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Abstract

We use exponential generating functions to count claw-free cubic graphs

with given connectivity. Tables are provided for connectivity 1, 2 and 3.

1 Introduction

A claw-free cubic graph G is a cubic graph which contains no induced subgraph

isomorphic to K 3. Therefore these are precisely the cubic graphs whose vertices all



belong to triangles. For convenience we refer to them as cfc’s. For a study of the
history of the enumeration of regular graphs the reader can consult Gropp [Gr92] and
for more recent work on enumerating cubic and claw-free cubics see [PaRROx], and
[CPROx].

In [PaRR0x| Palmer, Read, and Robinson studied claw-free cubic graphs and
computed the number of claw-free cubic graphs with up to 52 vertices. Moreover,
their paper contained a partial differential equation for the exponential generating
function(egf) of labeled, general cubic graphs. In [CPROx] this equation was used to
derive recurrence relations for general cubic graphs with a specified number of multiple
edges and loops by connectedness. There is another relevant paper with enumeration
formulae for cfc’s, namely [MPaRROx]. Combining results of these papers makes it
possible to count claw-free cubic graphs with given connectivity.

In the present paper, we will follow the terminology and method in [PaRROx] to
find the number of k-connected claw-free cubic graphs where £ = 1,2, and 3. In a
claw-free cubic graph, every vertex belongs to a triangle. So the maximum number
of triangles in which a vertex may lie is 3. Clearly, a vertex lies in 3 triangles if and
only if it is a vertex of K. A diamond in a cfc is an induced subgraph isomorphic to
K4 —e. A vertex lies in exactly two triangles if and only if it is one of the vertices
of degree 3 in a diamond. A string of diamonds is a induced subgraph in which
diamonds are adjacent in series. A ring of diamonds is a connected component in
which every vertex belongs to a diamond.

In [PaRROx| there are two important operations which convert general cubic
graphs to claw-free cubic graphs. One of them is the ezpansion operation which
converts an edge of a general cubic graph to a string of diamonds. The inverse oper-
ation to expansion is called reduction. The other operation is dilation which inflates
a vertex of a general cubic graph to a triangle. The inverse operation to dilation is
called contraction. Consider a cfc with no component isomorphic to K, or a ring

of diamonds. The reduction operation applied to all strings of diamonds in this cfc



results in a general cubic graph with no loops but possibly some double edges. The
two vertices of such a double edge are mutually adjacent to a third vertex. These
vertices constitute a trumpet. Still, every vertex must belong to a triangle. Note that
if e is an edge caused by a reduction, then such a triangle must be part of a trumpet in
which e is a multiple edge. Now the contraction operation completes the conversion
from claw-free cubic graphs to general cubic graphs.

For general graph theoretic terminology and notation we follow [CL96] and the

basic knowledge of labeled enumeration techniques can be found in [HPa73].

2 Connected claw-free cubic graphs

We define

n

H(z) :Zhnm.

n=0
where h,, is the number of labeled claw-free cubic graphs on 2n vertices. Then H(z?)
is the exponential generating function for these graphs. By applying expansion and
dilation operations, Palmer, Read, and Robinson [PaRROx] derived the following a
differential equation whose formal power series solution is the egf for labeled claw-free

cubic graphs on 2n vertices:

0= (1442° + 28827 — 5762 H  (2)
+ (=362 — 962° + 242° + 14427 + 5762° + 3842°
— 5762* — 28802° — 5762% 4 1152)H (2) (1)
+ (=152" — 742 — 1302° — 962° + 14427 + 3682° + 3362° — 2882*
— 2402 — 2882% — 962)H(=2).
Equation (1) can be converted to a differential equation whose formal solution is the

egf for the number of connected, claw-free cubic graphs by the substitution

H(z) = efh®), (2)



@ Table 1: Boundary conditions.

hi(1) =0___ hy(7) = 13621608000

h(2) =12~ h1(8) = 8009505504000

hi(3) = 60 hi(9) = 3123380227968000

hi(4) = 2520 h1(10) = 1832279324908032000

h1(5) = 453600 hi(11) = 2054813830468439040000
h1(6) = 59875200 h1(12) = 1665031453088810526720000

Hl(Z) = Zhl('fl) (22;:)',

and hi(n) is the number of connected, labeled cfc graphs with 2n vertices. After
substitution in equation (1) of H(z) and its derivatives from equation (2), we have

the following differential equation for H;(z):

’

0 = (1442° 4 28827 — 5762%)H, (2) H,(2)
+ (14428 + 28827 — 57621 H, (2)
+ (=362 — 962° + 242° + 1442" + 5762° + 3842°
— 57621 — 28802% — 57622 + 1152) H,(2)
+ (=152 — 742" — 13027 — 962° + 14427 + 3682° + 3362° — 2882
—2402° — 2882% — 962).

The recurrence relation for the number of connected, claw-free cubic graphs can be

found by extracting the coefficient of (2‘2—:), from both sides of (3). The relation is

supported by the boundary conditions in Table 1:



For n > 13, we have:

\1

fu(n) = —144 1(152);1 :_1 it E;Z)!-(Q?n——kiz 1—(nz;)!7 -2
I
oo S Gl 9
- 144(115271()2(231! — (= D=8 =)

N 288(115271()2(7213; gy 6= Th(n = 6)
+ 576(11523?2); —i (7= = Yl )
M 36(115271()2(321! ooy (" 100 —10)

(2n)! (4)
* 96(1152n)(2n “1g (Il —9)
N 24(115271()(72?1 “1g (" uln = 8)
N 144(115271()2(231I —1a (- Dhaln =)
B 576(115271()2(7;3: — g~ 6)mln—6)
BRGGTE 2n()2(7;31' “1g) 7 B)mn—9)
+ 576(11527(5(72; (= Oa(n =)
+ 2880(11527(3?2); (= S)(n=3)
+ 57— 2! (n = 2)ha(n - 2).

(1152n)(2n — 4)!
By applying Mathematica to this recurrence relation, we calculated the numbers of
1-connected cfc graphs shown in Table 2. Actually the boundary conditions are not
found only by the equation (3) directly. It just gives us partial values of them.

In order to find exact values, we have to add the contribution from the constants in



equation (3) to the values which come from the output of above recurrence relation (4)
for n up to 12.

For example, when n = 12 the number 15%24!/(1152x12) = 673229602575129600000
comes from the constants in equation (3) and the value 1664358223486235397120000
comes from the recurrence relation (4) by using the previous boundary values for
n < 12. The sum of these two numbers gives us the boundary condition h;(12) =

1665031453088810526720000.

3 2-connected Claw-free cubic graphs

A 2-connected general cubic graph can be converted to a 2-connected cfc graph by
the expansion operation, which converts an edge of a general cubic graph to a string
of diamonds, and the dilation operation, which inflates a vertex of a general cubic
graph to a triangle. The smallest 2-connected general cubic graph is K4. By the
dilation operation K, is converted to a 2-connected cfc graph of order 12. Therefore
these operations produce 2-connected cfc graphs of order at least 12. However,(there
are 2-connected cfc graphs that can not be produced in this way. In fact there are
three types of such graphs:

(a) The triangular prism of order 2n = 6.

(b) The rings of two or more diamonds of order 2n > 8.

(c) The graphs of order 2n > 10 obtained by expanding with diamonds the edges of

the triangular prism that do not belong to a triangle.

The rings of diamonds are counted by b
1B ¢

Next we need the egf’s for these three families. Of course, Ky is counted by 22/4!.
2m

|
- 4 ‘o
= 1% l{f‘ i
. 2

S i z _ z _1 2
F 2 S s = i (1 - /2) (5

m=2

And 2-connected cfc graphs obtained by expanding with diamonds the edges of



Table 2: Number of 1-connected cfc graphs with 2n < 60.

n hy(n)

]

2 |1 n

3 |60 L/

4 | 2520

5 | 453600 /g?

6 | 59875200 )ﬁr Si% L("

7 | 13621608000

8 | 8009505504000

9 | 3123380227968000

10 | 1832279324908032000

11 | 2054813830468439040000

12 | 1665031453088810526720000

13| 1925086583971531588608000000

14 | 3552833935369312965955584000000

15 | 5046746501122027301952608256000000

16 | 9861817424365745824355502612480000000

17 | 27365975784025025428617030645350400000000

18 | 61323963707903030791402423349300428800000000

19 | 183552463622453002911375211047071799705600000000

20 | 720052647634369560568722076458423100794470400000000

21 | 2368360586025317757755816851785727694336557056000000000

22 | 10146784583491669585186721242630185440440056545280000000000

23 | 53795556323350118084055188978516784012472039393198080000000000

24 | 246424470779562683529001284375203235733354613795916349440000000000

25 | 1438454000284443072212393572236725837273648853200978470502400000000000

26 99585626913423785914887522920081920122867390538001130895441920000000000
00

27 | 61040547368069278457139458365973168239583736999460339219244777472000000
000000

28 | 46763587708656896789988944665808439580376015582411036159102127439872000
0000000000

29 | 41141634055363776663530319633720522624244890505593059232232304816003481
60000000000000

30 | 32697533978263237827530129558757067499130106959793034875270154251141203

88608000000000000




the triangular prism that do not belong to a triangle has egf

220 /12
where
ey = Y50 = (- 22/2) ©)

k=0
is the egf of the strings of diamonds.

Let @(2%) be the egf of all three types above. Then

o0 2m 0 2k+3
o z (k+1)(k+2)z
B(z) = 22 /24 +;:2 o ; o T
Let Ga(z,y) be the egf
3,,d
Yy
G2($7 y) = Z 92(2ma d) (2n)|
$,d )

where g2(2m, d) is the number of 2-connected labeled general cubic graphs of order
2m with s single edges, d double edges and 2m = 23;‘;“. We define f(2n,d) to be the
number of cfc’s of order 2n built from 2-connected general cubic graphs with s single
edges, d double edges and no loops by dilating vertices and expanding edges. Then
we have the following formula which is simpler then the one in [MPaRROx| because

we do not have loops in 2-connected cfc’s.

Lemma 3.1  For fized n, d, we have

pton, ) = 3o, ) (2) ) s g (7)) (, 9 )2

m,j J
(7)
where j is the number of diamonds and 2n > 12.
Proof. Suppose G is a 2-connected labeled general cubic graphs counted by

g2(2m,d). First we choose 6m labels from 2n available and arrange them in 2m

unordered groups of three each for triangles. Then

()t




is the number of ways to do this. In triangles, the number of ways to label the vertices

according to the adjacencies is
(3!)2m——2d(32 . 2)(1.

Since there are 3m original edges in the 2-connected labeled general cubic graph G,
they can be expanded by j diamonds using combinations with repetition we find that

the number of ways to do this is

()= ")
J J '
The number of ways to arrange the remaining labels for the diamonds and the the

number of ways to assign labels to individual diamonds is
47 :
41/2)7.

Note that the number of 2-connected cfc graphs which can be obtained by (7)

O

depends on the number of double edges in 2-connected labeled general cubic graphs

g2(2m, d) which were already computed in [CPROx]. Define

By(2%) =) by(2n)

n=0

Z?n

(2n)!

be the egf of 2-connected cfc graphs which can be obtained by (7), then by(2n) =
Zd fg(?ﬂ, d) Let

Hy(z) =Y hg(n)(;—?:)'
n=0 '

be the egf of 2-connected cfc graphs. Then we have
Hy(2%) = By(2%) + &(2%).

But the computing the number of 2-connected cfc graphs by using this egf is not quite
simple. To get the by(2n), we need to compute the number f>(2n,d) and sum them
up according to the number of vertices 2n. And then extract the coefficients of three
egf’s in &(z?). By adding, finally, the above numbers from each egf’s according to the

number of vertices, we can have the numbers of 2-connected cfc graphs as in Table 3.



Table 3: Number of 2-connected cfc graphs with 2n < 36.

n hy(n)

2 1

: |2 712
4 | 2520 ]‘ﬂv S

d 453600

6 09875200

7 10897286400

8 6701831136000

9 2623194782208000

10 1338096104497152000

11 1633313557551836160000

12 1324107982344764897280000

13 1408369399403068118016000000

14 2818005386051236981856256000000

15 3984871608553561924638375936000000

16 7418092561827244386962686894080000000

17 22027134615845465196052794703872000000000
18 49003622223231250364949254126429798400000000

4 3-connected Claw-free cubic graphs

Let G3(z,y) be the egf
xS

where g3(2m) is the number of 3-connected labeled general cubic graphs of order 2m
with s single edges and 2m = % Then we define f3(2n) to be the number of cfc’s
of order 2n built by dilating vertices in general cubic graphs with s single edges, no
double edges and no loops. Suppose G is a 3-connected labeled general cubic graph
counted by g3(2m). Then the contribution of G to f3(2n), with (2m) -3 = 2n, is

determined by by arranging the 2n labels in 2m unordered groups of three vertices

each for triangles. Here is the simple relationship between f3(2n) and g3(2m).

10



Table 4: Number of 3-connected cfc graphs with 2n < 90.

n h1 (n)

2 |1

3 |60 {*_é;;g? °7 E;Qf)

6 | 19958400

9 | 622452999168000

12 | 258520167388849766400000

15 | 675280572271869736778268672000000

18 | 7393367369949286697176489031997849600000000

21 | 262780050460968318524397140574168804564664320000000000

94 | 25427675465852111040703353545981158863084030467978035200000000000

97 | 588899571830694942000264105108811607070150958832700604777758720000000
0000000

30 | 295804325421925626330882127682606558611431840588595256206808510098367
8402560000000000000

33 | 298089015291900801910918687858981579022518884435603158506899447288503
7078284530089984000000000000000

36 | 565677772026602700573118887454300022325482015168187354914748390689609
1164814511454342829299466240000000000000000

39 | 191803897837508699578197474721718346802046111134993250012544269312632
86095897879381918156143781281083162624000000000000000000

42 | 111159153925422985672391611050830189648350405191904965108689674793493
964995720171415053312805183121693748717674299392000000000000000000000

45 | 106005759806440161267490042030591700071014694671953768589449762663365

484968378587742696877946003511137006557545399304494112361676800000000
0000000000000

Lemma 4.1  For fixred n, we have

fo(2n) = g3(2m>£—f3§, ®)

where 2n = 6m.

The smallest 3-connected general cubic graph is K4. Therefore the dilation operation

produces 3-connected cfc graphs of order at least 12. But it will produce every 3-

connected cfc graph except the tfiangular prism of order 2n = 6. The numbers g3(2m)

11




Table 5: Number of unlabeled and labeled cfc with x(G) =1

2n | # of unlabeled cfc with k(G) =1 | # of labeled cfc with x(G) =1
1411 2724321600

16 |1 1307674368000

18 | 3 p‘ 9 ?(T 5 500185445760000

2015 494183220410880000

22 111 421500272916602880000

24 | 20 340923470744045629440000

can be found by using Wormald’s recurrence relation [W79c]. We have

n(2m) = (2m) 22
where
r(m) = (3m —2)(r(m —1) + Z_ r(i)r(m —1).

We used this method to compute the numbers g3(2m), i.e the number of 3-connected
cfc graphs, shown in 4. This complete the enumeration of cfc graphs with given

connectivity.

5 Conclusion

The values of hi(n) and hz(n) were checked for n < 12 by calculating the order of
the automorphism graphs of the small connected cfc’s.

The numbers hy(n) were also checked for small value of n by finding the diagrams
of the unlabeled cfc’s with connectivity 1. These are the graphs that contribute to
the difference between hy(n) and ha(n). For example, there are 20 unlabeled cfe’s
with 2n = 24 vertices and k(G) = 1. And the number of ways to label these is
340923470744045629440000. And then we compare this to the number which is the

12



difference between the h;(12) and hy(12) which are found in the Tables 2 and 3,

respectively as follows:
340923470744045629440000 = hy(12) — hy(12)

‘The numbers on the right side of the Table 5 are exactly the differences between h;(n)
and ha(n).

Finally, we note that almost 80% of cfc’s are 2-connected when the number of
vertices is 34 or 36. This is consistent with the observation in [MPaRROx] that

almost all cfe’s are 2-connected.
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