(.(N − 2 k).) products one distinguishes between those which do
not involve the only even prime p(1) = 2 and the others. Thus the number of odd a-arguments in the

numerator is

⌊N
2
⌋

∑

k=1

(
N − 1

N − 2 k

)

= 2N−2 (due to summing every other entry in row N − 1, N ≥ 2, of
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Pascal’s triangle A007318). The remaining 2N−1 − 2N−2 = 2N−2 a-arguments are odd. Similarly, for

the denominator the number of odd a-arguments is

⌊N−1

2
⌋

∑

k=1

(
N − 1

N − (2 k − 1)

)

= 2N−2. Hence the number

of the remaining even ones is also 2N−2.

2) The first numerator a-argument n = prl(N) is even, and the first one in the denominator is n
2 , for

N ∈ N. If there is an even numerator a-argument q in the product Π a(.(N −2 k).), for k ∈ {1, ...
⌊

N
2

⌋
},

then the corresponding q
2 argument will occur once within the Π a(.(N − 2 k − 1).) product where no

p(1) = 2 is used.
Similarly, if an even denominator a-argument q appears within Π a(.(N − (2 k − 1)).), for
k ∈ {1, ...

⌊
N+1

2

⌋
}, then q

2 will occur once within Π a(.(N − 2 k).) in the numerator where p(1) is not
used.

Table 2 shows that already for N = 5 one cannot find the even-odd partner a−arguments at the same
position of the ordered numerator and denominator lists. E.g., the 5th argument 154 in the numerator
list for the N = 5 case has partner argument 77 but this appears at position 6 of the denominator list,
whereas on position 5 one has 210. This is related to the different number of these Π a(.(N−k).)-products
in the numerator and in the denominator. E.g., for N = 5 in the numerator these product numbers are
1, 10 and 5 but in the denominator they are 5, 10 and 1. The numerator a-argument 154 appears for the
fourth member of the product Πa(...), hence the partner denominator argument 77 is found within the
product Π a(..), but this product starts only at position 6. This mismatch has nothing to do with the
reordering between factors of different Π a(.(N − k).) products which is sometimes necessary because of
the order prescription O. See the remark in connection to with proposition 1. Here, for N = 5 one could
omit the O prescription in the numerator as well as in the denominator.

Definition 3: Bijection of even-odd partner a-arguments for primorials

The even-odd partnership in the numerator and denominator a-arguments can be encoded as permuta-
tions of labeled elements, where we use an underlined number j if the a−argument at position j is even.
If it is odd we take j without underlining.

The examples for N = 1, ... , 4 will illustrate this permutation notation of the divisor product represen-
tation for primorials.

(
1

1

)

,

(
1

1

2

2

)

,

(
1

1

2

2

3

3

4

4

)

,

(
1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

)

,

(
1

1

2

2

3

3

4

4

5

6

6

7

7

5

8

8

9

9

10

11

11

12

12

10

13

13

14

14

15

15

16

16

)

. (38)

For N = 5 a nontrivial permutation appears for the first time. In cycle notation, forgetting the under-
linings for the moment, ons has (5, 6, 7) (10, 11, 12). From Table 2 one finds in the N = 6 case the per-
mutation from the symmetric group S32 (5, 7) (6, 8) (12, 13, 14, 15, 17) (16, 21, 20, 19, 18) (25, 27) (26, 28).
To find from Table 2 the permutation from S64 for the case N = 7 is left to the reader.

This leads us to conjecture that the cycle pattern of the permutation is always symmetric with respect
to its middle position, i.e., the dividing line between the positions j = 2N−3 and j + 1.
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Table 1: Divisor product representation of n = 1, 2, ..., 80.

n (k, l) dpr(n) n (k, l) dpr(n)

1 (0, 0) a(1) 41 (0, 1) a(41)/a(1)
2 (0, 1) a(2)/a(1) 42 (3, 4) a(42) a(7) a(3) a(2)/

(a(21) a(14) a(6) a(1))
3 (0, 1) a(3)/a(1) 43 (0, 1) a(43)/a(1)
4 (0, 1) a(4)/a(2) 44 (1, 2) a(44) a(2)/(a(22) a(4))
5 (0, 1) a(5)/a(1) 45 (1, 2) a(45) a(3)/(a(15) a(9))
6 (1, 2) a(6) a(1)/(a(3) a(2)) 46 (1, 2) a(46) a(1)/(a(23) a(2))
7 (0, 1) a(7)/a(1) 47 (0, 1) a(47)/a(1)
8 (0, 1) a(8)/a(4) 48 (1, 2) a(48) a(8)/(a(24) a(16))
9 (0, 1) a(9)/a(3) 49 (0, 1) a(49)/a(7)
10 (1, 2) a(10) a(1)/(a(5) a(2)) 50 (1, 2) a(50) a(5)/(a(24) a(10))
11 (0, 1) a(11)/a(1) 51 (1, 2) a(51) a(1)/(a(17) a(3))
12 (1, 2) a(12) a(2)/(a(6) a(4)) 52 (1, 2) a(52) a(2)/(a(26) a(4))
13 (0, 1) a(13)/a(1) 53 (0, 1) a(53)/a(1)
14 (1, 2) a(14) a(1)/(a(7) a(2)) 54 (1, 2) a(54) a(9)/(a(27) a(18))
15 (1, 2) a(15) a(1)/(a(5) a(3)) 55 (1, 2) a(55) a(1)/(a(11) a(5))
16 (0, 1) a(16)/a(8) 56 (1, 2) a(56) a(4)/(a(28) a(8))
17 (0, 1) a(17)/a(1) 57 (1, 2) a(57) a(1)/(a(19) a(3))
18 (1, 2) a(18) a(3)/(a(9) a(6)) 58 (1, 2) a(58) a(1)/(a(29) a(2))
19 (0, 1) a(19)/a(1) 59 (0, 1) a(59)/a(1)
20 (1, 2) a(20) a(2)/(a(10) a(4)) 60 (3, 4) a(60) a(10) a(6) a(4)/

(a(30) a(20) a(12) a(2))
21 (1, 2) a(21) a(1)/(a(7) a(3)) 61 (0, 1) a(61)/a(1)
22 (1, 2) a(22) a(1)/(a(11) a(2)) 62 (1, 2) a(62) a(1)/(a(31) a(2))
23 (0, 1) a(23)/a(1) 63 (1, 2) a(63) a(3)/(a(21) a(9))
24 (1, 2) a(24) a(4)/(a(12) a(8)) 64 (0, 1) a(64)/a(32)
25 (0, 1) a(25)/a(5) 65 (1, 2) a(65) a(1)/(a(13) a(5))
26 (1, 2) a(26) a(1)/(a(13) a(2)) 66 (3, 4) a(66) a(11) a(3) a(2)/

(a(33) a(22) a(6) a(1))
27 (0, 1) a(27)/a(9) 67 (0, 1) a(67)/a(1)
28 (1, 2) a(28) a(2)/(a(14) a(4)) 68 (1, 2) a(68) a(2)/(a(34) a(4))
29 (0, 1) a(29)/a(1) 69 (1, 2) a(69) a(1)/(a(23) a(3))
30 (3, 4) a(30) a(5) a(3) a(2)/ 70 (3, 4) a(70) a(7) a(5) a(2)/

(a(15) a(10) a(6) a(1)) (a(35) a(14) a(10) a(1))
31 (0, 1) a(31)/a(1) 71 (0, 1) a(71)/a(1)
32 (0, 1) a(32)/a(16) 72 (1, 2) a(72) a(12)/(a(36) a(24))
33 (1, 2) a(33) a(1)/(a(11) a(3)) 73 (0, 1) a(73)/a(1)
34 (1, 2) a(34) a(1)/(a(17) a(2)) 74 (1, 2) a(74) a(1)/(a(37) a(2))
35 (1, 2) a(35) a(1)/(a(7) a(5)) 75 (1, 2) a(75) a(5)/(a(25) a(15))
36 (1, 2) a(36) a(6)/(a(18) a(12)) 76 (1, 2) a(76) a(2)/(a(38) a(4))
37 (0, 1) a(37)/a(1) 77 (1, 2) a(77) a(1)/(a(11) a(7))
38 (1, 2) a(38) a(1)/(a(19) a(2)) 78 (3, 4) a(78) a(13) a(3) a(2)/

(a(39) a(26) a(6) a(1))
39 (1, 2) a(39) a(1)/(a(13) a(3)) 79 (0, 1) a(79)/a(1)
40 (1, 2) a(40) a(4)/(a(20) a(8)) 80 (1, 2) a(80) a(8)/(a(40) a(16))
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Table 2: Divisor product representation for primorials prl(N) :=A002110(N)

N prl(N) prl(N)/2 dpr(prl(N)) structure

1 2 1 [2]/[1]

2 6 3 [6, 1]/[3, 2]

3 30 15 [30, 5, 3, 2]/[15, 10, 6, 1]

4 210 105 [210, 35, 21, 15, 14, 10, 6, 1]/[105, 70, 42, 30, 7, 5, 3, 2]

5 2310 1155 [2310, 385, 231, 165, 154, 110, 105, 70, 66, 42, 30, 11, 7, 5, 3, 2]/

[1155, 770, 462, 330, 210, 77, 55, 35, 33, 22, 21, 15, 14, 10, 6, 1]

The next two instances are:

6, 30030, 15015,

[30030, 5005, 3003, 2145, 2002, 1430, 1365, 1155, 910, 858, 770, 546, 462, 390, 330, 210, 143, 91, 77, 65, 55, 39,
35, 33, 26, 22, 21, 15, 14, 10, 6, 1]/

[15015, 10010, 6006, 4290, 2730, 2310, 1001, 715, 455, 429, 385, 286, 273, 231, 195, 182, 165, 154, 130, 110, 105,
78, 70, 66, 42, 30, 13, 11, 7, 5, 3, 2]

7, 510510, 255255,

[510510, 85085, 51051, 36465, 34034, 24310, 23205, 19635, 15470, 15015, 14586, 13090, 10010, 9282, 7854, 6630,
6006, 5610, 4290, 3570, 2730, 2431, 2310, 1547, 1309, 1105, 1001, 935, 715, 663, 595, 561, 455, 442, 429, 385, 374,
357, 286, 273, 255, 238, 231, 195, 182, 170, 165, 154, 130, 110, 105, 102, 78, 70, 66, 42, 30, 17, 13, 11, 7, 5, 3, 2]/

[255255, 170170, 102102, 72930, 46410, 39270, 30030, 17017, 12155, 7735, 7293, 6545, 5005, 4862, 4641, 3927,
3315, 3094, 3003, 2805, 2618, 2210, 2145, 2002, 1870, 1785, 1430, 1365, 1326, 1190, 1155, 1122, 910, 858, 770,
714, 546, 510, 462, 390, 330, 221, 210, 187, 143, 119, 91, 85, 77, 65, 55, 51, 39, 35, 34, 33, 26, 22, 21, 15, 14, 10, 6, 1]
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