Second partial sums of the m-th powers

By Luciano Ancora

We consider the sums of powers of successive integers:

$$\sum_{k=1}^{n} k^{m} = 1^{m} + 2^{m} + \dots + n^{m}$$

which, as we know, are calculated with the Faulhaber's formulas, as follows:

$$\sum_{k=1}^{n} k = \frac{1}{2} (n^{2} + n)$$

$$\sum_{k=1}^{n} k^{2} = \frac{1}{6} (2 n^{3} + 3 n^{2} + n)$$

$$\sum_{k=1}^{n} k^{3} = \frac{1}{4} (n^{4} + 2 n^{3} + n^{2})$$

$$\sum_{k=1}^{n} k^{4} = \frac{1}{30} (6 n^{5} + 15 n^{4} + 10 n^{3} - n)$$

$$\sum_{k=1}^{n} k^{5} = \frac{1}{12} (2 n^{6} + 6 n^{5} + 5 n^{4} - n^{2})$$

..... (the table continues indefinitely).

Each of these formulas generates, as *n* varies, an integers sequence, of the type of that obtained for m = 2:

1, 5, 14, 30, 55, 91, 140, 204, 285,

that is the succession of the square pyramidal numbers.

We aim to find a way to calculate, given any of these sequences, the sum of its first n terms, that is, the *second partial sums of the m-th powers*.

An opportunity to obtain this is offered by the following table:

1 ^m	1 ^m	1 ^m	1 ^m	1 ^m	1 ^m	1 ^m	1 ^m	 1 ^m	1 ^m
2 ^m	2 ^m	2 ^m	2 ^m	2 ^m	2 ^m	2 ^m	2 ^m	 2 ^m	2 ^m
3 ^m	3 ^m	3 ^m	3 ^m	3 ^m	3 ^m	3 ^m	3 ^m	 3 ^m	3 ^m
4 ^m	4 ^m	4 ^m	4 ^m	4 ^m	4 ^m	4 ^m	4 ^m	 4 ^m	4 ^m
5 ^m	5 ^m	5 ^m	5 ^m	5 ^m	5 ^m	5 ^m	5 ^m	 5 ^m	5 ^m
6 ^m	6 ^m	6 ^m	6 ^m	6 ^m	6 ^m	6 ^m	6 ^m	 6 ^m	6 ^m
7 ^m	7 ^m	7 ^m	7 ^m	7 ^m	7 ^m	7 ^m	7 ^m	 7 ^m	7 ^m
:	:	:	:				:		:
(n-1) ^m	(n-1) ^m	 (n-1) ^m	(n-1) ^m						
n ^m	n ^m	n ^m	n ^m	n ^m	n ^m	n ^m	n ^m	 n ^m	n ^m

We describe the contents of the table:

- By summing the content of each column (black + red boxes), we obtain the sum of the first *n m*-th powers, that (in tribute to Faulhaber) we denote by F_{m} :

$$F_m = \sum_{k=1}^n k^m$$

and the contents of the entire table will be then:

$$(n+1)F_m = (n+1)\sum_{k=1}^n k^m$$

- The black section contains, in each row, the amount:

$$k^m \cdot k = k^{(m+1)}$$

By summing the contents of all rows one obtains the sum of the first n(m + 1)-th powers:

$$F_{(m+1)} = \sum_{k=1}^{n} k^{(m+1)}$$

- The red section contains, in the columns, the sequence of F_m sums. By summing the contents of all columns one obtains the second partial sums of the *m*-th powers.

The quantity that we seek is then obtained by subtracting to the content of the entire table, the content of the black boxes, that is:

$$\sum_{k=1}^{n} F_m = (n+1)F_m - F_{(m+1)}$$
(1)

By performing algebraic calculations for m = 1, 2, 3, you get:

$$m = 1$$

$$\sum_{k=1}^{n} F_1 = (n+1)F_1 - F_2$$

$$= (n+1)\frac{n^2 + n}{2} - \frac{2n^3 + 3n^2 + n}{6} = \frac{n^3 + 3n^2 + 2n}{6}$$

$$m = 2$$

$$\sum_{k=1}^{n} F_2 = (n+1)F_2 - F_3$$

$$= (n+1)\frac{2n^3 + 3n^2 + n}{6} - \left[\frac{n^2 + n}{2}\right]^2 = \frac{n^4 + 4n^3 + 5n^2 + 2n}{12}$$

$$m = 3$$

$$\sum_{k=1}^{n} F_3 = (n+1)F_3 - F_4$$

$$= (n+1)\left[\frac{n^2 + n}{2}\right]^2 - \frac{6n^5 + 15n^4 + 10n^3 - n}{30} = \frac{3n^5 + 15n^4 + 25n^3 + 15n^2 + 2n}{60}$$

Others results:

m=4: $a(n) = (2^{n}6 + 12^{n}5 + 25^{n}4 + 20^{n}3 + 3^{n}2 - 2^{n})/60$

m=5: $a(n) = (2^{n}7 + 14^{n}6 + 35^{n}5 + 35^{n}4 + 7^{n}3 - 7^{n}2 - 2^{n})/84$

m=6: $a(n) = (3^{n}8 + 24^{n}7 + 70^{n}6 + 84^{n}5 + 21^{n}4 - 28^{n}3 - 10^{n}2 + 10^{n}2 +$ 4*n)/168

m=7: a(n) = (5*n^9 + 45*n^8 + 150*n^7 + 210*n^6 + 63*n^5 - 105*n^4 -50*m^3 + 30*n^2 + 12*n)/360

m=8: a(n) = (2*n^10 + 20*n^9 + 75*n^8 + 120*n^7 + 42*n^6 - 84*n^5 - 50*n^4 + 40*n^3 + 21*n^2 - 6*n)/180

m=9: a(n) = (6*n^11 + 66*n^10 + 275*n^9 + 495*n^8 + 198*n^7 - 462*n^6 - 330*n^5 + 330*n^4 + 231*n^3 - 99*n^2 - 50*n)/660

Polynomial expressions generated by (1) are the natural extension of those listed at the beginning. The general formula for obtaining them in a direct way is written, in the compact notation of Faulhaber's formula, in the following way:

$$\sum_{k=1}^{n} F_m = (n+1)F_m - F_{(m+1)} =$$

$$= \frac{n+1}{m+1} \sum_{k=0}^{m} (-1)^m \binom{m+1}{k} B_k (n+1)^{m+1-k} - \frac{1}{m+2} (-1)^m \sum_{k=0}^{m+1} \binom{m+2}{k} B_k (n+1)^{m+2-k}$$

where the B_k quantities are the *Bernoulli numbers*.

Links

- 1 Animation: <u>https://www.youtube.com/watch?v=PnIEPqFtcQc</u>
- 2 User manual for the formula with Bernoulli numbers: http://www.theoremoftheday.org/Binomial/Faulhaber/TotDFaulhaber.pdf