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The terms of A103885 are de�ned by means of the binomial sum

a(n) =

n∑
k=1

2k
(
n

k

)(
2n− 1

k − 1

)
. (1)

We give several alternative representations of a(n) and show that the
supercongruence A103885(p) ≡ A103885(1)

(
mod p3

)
holds for all prime

p ≥ 5.
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a(n) =
1

2
[xn]

(
1 + x

1− x

)2n

(2)

a(n) =
[
x2n
](1 + x

1− x

)n

(3)

Proof. If we expand the binomials on the right side of (2) (resp. (3)) and
extract the coe�cient of xn (resp. x2n ) we obtain the binomial sum
representation (4) (resp. (5)) below.'
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a(n) =
1

2

n∑
k=0

(
2n

n− k

)(
2n + k − 1

k

)
(4)

a(n) =

n∑
k=0

(
n

k

)(
2n + k − 1

n− 1

)
(5)

We can verify (4) and (5) (and hence (2) and (3)) by using Zeilberger's
algorithm to show that both these sums satisfy the same linear recurrence as
the de�ning sum (1), namely,

(n + 1)(2n + 1)(5n2 − 5n + 1)a(n + 1) = 2
(
55n4 − 34n2 + 3

)
a(n) +

(n− 1)(2n− 1)
(
5n2 + 5n + 1

)
a(n− 1),

and checking that the sums have the same initial values.�
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Another representation for a(n) involves the o.g.f. S(x) of the sequence of
large Schröder numbers A006318:

�
�

�
�

a(n) = [xn]S(x)n (6)

Proof. The proof of (6) uses the Lagrange�Bürmann inversion formula,
which we take in the following form: Let G(x) be an arbitrary formal power

series. Let f(x) =
∑
n≥1

fnx
n with f1 6= 0 be a formal power series with

compositional inverse denoted by f̄(x). Then

[
xN
]
G (f(x)) =

1

N

[
xN−1

]
G
′
(x)

(
x

f̄(x)

)N

.

Now the generating function of the sequence of large Schröder numbers S(x) =
1− x− sqrt

(
1− 6x + x2

)
2x

satis�es the quadratic equation

(1− x)S(x)− xS(x)2 = 1.

Hence
1 + xS(x)

1− xS(x)
= S(x).

Thus the series reversion (
x(1− x)

1 + x

)
= xS(x).

Applying the Lagrange�Bürmann formula inversion formula with N = 2n,
G(x) = xn and f(x) = xS(x) yields

[
x2n
]
xnS(x)n = [xn]S(x)n =

1

2n

[
x2n−1

]
nxn−1

(
1 + x

1− x

)2n

=
1

2
[xn]

(
1 + x

1− x

)2n

= a(n) by (2).

�
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Supercongruences. Given an integer sequence s(n), there exists a formal
power series G(x) = 1 + g1x + g2x

2 + · · · , with rational coe�cients, such that

s(n) = [xn]G(x)n for n ≥ 1. (7)

G(x) is given by

G(x) =
x

Rev (xE(x))
, (8)

where we now use Rev to denote the series reversion (inversion) operator, and

the power series E(x) = exp

∑
n≥1

s(n)
xn

n

. See [Stan'99, Exercise 5.56 (a), p.

98, and its solution on p. 146 ] or [Bal'15].

We can invert (8) to express E(x) in terms of G(x):

E(x) =
1

x
Rev

(
x

G(x)

)
. (9)

One simple consequence of (8) and (9) is the following:

the power series G(x) is integral ⇐⇒ the power series E(x) is integral.

Given a sequence s(n), the condition that the power series E(x) =

exp

∑
n≥1

s(n)
xn

n

 is integral is known to be equivalent to the statement that

the Gauss congruences

s
(
mpk

)
≡ s

(
mpk−1

) (
mod pk

)
hold for all prime p and positive integers m, k [Stan'99, Ex. 5.2 (a), p. 72, and
its solution on p. 104].

It therefore follows from (6) and the above remarks that the sequence
a(n) = A103885(n) satis�es the Gauss congruences. In fact, calculation
suggests that A103885 satis�es the stronger supercongruences

a
(
mpk

)
≡ a

(
mpk−1

) (
mod p3k

)
(10)

for prime p ≥ 5 and all positive integers m and k. We prove a particular case.

Proposition 1. The supercongruence a(p) ≡ 2
(
mod p3

)
holds for prime

p ≥ 5.
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Proof. Let p ≥ 5 be prime. We make use of the binomial sum representation
(5) for a(p). We rewrite the sum by separating out the �rst (k = 0) summand
and last (k = p) summand and adding together the k-th and (p− k)-th
summands for 1 ≤ k ≤ p−1

2 to obtain

a(p) =

(
2p− 1

p− 1

)
+

(
3p− 1

p− 1

)
+

p−1
2∑

k=1

(
p

k

)((
2p + k − 1

p− 1

)
+

(
3p− k − 1

p− 1

))
.

Now by Wolstenholme's theorem [Mes'11, p. 3] and by [Mes'11, equation 15](
2p− 1

p− 1

)
≡ 1

(
mod p3

)
and (

3p− 1

p− 1

)
≡ 1

(
mod p3

)
,

both congruences holding for all prime p ≥ 5.

Hence

a(p) ≡ 2+

p−1
2∑

k=1

(
p

k

)((
2p + k − 1

p− 1

)
+

(
3p− k − 1

p− 1

)) (
mod p3

)
, prime p ≥ 5.

(11)
To establish the Proposition we will show that each summand on the right

side of (11) is divisible by p3. Clearly, the �rst factor
(
p
k

)
in each summand is

divisible by p for k in the range of summation. Therefore, to prove the
Proposition, it is enough to show that the second factor

(
2p+k−1

p−1

)
+
(
3p−k−1

p−1

)
is

divisible by p2 for all values of k in the range of summation. To show this, we
write the second factor as a product of two terms, each of which is divisible by
p.

One easily checks that(
2p + k − 1

p− 1

)
+

(
3p− k − 1

p− 1

)
=

(2p + k − 1)!

(2p− k)!(p− 1)!

{
(3p− k − 1)!

(2p + k − 1)!
+

(2p− k)!

(p + k)!

}
.

(12)

The �rst factor on the right side of (12) is a rational number divisible by p for
k in the range 1...p−1

2 since its numerator is exactly divisible by p2 and its
denominator is exactly divisible by p. To show that the second factor on the
right side of (12) is also divisible by p we �rst set r = p− 2k ≥ 1 and
s = p− 2k − 1 ≥ 0. Then we have

(3p− k − 1)!

(2p + k − 1)!
+

(2p− k)!

(p + k)!
= (3p− k − 1) · · · (3p− k − r) + (2p− k) · · · (2p− k − s)

≡ (−1)r(k + 1) · · · (k + r) + (−1)s+1k · · · (k + s) ( mod p )

≡ 0 ( mod p )
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since r = s + 1 and k + r ≡ −k (mod p).

We have shown that
(
2p+k−1

p−1

)
+
(
3p−k−1

p−1

)
is divisible by p2 for 1 ≤ k ≤ p−1

2 ,
thus completing the proof of the Proposition.�

A generalisation. We de�ne a two parameter family of sequences a(r,s)(n) by

a(r,s)(n) = [xrn]S(x)sn r ∈ N, s ∈ Z. (13)

So by (6), a(1,1)(n) = A103885(n). We conjecture that the supercongruences

a(r,s)
(
mpk

)
≡ a(r,s)

(
mpk−1

) (
mod p3k

)
(14)

hold for prime p ≥ 5 and all r ∈ N and s ∈ Z.
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