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A SEATING ARRANGEMENT PROBLEM

Philippe Flajolet
(Version of January 15, 1997)

There are n seats in a row at a luncheonette, and people sit down one at a time at random.

They are unfriendly and so never sit next to one another. What is the expected number of
persons to sit down?

The original problem is due to Freedmann and Shepp, and it appeared as Problem 62-3 in the
1962 volume of SIAM Review . There are various alternative formulations. One of them
involves fatmen that need more than one stool to sit on. Another one is a simplified
description of channel occupation for mobile telephones due to the Math. Center at Bell
Labs: there are n consecutive radio channels and stations arrive at random and try to grab a

free channel; because of possible interferences, no station occupies a channel next to an
already occupied one. What is the expected proportion of occupied channels?

R n

Clearly, the number of occupied seats/channels lie somewhere between g and E . This

worksheet explores the way the solution to this and similar problems may be found using the
Gfun package. The common schema explored here is: (1) write down an immediate
specification of the problem; (2) use the gfun[listtorec| procedure to guess the right
differential equation; (3) exploit the results using Maple capabilities for integration and
asymptotic expansion.

Basic equations

Let g n) be the probability generating function (PGF) of the number of occupied seats
when they are n seats. In the Maple code below, we take implicitly # as the generating
variable. If the first individual to arrive occupies seat & , then the number of occupied seats
is 1 plus the number of occupied seats in [1.. K = 2] plus the number of occupied seats in
[K+2.n],asseats K-1and K+ 1 have become unavailable. The subproblems of sizes

K-2and n- K-1 are of a similar nature. By the randomness assumption, K takes each
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value in [1 .. n] with equal probability, namely — . This gives rise to a recurrence on
n

random variables L, (the number of occupied seats) and on generating functions

> L[n]=1+L[K-2]+L[n-K-1], Pr(K=k)=1/n;g(n)=u/n*Sum(g(k-2)*g(n-k-
1),k=1..n),g(-1)=1,g(0)=1,g(1)=u;

+ [

1
pogop PHK=E) = —

JLJ,E=1+LL,,{_2

u i g(k-2)g(n-k-1)
k=1

5(n) = - e(-D=Le(0)=1

This recurrence determines the g{#) explicitly and is implemented by the following Maple

code:

> g:=proc(n) local k; option remember;

if n<=0 then 1 elif n=1 then u else
expand(u/n*convert([seq(g(k-2)*g(n-k-1) ,k=1..n)], +));
fi

end:

> seq([j,g(j)1.J=0..5);

011 [L ul 12 ul. |3 2+ ul 14681 |5 i 4 202
[0,1], [1, u], [2, u], L +3u,[,u], TR

For instance, when n = 3 | there is probability E that just one seat is occupied: this occurs

only if the first person that arrives chooses the middle seat.
We then get the moments by successive differentiation.

> subs(u=1,diff([seq(g(j),j=0..20)],u));
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5 37 26 349 169 11873 7277 157567 233249
01132 1975 105 457 2835’ 1575 31185° 42525°
11994551 20791453 618626159 307095526 7545655031
2027025 ° 3274425 ° 91216125 42567525 ° 986792625
46426791998 1755370057489 4368633478802

5746615875 ° 206239658625 ° 488462349375

> evalf(subs(u=1,diff([seq(g(j)/j,j=1..40)],0)),5);

[1., .50000, 55556, 50000, 49333, 48148, 47483, 46944, 46533,
46203, 45933, 45708, 45518, 45355, 45213, 45089, 44980,
44883, 44796, 44718, 44648, 44583, 44525, 44471, 44421,
44376, 44333, 44204, 44257, 44223, 44191, 44161, 44133,
44107, 44082, 44058, 44036, 44015, 43995, 43976]

This suggests that the mean occupation ration could be, for r large, asymptotic to a constant

with approximate value 44%.

The mean occupancy ratio

The easiest is to try a heuristic approach. As the recurrences for moments are linear, it is
reasonable to expect them to be of the holonomic type. We thus compute a few dozen initial
values and try to guess a recurrence with gfun[listtorec] .

> with(gfun);

[ Laplace, algebraicsubs, algegtodiffeq, algegtosentes, aigfuntoaigeq,
borel, cauchyproduct, ‘diffeg*diffeq’, ‘diffeq+diffeq’, diffegtorec,
guessegn, guessgf, hadamardproduct, holexprtodiffeq, invborel,
listtocigeq, listtodiffeq, listtohypergeom, listtolist, listtoratpoly,
listtorec, listtosertes, ‘listtosertes/Laplace’, ‘listtoseries/egf”,
listtoseries/lgdegf’, ‘listtoseries/lgdogf”, ‘listtoseries/ogf’,
listtoseries/revegf', ‘listtosentesirevogf’, maxdegcoeff, maxdegegn,
maxorderegn, mindegcoeff, mindegegn, minorderegn, optionsgf,
poltodiffeq, poltorec, ratpolytocoeff, ‘rec*rec’, ‘rec+rec’, rectodiffeq,

rectoproc, sertestoaigeq, seriestodiffeq, sertestohypergeom,

http://algo.inria fr/libraries/autocomb/fatmen-html/fatmen1 .html 3/17



3/29/2014 fatmen.html

sertestolist, sertestoratpoly, seriestorec, seriestoseries]
> rec:=listtorec(subs(u=1,diff([seq(g(j),j=0..25)],u)),u(n));

rec ;= [{-2u(n)+{(-n+Du(n+1)+(2n+4)u(n+2)
+(-n-3u(n+3)u(0)=0,u(1)=1,u(2) =1}, ogf]

The recurrence transforms into a differential equation by means of gfun[rectodiffeq]

> ode:=rectodiffeq(op(1,rec),u(n),Y(z));

2 2 d
2z -22)Y(z)+(z -2z+ 1) | Y{(z)|-L ¥Y{0)=0
o )Y(2) + ( )(az()] (0) =0}
Now, we are sure of the existence of a closed form for the generating function of averages,

since any ODE of order 1 is solvable by quadratures. The dsolve command of Maple does
the job:

> M1 _z:=factor(op(2,dsolve(ode,Y(z))));

z) (-2 2}

(€% - 13e

2 -
(-1+2)

MI . l
Zi=3

We can check consistency with known values
> series(M1_z,2z=0,30);

, 52 4 375 26 349, 169 g 11873 o

Z+7Z +§z +2z +Ez +Ez +1ﬂ52 +452 + 28352 +

7277 1o 157567 11 233249 1, 11994551 13 20791453 14

1575° T 31185 © T 42525 © T 2027025 © T 3274425 °
618626159 15 307095526 15 7545655031 17

Y 01216125 © T 42567525 © T 986792625 °

46426791998 15 1755370057489 10 4368633478802 o0

5746615875 © | 206239658625 - = 488462349375

365468962351379 5, 1001316834294748 5,

38979295480125 - 102088631019375 -
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45904893141293831 3  68644124105752304 54
4482618980214375 ~  6431583754220625 ©
13689735293349246343 55 22187381007629709694 14
1232720219558953125 ~  1923043542511966875 ~
70306213105897518949 o7 379434505348809916916 4
5873549281427953125 © 30593874539963109375
483141592038388462312291 5 %
37643577344671751578125 © T 0% )

We can be also quite sure that the process makes sense if we compare as well with values
that haven't been used at all in the "guessing" phase:

> subs(u=1,diff([seq(g(j),j=26..29)],u));

22187381007629709694 70306213105897518949
1923043542511966875 ° 5873549281427953125°

379434505348809916916 483141592938388462312291

30593874539963109375° 37643577344671751578125

The generating function of expectations is meromorphic with only a pole at z=1 . In order

to analyse the coefficients of the explicit solution found, we examine the singular expansion
at the double pole z=1 :

> map(normal,series(M1_z,z=1,4));

1, Y PR S1 -2y 2 ¢y
z[e -1)e (-1+2) +e (-1+z) -e +3‘f (_1+z]+0((-1+z]2)

By the principles of singularity analysis, it is enough to expand the singular part. This shows
that the mean number of occupied seats satisfies the approximate formula

> ml:=1/2*(1-exp(-2))*(n+1)-exp(-2); evalf(m1,20); C1:=evalf(coeff(m1,n,1)):

(-2} 2)

1 (-
mI:=E(1—e J(n+1)-e¢

43233235838169365406 n + .29699707514508096217
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—26
The asymptotic approximation is in fact extremely good and is about 1'1]': :' for n =30

> for j from 0 to 30 by 5 do j,evalf(subs(u=1,diff(g(j),u))-subs(n=j,m1),30) od;
0, —.296997075145080962159000757542

5. 008007799613117434242664646555
10, - 3198644557185228685822365 10~
15, .14900228357108901688 10~
20, -.157792286723990 10

—20
25 536622242 10

-26
30, -.726 10
In particular the constant found empirically to be close to 0.44 is precisely

> 1/2*(1-exp(-2))=evalf(1/2*(1-exp(-2)),30);

e' ™! = 432332358381693654053000252514

B | =
b | =

Distributional analysis

Whenever possible in analysis of algorithms, one should try to determine how characteristic
the average case is. We show now that the standard deviation of the distribution of the

number of occupied seats/channels is D(ﬁ )} . By the Markov-Chebyshev inequalities, this

means that, for large h , almost all configurations must be close to the average predicted

value.
First, we have access to the second (factorial) moments by a double differentiation.

> 12:=subs(u=1,diff([seq(g(j),j=0..25)],u,u));

http://algo.inria fr/libraries/autocomb/fatmen-html/fatmen1 .html 6/17



3/29/2014 fatmen.html
| 4 58 50 278 158 38494 26716 646588 211558
2:=10,0.0,52 755 35> 15° 2835° 1575° 31185° 8505 °
045638 37415492 3606958324 274743086 555662598058
32175° 1091475° 91216125 ° 6081075 ° 10854718875’
66172924294 884549001398 11636213227258 21526530167294
1149323175 ° 13749310575° 162820783125 ° 272582485875 °
8866653505362722 426325305049824122 60652124252469934 6617673824197130522

102088631019375° 4482618980214375 ° 584689432201875 °  58700962836140625

The function gfun[listtorec] aims at detecting ("guessing") plausible linear recurrences with
polynomial coefficients. It uses two parameters gfun[maxorderegn] , gfun[maxdegcoeff] ,
with default values 3 and 4 respectively, so that it is tuned for quick discovery of simple
recurrences.

> gfun['maxordereqn'],gfun['maxdegcoeff];
rec:=listtorec(12,u(n));

3, 4
rec ;= FAIL
The control parameters can be set to higher values.
> gfun['maxordereqn']:=8; gfun['maxdegcoeff']:=6;

gﬁmmm:om.’ereg’m =8

gﬁmmma?egmeff =6

We can now determine the right recurrence (we need more values):
> 12:=subs(u=1,diff([seq(g(j).j=0..55)],uu)):

> rec2:=listtorec(12,u(n));

recZ = |{(48+24dn)u(n)+(-32+22n+ ISnz]u(n+ 1)

#(28-61n-18n"+3n)u(n+2) +(-12+13n-18n" -7n )u(n +3)
#(-252-8Tn+14n +5n )u(n+4) +(20-41n-24n"-3n")u(n+5)
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+(48ﬂ+296n+6ﬂn2+4ﬂg)“(”+6)

2 3 S8 50
+(-280-166n-32n -2n )u(n+?),u(5)=ﬁ,u(6)=3,
u(0)=0,u{1)=0,u{2)=0u(3) =4§, u{4) =2}, ogf

The recurrence is of order 7. The generating function satisfies a differential equation of order
3 with coefficients of degree 7 (!!). It is rather remarkable that the dsolve command of
Maple can solve this explicitly.

> ode2:=rectodiffeq(op(1,rec2),u(n),Y(z));

ode2 := {Y(0) =0, D(Y)(ﬂ) 0, (D" )(Y)(ﬂ) 8,
(D“")(¥)(0) = 4000, (D" )(Y)(ﬂ)-43([3' )(Y)(ﬂ)'ﬂ
(D))(7)(0) = 464, (-14407° + 10807 - 16207 + 7202°) Y(z)

d
+(=4202 - 1202° - 7202 + 2407° + 900z +120)( Y(z)]

3 (2
—[=¥
(-5407 +8102° - 7202 + 9307 - 3607° - 1202) (Hz (Hz (z)]] +

3 (3 (0
(-907 +2102° - 1502° + 907" - 1207° + 602°) ( (az(ﬁﬁz])])}

Note that a simple rational solution is detected by dsolve. This entails a reduction of order,
and a complete algorithm exists for order 2 (in fact that Maple succeeds in bypassing here).
> infolevel[dsolve]:=5: M2_z:=factor(op(2,dsolve(ode2,Y(z))));

dsolve/diffeq/polylinearODE: checking Euler equation

dsolve/diffeq/expsols: trying exponential solutions

dsolve/diffeq/expsols: rational solutions partially successful. Result(s)= (1-3*z)/(-1+z)"3
dsolve/diffeq/expsols_solvericcati: all solutions by polynomial part

dsolve/diffeq/expsols: expon. solutions partially successful. Result(s) = exp(Int((-2*zA2+z-2)/(z"2-2),z)),
exp(Int((-4*zA2-2%z)/(-1+2"2),z))

1-3z+de 2250 T iTtE,

M2 z 1
4 (-1+2)

http://algo.inria fr/libraries/autocomb/fatmen-html/fatmen1 .html 8/17



3/29/2014 fatmen.html

The singular part at z = 1 is analysed. For the variance this leads to approximate formulae.

> Moment2_sing:=map(simplify,series(M2_z+M1_z,z=1,3));

1 1 (4

Moment2_sing := (-5- e F e(_z:') (-1+ zjl_3 -

1 _ _ _ _
4—(—T+e4+2e2)e{ Ve o3 1T s o((-1+ 7))

> var_n_asympt:=factor(collect(expand(convert([seq((-1)*j*coeff(Moment2_sing,z-
1,j)*binomial(n-j-1,-j-1),j=-3..-1)], + )-m1A2),n,simplify));

—4
var nasympt .= e{ :' (n+3)
Again, the approximations are extremely good:
> evalf(var_n_asympt,30);

0183156388887341802937180212732 n  + .0549469166662025408811540638196

> evalf(subs(n=50,var_n_asympt),30); evalf(subs(u=1,(diff(g(50),u,u)+diff(g(50),u)-
diff(g(50),u)2)),30);

970728861102911555567055127480
970728861102911555567055127482

We have in passing obtained a Theorem . In the random seating problem, the variance of
the number of occupied seats when there are h seats is asymptotic to

3
;= -0183156388887341802937180212732 n
€ +.054946916666202540881154063820

This result seems to be new (!). Convergence is extremely fast so that this formula is highly

n
accurate. The standard deviation is found to be only about T .

Distribution . A mean that is O{n) and a standard deviation that is D(\/; } entail that the
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distribution is concentrated around its mean with high probability. This also suggests that the
distributions of the number of occupied seats could be asymptotically Gaussian.

> distr:=sort(map(proc(e) [op([2,2],e),0p(1,e)] end,[op(evalf(g(60),4))]),proc(x,y)
evalb(op(1,x)<op(1,y)) end):

> linalg[transpose](matrix(distr));

[20,21,22,23,24,25, 26,27, 28,29, 30]

[.2868 10~ , 5041 107° , 0001270, .004097 , .04416, .1907, 3567
, 2924, .09950, .01200, .0003348]

> plot(distr,style=POINT);

0,35 ¢

= =

- = -

o ra cn
A

=
—

0.05

'|'IIII'|'IIII|IIII|IIII|IIII'|'
20 i 24 2b 28 40

=

In 65% of the cases, the occupation is either 26 or 27; the probability of an extremely bad

(%)

assignment (20 seats out of 60) is only about 3 10 . In fact, a Gaussian law can be

proved by adapting the bivariate analysis of patterns in binary search trees by Flajolet,
Martinez, and Gourdon (1996).

Fatter men
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The approach extends to the case where fatmen need b seats on each side. The earlier case

was b =1 . We consider here b =2 . This time, the number of occupied seats lies

n n
somewhere between g and — . Now, we let gb be the probability generating function

4

(PGF) with u the generating variable. The following procedure computes gb for a given
size n and the parameter b .

> gh:=proc(n,b) local k; option remember;

if n<=0 then 1 elif n<=b then u else expand(u/n*convert([seq(gb(k-b-1,b)*gb(n-k-
b,b).k=1..n)],+))

fi
end:

The probability generating functions are now:

> seq([j,gb(j,2)1,j=0..6);
011, [L ul, [2, ul, [3, ul, | 4, v + 2l |5, 202 + 2l 16,42
[0, 1], [1, u], [2, ul, [3, ul, PLIRPLY I R +5u,[ U]
For instance, for n = 4 , we have 2 occupied seats if the first arrival is on a side (this has

probability E ), which leaves the opposite seat available, and 1 occupied seat otherwise.

The moments are obtained by differentiation of the PGF:
> subs(u=1,diff([seq(gb(j,2),j=0..25)],u));

39 16 103 128 1091 95 55453 322841 371801
7557 40" 457 350° 28 15120 81900° 88200
363773 7493767 294729143 4935980947 43834851251

81000° 1572480° 58476600  928746000° 7842744000
63303435199 325638002203 24184493623033 1845637488379687

10795680000° 530499715207 3771239472000° 275986161360000°

0,1,1,1,

http://algo.inria.fr/libraries/autocomb/fatmen-html/fatmen1.html
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42103935641621927 38574335284278439
6047696753280000° 5330501946000000

> evalf(subs(u=1,diff([seq(gb(j,2)/j.j=1..35)],u)),5);

[1.,.50000, .33333, .37500, .36000, .33333, .32653, .32188, .31605,

31171, 30844, 30563, .30322, 30118, .29940, 29785, .296438,

29526, .29417, .29319, .29230, .29149, .29076, .29008, .28946,

28889, 28836, .287806, .28740, .28698, .28638, .28620, .28585, 28351, .28520]

This suggests an occupation ratio of about 28%, now.
Like before, we can guess a differential equation and attempt to solve it.

> lbl:=subs(u=1,diff([seq(gb(j,2),j=0..35)],u)): gfun['maxordereqn']:=5;
gfun['maxdegcoeff']:=5; recb:=listtorec(lbl,u(n));

gﬁ" nmmarcfere-grz -=

gﬁ'mmmdegmeff =3

rech = [{u(0)=0,u(1)=1,u(2)=1,u(3)=1,2u(n)
~2u{rn+ D)+ (n+2)u(n+2)+(-6-2n)u(n+3) +(n+d)u(n+4)}, ogf]

> rectodiffeq(op(1,recb),u(n),Y(z));
3 2 2 d
{Y()=0,({-4z +4z )Y(2)+(-2z +4z- 2)(5‘((2)] +2}

The differential equation is of first order, hence again solvable by quadratures
> solb:=dsolve(",Y(z));

dsolve/diffeq/dsoll: -> first order, first degree methods :
dsolve/diffeq/dsoll: trying linear bernoulli
dsolve/diffeq/linearsol: solving 1st order linear d.e.
dsolve/diffeq/dsoll: linear bernoulli successful

(—(1+ 2)°)
1 ferf(iz+ e - et EETEY
Y(z)=--

solb .= 2 (22-22+1}1/;
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This time the solution involves the Gaussian error function ( erf ). The solution is singular at
z =1 , with an apparent double pole.

> singb:=series(op(2,solb),z=1,3);

_ 1erf(2 el ™ - 1e  merf(ne' ™ o
singb = - = (-1+2z2) -
2 ﬁ
1-4lerf(2D)me " -24nete ™ s a1e! T nert(r) e
2 lf{; (—1+z)_1—
Tlerf(2Dme Vedyfne’ e ™ - 71 naf(ne!™

Jn Y O(-1+12)

> c2:=factor(simplify(coeff(singb,z-1,-2))); cl:=factor(simplify(coeff(singb,z-1,-1)));
C2:=evalf(c2):

b2 | =

=%;ﬁgi_4)(-erf{21] +erf{1}))

: 1(-2erf(2D e ™ 1+ Iyfm + 2erf(D e ™ 1)
cl .=~-
Jn

This corresponds to an asymptotic form for the first moment

> mbl:=c2*(n+1)-c1; evalf(mb1,30);

=%Iﬁe(_4}(-erf(21‘) +erf(1)) (n+1)

1(-2erf(2D e ™ 1+ Iyfm + 2erf(D e ™ 1)
+
Jn

274550987725779445633557292602 n  + .372754938628897228167786463010

Once more, the asymptotic approximation is extremely good, even for relatively small values
of n.

> for j from 0 to 30 by S do j,evalf(subs(u=1,diff(gb(j,2),u))-subs(n=j,mb1),30) od;

http://algo.inria fr/libraries/autocomb/fatmen-html/fatmen1 .html 13/17



3/29/2014 fatmen.html

0, —.372754938628897228167786463010
5, .0544901227422055436644270739822

10, -.0011219587438345416462165318878
15, 49368424357786868788393222 10
20, .18260946840836293021922 10™°
25, - 330633927685936039478 10

30, 414399880593204422 10~

This last example demonstrates the interest of preserving initial conditions whenever
possible. The way Gfun and Maple manage them consistently is especially useful here.

Fatter men, even!

We follow the same schema and consider finally the situation where 3 seats/channels are
unavailable next to an occupied seat. The number of occupied seats must now lie between
n/4 and n/5.

> evalf(subs(u=1,diff([seq(gb(j,3)/j,j=1..35)],u)),5);

[1.,.50000, 33333, .25000, .28000, .27778, .26531, .25000, .24444,

24133, 23841, .23505, .23223, 22997, .22809, .22641, .22491,

22357, .22238, .22131, .22035, .21946, .21866, .21792, 21725,

21662, 21604, 21550, 21500, 21453, .21410, .21369, .21330, .21294, .21260]

This suggests an occupation ratio of about 21%.

> Ibl:=subs(u=1,diff([seq(gb(j,3),j=0..35)],u)): gfun['maxordereqn']:=6;
gfun['maxdegcoeff']:=3; recb:=listtorec(lbl,u(n));

gﬁ" nmmarcfere-grz -=

gﬁ'mmmdegmeff =3

rech = [{2u(n)-2u(n+1)+{n+3)u(n+3)
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+{(-8-2nju(n+4)+(n+3)juln+3), u(ﬂ).= 0,u(l)=1,
u(2)=1u{3)=1u(4) =1}, og]

> gfun['maxdegcoeff']:=1; rectodiffeq(op(1,recb),u(n),Y(z));

gﬁt nmmrfegmeff =1

4 3 2 d
( (1274 122) Y(2) + (62 +122-6)(£Y(z]]+6, ¥(0)=0

The solution now involves integrals of cubic polynomials.
> solb:=dsolve(",Y(z)); singb:=series(op(2,solb),z=1,3);

dsolve/diffeq/dsoll: -> first order, first degree methods :
dsolve/diffeq/dsoll: trying linear bernoulli
dsolve/diffeq/linearsol: solving 1st order linear d.e.
dsolve/diffeq/dsoll: linear bernoulli successful

z
{1;’353{25::2+3.5.5+5}} {—1f33{232+33+5}}

¢ aue
solb:=Y(z) = >
z =2z+1
: 2
) (1/3a(2a +3u+60) B ~
singh:= | e due' 11;3}(_1+z) 2
0
{ 1 )
(1/3a2a +3u+6)) B ~
5| e due( 11f3)+eﬁ11f3}E{ 1173
o (—1+z)_1+
ﬂl 2
(1/3a2a +3u+6)) B ~
15| e due( 11f3)_3E|:11f3}E{ 1173 .
7 O(-1+2z)

> c2:=factor(simplify(coeff(singb,z-1,-2))); cl:=factor(simplify(coeff(singb,z-1,-1)));
C3:=evalf(c2):
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1

2
(1732 +3x+8)) _
c2:=[e due{ s

a

1

2
(1732 +3x+6)) _
cl = -ﬁ[e due' 7 41

a
> mbl:=c2*(n+1)-c1; evalf(mb1,30);

In particular, the mean occupatio ratio is an interesting integral that evaluates to
.2009733699788442431665743548775...

1

2
(1/3ui2a +3u+6)) _
mb1:=[e due' 11fg:l(n+1]

0
1

2
(1/3u28 +3u+8)0 _
+6[E dHEI: 11;3}-1

0
200973369978844243166574354875 n  + .400681358985190970216602048413

And finally, the approximation is still very good, being within 1% already for h =53 ,

although the asymptotic regime takes a little longer to establish

> for j from 0 to 30 by 5 do j,evalf(subs(u=1,diff(gb(j,3),u))-subs(n=j,mb1),30) od;
0, —.40681358985190970216602048413
5, —.01168043974613091799889225850
10, —.00321395630701880049843069955

15, —.00012698224741606250734864996

20, =.5386058938001179723959565 1(3!_5
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25, =.13692945361227906727906 107°
30, —.226608034017219972928 1l11l_B

Conclusions

Our purpose here has been to demonstrate how one naturally arrives at the solution of a
probabilistic problem using tools like Gfun. Once the solutions have been "guessed", it is
possible to come back, think, and prove solutions. For instance, the problem of the mean

leads to recurrences that involve history (summation) and a factor of — ; thus, it is
n

reasonable to expect to be within reach of the theory of holonomic functions on which Gfun
is based, and rough bounds on the order of recurrences or differential equatiosn suffice to
validate the "guesses". In this way, we have "naturally" rediscovered a solution of the
generalized problem due to David Rothman (fatter men) and obtained a variance analysis for
the basic problem that appears to be new. The whole session (including the variance
computations) takes about 60 seconds of CPU time on a DEC-3000 station.

About the original problem, we may compare the mean seat occuptation to the best possible
seating arrangement:

> for i from 1 to 3 do “C .i/(1/(i+1)) od;
8046647168
8236529631
8038934796

Thus, we have determined the price to be paid for random access: it is about 15% to 20%.
As we saw repeatedly, the asymptotic approximations obtained are extremely good, already
for n =3 . Also the distributional analysis, where a small variance is obtained, shows that

the average-case is highly representative of what will be observed in practice.
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