Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
A179260
Decimal expansion of the connective constant of the honeycomb lattice.
16
1, 8, 4, 7, 7, 5, 9, 0, 6, 5, 0, 2, 2, 5, 7, 3, 5, 1, 2, 2, 5, 6, 3, 6, 6, 3, 7, 8, 7, 9, 3, 5, 7, 6, 5, 7, 3, 6, 4, 4, 8, 3, 3, 2, 5, 1, 7, 2, 7, 2, 8, 4, 9, 7, 2, 2, 3, 0, 1, 9, 5, 4, 6, 2, 5, 6, 1, 0, 7, 0, 0, 1, 5, 0, 0, 2, 2, 0, 4, 7, 1, 7, 4, 2, 9, 6, 7, 9, 8, 6, 9, 7, 0, 0, 6, 8, 9, 1, 9, 2
OFFSET
1,2
COMMENTS
This is the case n=8 of the ratio Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)). - Bruno Berselli, Dec 13 2012
An algebraic integer of degree 4: largest root of x^4 - 4x^2 + 2. - Charles R Greathouse IV, Nov 05 2014
This number is also the length ratio of the shortest diagonal (not counting the side) of the octagon and the side. This ratio is A121601 for the longest diagonal. - Wolfdieter Lang, May 11 2017 [corrected Oct 28 2020]
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 3, pp. 69-74. See also the comments in A302711 with the Romanus link and his Exemplum tertium.
This problem is equivalent to R(45, 2*sin(Pi/120)) = 2*sin(3*Pi/8) with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/120) see A302715. (End)
REFERENCES
Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
N. Madras and G. Slade, Self-avoiding walks, Probability and its Applications. Birkhäuser Boston, Inc. Boston, MA (1993).
LINKS
Hugo Duminil-Copin and Stanislav Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt2), arXiv:1007.0575 [math-ph], 2011.
Hugo Duminil-Copin and Stanislav Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt2), Ann. Math. 175 (2012), pp. 1653-1665.
S. Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 5.10; arXiv:2001.00578 [math.HO], 2020.
Pierre-Louis Giscard, Que sait-on compter sur un graphe. Partie 3 (in French), Images des Mathématiques, CNRS, 2020.
G. Lawler, O. Schramm and W. Werner, On the scaling limit of planar self-avoiding walk, Fractal Geometry and applications: a jubilee of Benoit Mandelbrot, Part 2, 339-364. Proc.
B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions, Phys. Rev. Lett. 49 (1982), 1062-1065.
Jonathan Sondow and Huang Yi, New Wallis- and Catalan-type infinite products for Pi, e, and sqrt(2+sqrt(2)), arXiv:1005.2712 [math.NT], 2010.
Jonathan Sondow and Huang Yi, New Wallis- and Catalan-type infinite products for Pi, e, and sqrt(2+sqrt(2)), Amer. Math. Monthly 117 (2010) 912-917.
FORMULA
sqrt(2+sqrt(2)) = (2/1)(6/7)(10/9)(14/15)(18/17)(22/23)... (see Sondow-Yi 2010).
Equals 1/A154739. - R. J. Mathar, Jul 11 2010
Equals 2*A144981. - Paul Muljadi, Aug 23 2010
log (A001668(n)) ~ n log k where k = sqrt(2+sqrt(2)). - Charles R Greathouse IV, Nov 08 2013
2*cos(Pi/8) = sqrt(2+sqrt(2)). See a remark on the smallest diagonal in the octagon above. - Wolfdieter Lang, May 11 2017
Equals also 2*sin(3*Pi/8). See the comment on van Roomen's third problem above. - Wolfdieter Lang, Apr 29 2018
Equals i^(1/4) + i^(-1/4). - Gary W. Adamson, Jul 06 2022
Equals Product_{k>=0} ((8*k + 2)*(8*k + 6))/((8*k + 1)*(8*k + 7)). - Antonio Graciá Llorente, Feb 24 2024
EXAMPLE
1.84775906502257351225636637879357657364483325172728497223019546256107001500...
MATHEMATICA
RealDigits[Sqrt[2+Sqrt[2]], 10, 120][[1]] (* Harvey P. Dale, Jan 19 2014 *)
PROG
(PARI) sqrt(2+sqrt(2)) \\ Charles R Greathouse IV, Nov 05 2014
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Jul 06 2010
STATUS
approved