Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094436 Triangular array T(n,k) = Fibonacci(k+1)*binomial(n,k) for k = 0..n; n >= 0. 15
1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 5, 1, 5, 20, 30, 25, 8, 1, 6, 30, 60, 75, 48, 13, 1, 7, 42, 105, 175, 168, 91, 21, 1, 8, 56, 168, 350, 448, 364, 168, 34, 1, 9, 72, 252, 630, 1008, 1092, 756, 306, 55, 1, 10, 90, 360, 1050, 2016, 2730, 2520, 1530, 550, 89 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+1) and n-th alternating row sum is F(n-1).
A094436 is jointly generated with A094437 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1,x) and v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) for the sequence {A000045(k)}_{k >= 0} of degree n with shift 1. Here the definition of Jensen polynomials of degree n and shift m of an arbitrary real sequence {s(k)}_{k >= 0} is used: J(s,m;n,x) := Sum_{j=0..n} binomial(n,j)*s(j + m)*x^j, This definition is used by Griffin et al. with a different notation. - Wolfdieter Lang, Jun 25 2019
LINKS
Michael Griffin, Ken Ono, Larry Rolen, and Don Zagier, Jensen polynomials for the Riemann zeta function and other sequences, PNAS, vol. 116, no. 23, 11103-11110, June 4, 2019.
FORMULA
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 26 2012
G.f. (-1+x)/(-1+2*x+x*y-x^2*y+x^2*y^2-x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k*T(n,k) = Fibonacci(n-1). (End)
EXAMPLE
First four rows:
1
1 1
1 2 2
1 3 6 3
Sum = 1+3+6+3=13=F(7); alt.Sum = 1-3+6-3=1=F(2).
T(3,2)=F(3)C(3,2)=2*3=6.
From Philippe Deléham, Mar 26 2012: (Start)
(1, 0, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins :
1
1, 0
1, 1, 0
1, 2, 2, 0
1, 3, 6, 3, 0
1, 4, 12, 12, 5, 0
1, 5, 20, 30, 25, 8, 0
1, 6, 30, 60, 75, 48, 13, 0 . (End)
MAPLE
with(combinat); seq(seq(fibonacci(k+1)*binomial(n, k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
MATHEMATICA
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094436 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094437 *)
(* Second program *)
Table[Fibonacci[k+1]*Binomial[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) T(n, k) = fibonacci(k+1)*binomial(n, k); \\ G. C. Greubel, Jul 11 2019
(Magma) [Fibonacci(k+1)*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2019
(Sage) [[fibonacci(k+1)*binomial(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 11 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Fibonacci(k+1)* Binomial(n, k) ))); # G. C. Greubel, Jul 11 2019
CROSSREFS
Cf. A000045.
Sequence in context: A068956 A124842 A134399 * A373436 A286012 A094441
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, May 03 2004
EXTENSIONS
Offset set to 0 by Alois P. Heinz, Aug 11 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 13:05 EDT 2024. Contains 375753 sequences. (Running on oeis4.)