Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090365 Shifts 1 place left under the INVERT transform of the BINOMIAL transform of this sequence. 7
1, 1, 3, 11, 47, 225, 1177, 6625, 39723, 251939, 1681535, 11764185, 86002177, 655305697, 5193232611, 42726002123, 364338045647, 3215471252769, 29331858429241, 276224445794785, 2682395337435723, 26832698102762435, 276221586866499839, 2923468922184615897 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The Hankel transform of this sequence is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
a(n) appears to be the number of indecomposable permutations (A003319) of [n+1] that avoid both of the dashed patterns 32-41 and 41-32. - David Callan, Aug 27 2014
This is true: A nonempty permutation avoids 32-41 and 41-32 if and only if all its components do so. So if A(x) denotes the g.f. for indecomposable {32-41,41-32}-avoiders, then F(x):=1/(1-A(x)) is the g.f. for all {32-41,41-32}-avoiders. From A074664, F(x)=1/x(1-1/B(x)) where B(x) is the o.g.f. for the Bell numbers. Solve for A(x). - David Callan, Jul 21 2017
LINKS
FORMULA
G.f.: A(x) satisfies A(x) = 1/(1 - A(x/(1-x))*x/(1-x) ).
a(n) = Sum_{k = 0..n} A085838(n, k). - Philippe Deléham, Jun 04 2004
G.f.: 1/x-1-1/(B(x)-1) where B(x) = g.f. for A000110 the Bell numbers. - Vladeta Jovovic, Aug 08 2004
a(n) = Sum_{k=0..n} A094456(n,k). - Philippe Deléham, Nov 07 2007
G.f.: 1/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-x/(1-5x/(1-... (continued fraction). - Paul Barry, Feb 25 2010
From Sergei N. Gladkovskii, Jan 06 2012 - May 12 2013: (Start)
Continued fractions:
G.f.: 1 - x/(G(0)+x); G(k) = x - 1 + x*k + x*(x-1+x*k)/G(k+1).
G.f.: 1/x - 1/2 + (x^2-4)/(4*U(0)-2*x^2+8) where U(k) = k*(2*k+3)*x^2 + x - 2 - (2-x+2*k*x)*(2+3*x+2*k*x)*(k+1)*x^2/U(k+1).
G.f.: 1/x+1/(U(0)-1) where U(k) = -x*k + 1 - x - x^2*(k+1)/U(k+1).
G.f.: (1 - U(0))/x - 1 where U(k) = 1 - x*(k+2) - x^2*(k+1)/U(k+1).
G.f.: (1 - U(0))/x where U(k) = 1 - x*(k+1)/(1-x/U(k+1)).
G.f.: 1/x + 1/( G(0)-1) where G(k) = 1 - x/(1 - x*(2*k+1)/(1 - x/(1 - x*(2*k+2)/ G(k+1) ))).
G.f.:1/x + 1/( G(0) - 1 ) where G(k) = 1 - x/(1 - x*(k+1)/G(k+1) ).
G.f.: (1 - Q(0))/x where Q(k) = 1 + x/(x*k - 1 )/Q(k+1).
G.f.: 1/x - 1/x/Q(0), where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))).
(End)
Conjecture: a(n) = b(2^(n-1) - 1) for n > 0 with a(0) = 1 where b(n) = b((n - 2^f(n))/2) + b(floor((2n - 2^f(n))/2)) + b(A025480(n-1)) for n > 0 with b(0) = 1 and where f(n) = A007814(n). - Mikhail Kurkov, Jan 11 2022
MAPLE
bintr:= proc(p) proc(n) add(p(k) *binomial(n, k), k=0..n) end end:
invtr:= proc(p) local b;
b:= proc(n) option remember; local i;
`if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1))
end;
end:
b:= invtr(bintr(a)):
a:= n-> `if`(n<0, 0, b(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 28 2012
MATHEMATICA
a[n_] := Module[{A, B}, A = 1+x; For[k=1, k <= n, k++, B = (A /. x -> x/(1 - x))/(1-x) + O[x]^n // Normal; A = 1 + x*A*B]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 23 2016, adapted from PARI *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A, x, x/(1-x))/(1-x)+x*O(x^n); A=1+x*A*B); polcoeff(A, n, x))}
CROSSREFS
Cf. A074664.
Sequence in context: A174347 A062146 A216947 * A035009 A051296 A030832
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 16:04 EDT 2024. Contains 374950 sequences. (Running on oeis4.)