Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
A034910
One quarter of octo-factorial numbers.
14
1, 12, 240, 6720, 241920, 10644480, 553512960, 33210777600, 2258332876800, 171633298636800, 14417197085491200, 1326382131865190400, 132638213186519040000, 14324927024144056320000, 1661691534800710533120000, 206049750315288106106880000
OFFSET
1,2
COMMENTS
A034910 occurs in connection with the Vandermonde permanent of (1,3,5,7,9,...); see the Mathematica section of A203516. - Clark Kimberling, Jan 03 2012
FORMULA
4*a(n) = (8*n-4)(!^8) = Product_{j=1..n} (8*j-4) = 4^n*A001147(n) = 2^n*(2*n)!/n!, A001147(n) = (2*n-1)!!.
E.g.f. (-1+(1-8*x)^(-1/2))/4.
a(n) = A090802(2n-1, n). - Ross La Haye, Oct 18 2005
a(n) = ((2*n)!/n!)*2^(n-2). - Zerinvary Lajos, Sep 25 2006
G.f.: x/(1-12*x/(1-8*x/(1-20*x/(1-16*x/(1-28*x/(1-24*x/(1-36*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2011
From Peter Bala, Feb 01 2015: (Start)
Recurrence equation: a(n) = (7*n - 3)*a(n-1) + 4*(n - 1)*(2*n - 3)*a(n-2).
The sequence b(n) := a(n)* Sum_{k = 0..n-1} (-1)^k/( 2^k*(2*k + 1)*binomial(2*k,k) ) beginning [1, 11, 222, 6210, 223584, ...] satisfies the same recurrence. This leads to the finite continued fraction expansion b(n)/a(n) = 1/(1 + 1/(11 + 24/(18 + 60/(25 + ... + 4*(n - 1)*(2*n - 3)/(7*n - 3) )))) for n >= 3.
Letting n tend to infinity gives the continued fraction expansion Sum_{k>=0} (-1)^k/( 2^k*(2*k + 1)*binomial(2*k,k) ) = (4/3)*log(2) = 1/(1 + 1/(11 + 24/(18 + 60/(25 + ... + 4*(n - 1)*(2*n - 3)/((7*n - 3) + ... ))))). (End)
From Peter Bala, Feb 03 2015: (Start)
This sequence satisfies several other second order recurrence equations leading to some continued fraction expansions.
1) a(n) = (9*n + 4)*a(n-1) - 4*n*(2*n - 1)*a(n-2).
This recurrence is also satisfied by the (integer) sequence c(n) := a(n)*Sum_{k = 0..n} 1/( 2^k*(2*k + 1)*binomial(2*k,k) ). From this we can obtain the continued fraction expansion Sum_{k >= 0} 1/( 2^k*(2*k + 1)*binomial(2*k,k) ) = (8/sqrt(7))*arctan(sqrt(7)/7) = (8/sqrt(7))*A195699 = 1 + 1/(12 - 24/(22 - 60/(31 - ... - 4*n*(2*n - 1)/((9*n + 4) - ... )))).
2) a(n) = (12*n + 2)*a(n-1) - 8*(2*n - 1)^2*a(n-2).
This recurrence is also satisfied by the (integer) sequence d(n) := a(n)*Sum_{k = 0..n} 1/( (2*k + 1)*2^k ). From this we can obtain the continued fraction expansion Sum_{k >= 0} 1/( (2*k + 1)*2^k ) = (1/sqrt(2))*log(3 + 2*sqrt(2)) = 1 + 2/(12 - 8*3^2/(26 - 8*5^2/(38 - ... - 8*(2*n - 1)^2/((12*n + 2) - ... )))). Cf. A002391.
3) a(n) = (4*n + 6)*a(n-1) + 8*(2*n - 1)^2*a(n-2).
This recurrence is also satisfied by the (integer) sequence e(n) := a(n)*Sum_{k = 0..n} (-1)^k/( (2*k + 1)*2^k ). From this we can obtain the continued fraction expansion Sum_{k >= 0} (-1)^k/( (2*k + 1)*2^k ) = (1/sqrt(2))*arctan(sqrt(2)/2) = 1 - 2/(12 + 8*3^2/(14 + 8*5^2/(18 + ... + 8*(2*n - 1)^2/((4*n + 6) + ... )))). Cf. A073000. (End)
a(n) = (-1)^n / (16*a(-n)) for all n in Z. - Michael Somos, Feb 04 2015
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = e^(1/8)*sqrt(2*Pi)*erf(1/(2*sqrt(2))), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = e^(-1/8)*sqrt(2*Pi)*erfi(1/(2*sqrt(2))), where erfi is the imaginary error function. (End)
EXAMPLE
G.f. = x + 12*x^2 + 240*x^3 + 6720*x^4 + 241920*x^5 + 10644480*x^6 + ...
MAPLE
[seq((2*n)!/(n)!*2^(n-2), n=1..14)]; # Zerinvary Lajos, Sep 25 2006
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 11, 5!, 8}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
a[ n_] := Pochhammer[ 1/2, n] 8^n / 4; (* Michael Somos, Feb 04 2015 *)
PROG
(PARI) {a(n) = if( n==1, 1, n>1, a(n-1) * (8*n - 4), a(n+1) / (8*n + 4))}; /* Michael Somos, Feb 04 2015 */
(Magma) [n le 2 select 12^(n-1) else (7*n-3)*Self(n-1) +4*(n-1)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 20 2022
(SageMath) [2^(3*n-2)*rising_factorial(1/2, n) for n in range(1, 40)] # G. C. Greubel, Oct 20 2022
KEYWORD
easy,nonn
STATUS
approved