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Given integer polynomials P (x) and Q(x), we investigate the sequence of
numerators of the rational numbers P (n)/Q(n), n = 0, 1, 2, ..., and give
conditions for the sequence to be a quasi-polynomial in n.

1. Recall the greatest common divisor (gcd) of two integers a and b, not
both zero, is the largest positive integer that divides both a and b. The gcd
function has the following property:

d | a and d | b⇐⇒ d | gcd(a, b). (1)

Proposition 1. Let P (x), Q(x) ∈ Z[x] be coprime integer polynomials. Then

the arithmetical function g(n) = gcd (P (n), Q(n)) is a purely periodic function,

that is, there exists a positive integer N such that

g(n+N) = g(n), n ∈ Z. (2)

Proof. Viewing P (x) and Q(x) as elements of Q[x] we can apply Bézout's
identity [5] to �nd rational polynomials A(x), B(x) ∈ Q[x] such that

A(x)P (x) +B(x)Q(x) = 1.

Clearing denominators we obtain integer polynomials A(x) and B(x) and a
positive integer N (equal to the lcm of the denominators of A(x) and B(x))
such that

A(x)P (x) +B(x)Q(x) = N.

In particular,

A(n)P (n) +B(n)Q(n) = N, n ∈ Z. (3)

From the de�nition of the greatest common divisor we have that g(n) =
gcd (P (n), Q(n)) divides both P (n) and Q(n), and hence from (3) we see that

g(n) divides N for all n. (4)

We shall prove g(n) = g(n+N) for all n ∈ Z by showing that g(n) divides
g(n+N) and also that g(n+N) divides g(n) (recall g(n) and g(n+N) are both
positive integers by de�nition). Using the binomial expansion we easily see that

P (n+N) = P (n) + an integer multiple of N

(5)

Q(n+N) = Q(n) + an integer multiple of N.

1



For integer n, g(n) divides P (n) and Q(n). By (4), g(n) also divides N.
Hence by (5), g(n) divides both P (n+N) and Q(n+N). Then by (1), g(n)
divides g(n+N) = gcd(P (n+N), Q(n+N)) .

The argument in the other direction is exactly similar: g(n+N) divides
P (n+N) and Q(n+N) by the de�nition of the gcd function. Again by (4),
g(n+N) divides N . Hence by (5), g(n+N) divides both P (n) and Q(n).
Therefore by (1), g(n+N) divides g(n) = gcd(P (n), Q(n)) . �

Renark. The period N of the function g(n) obtained in the Proposition may
not be the least period.

We will be interested in sequences formed from the numerators of the
rational numbers P (n)/Q(n), where P (x) and Q(x) are integral polynomials.
One minor problem is that rational numbers have many representations and
the numerator of a rational number is not unambiguously de�ned. For
example,

12

20
=
−12
−20

=
6

10
=

3

5
=
−3
−5

.

We need to make an unambiguous choice for the numerator of a rational
number a/b. We restrict our attention to the case where b is a positive integer.
Then we have

a = a′gcd(a, b), b = b′gcd(a, b),

where a′ and b′ are coprime integers and b′ is necessarily positive since the gcd
is a positive function. Clearly, a/b = a′/b′. We de�ne the numerator of the

rational number a/b with b > 0 by

numerator
(a
b

)
= a′,

or equivalently,

numerator
(a
b

)
=

a

gcd(a, b)
. (6)

Recall [6] an arithmetical function f : N→ N is a quasi-polynomial if there
exist polynomials p0, ..., pm−1 such that f(n) = pi(n) when n ≡ i (mod m).

Proposition 2. Let P (x), Q(x) ∈ Z[x] be coprime integer polynomials such

that Q(n) > 0 for n ∈ N. Then the sequence
(
numerator

(
P (n)
Q(n)

))
n≥0

of

numerators of the rational numbers
P (n)
Q(n) is a quasi-poynomial in n.

Proof. From the de�niton of the numerator function in (6) we have

numerator

(
P (n)

Q(n)

)
=

P (n)

g(n)
, n ∈ N,
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where g(n) = gcd(P (n), Q(n)) . By Proposition 1, g(n) is a purely periodic
arithmetical function. Denote the least period of g(n) by m. Then

numerator
(

P (n)
Q(n)

)
= pi(n) when n ≡ i (mod m), where pi(n) =

P (n)
g(i) is

polynomial in n. Thus the function numerator
(

P (n)
Q(n)

)
is a quasi-polynomial in

n. �

2. Example. The simplest case of Proposition 2 is when P (n) and Q(n) are
both linear polynomials in n. Let k be a positive integer and consider the
family of sequences ak(n) de�ned by

ak(n) = numerator

(
n

n+ k

)
, n ∈ N,

which by (6) becomes

ak(n) =
n

gcd(n, n+ k)

=
n

gcd(n, k)
. (7)

Many examples of these sequences are listed in the OEIS: see A026741
(k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789
(k = 6), A106608 through A106612 (k = 7, . . . ,11), A051724 (k = 12) and
A106614 through A106621 (k = 13, . . . ,20). Proposition 2 tells us that each of
these sequences is a quasi-polynomial in n.

We mention two other general properties of the sequence ak(n).

A) For a �xed positive integer k, the sequence ak(n), n = 1, 2, 3, ..., is a strong
divisibility sequence [2], that is,

gcd(ak(n), ak(m)) = ak (gcd(n,m)) for all n,m ≥ 1. (8)

In particular, each sequence ak(n) is a divisibility sequence, that is, if n
divides m then ak(n) divides ak(m).

Proof. We require the following three properties of the greatest common
divisor function gcd(a, b) and the least common multiple function lcm(a, b) [3]:

(i) If m is a nonnegative integer then

m gcd(a, b) = gcd(ma,mb). (9)

(ii) The greatest common divisor function and the least common multiple
function are related by

gcd(a, b)lcm(a, b) = | ab | . (10)
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(iii) The distributivity law

lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)). (11)

Suppose a, b, c are positive integers. We can use (10) to remove the lcm
functions in (11) to give

a gcd(b, c)

gcd(a, gcd(b, c)
= gcd

(
ab

gcd(a, b)
,

ac

gcd(a, c)

)
.

Using (9) we can remove the common factor of a from the right and left-hand
sides to arrive at the identity

gcd(b, c)

gcd(a, gcd(b, c))
= gcd

(
b

gcd(a, b)
,

c

gcd(a, c)

)
.

Now set a = k, b = n and c = m to give

gcd(n,m)

gcd(gcd(n,m), k)
= gcd

(
n

gcd(n, k)
,

m

gcd(m, k)

)
.

By (7), this is equivalent to

ak (gcd(n,m)) = gcd(ak(n), ak(m)) .

Thus the sequence ak(n) is a strong divisibility sequence as claimed.�

B) We show that the ordinary generating function of the sequence ak(n) is the
rational function

∞∑
n=1

ak(n)x
n =

∑
d|k

ψ(d)
xd

(1− xd)2
, (12)

where ψ(n) is the multiplicative arithmetical function de�ned on prime powers

by ψ(pk) = 1− p. Thus ψ(n) =
∏

prime p|n

(1− p). The particular case of the

generating function (12) when k = p, a prime, was noted by Hanna in
A106608. Indeed, it was Hanna's observation that suggested the general form
of the generating function given above. The �rst few values of the function
ψ(n) are tabled below.

n 1 2 3 4 5 6 7 8 9 10 11 12
ψ(n) 1 -1 -2 -1 -4 2 -6 -1 -2 4 -10 2

See OEIS sequence A023900.

It is not di�cult to show that the function ψ(n) as de�ned above is the
Dirichlet inverse of Euler's totient function φ(n) (sequence A000010). In order
to prove the generating function (12) we need the following property of the
function ψ(n).
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Proposition 3. ∑
d|n

ψ(d)

d
=

1

n
.

Proof. The Dirichlet generating function for the Euler totient function φ(n) is
ζ(s− 1)/ζ(s). Thus the Dirichlet generating function for the Dirichlet inverse
function ψ(n) is simply the reciprocal function ζ(s)/ζ(s− 1). Hence

∞∑
n=1

ψ(n)

ns
=

∞∑
N=1

1

Ns

∞∑
m=1

m

ms

,

which leads to

∞∑
n=1

ψ(n)

ns

∞∑
m=1

m

ms
=

∞∑
N=1

1

Ns
.

Comparing the coe�cients of N−s on both sides of this identity gives the
result.�

We are now in a position to prove the rational generating function for the
sequence ak(n) stated in (12). We have

∑
d|k

ψ(d)
xd

(1− xd)2
=

∑
d|k

ψ(d)

∞∑
n=1

nxdn.

The coe�cient of xN in the series on the right-hand side is given by∑
d | k,
d | N

ψ(d)
N

d
.

By (1), this is equal to

N
∑

d|gcd(N,k)

ψ(d)

d
=

N

gcd(N, k)
, by Proposition 3,

= ak(N), by (7),

and this is the coe�cient of xN in the series on the left-hand side of (12). This
completes the proof of the identity (12).�
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The previous results can be easily extended to the sequences

akm (nm) = numerator

(
nm

nm + km

)
, m = 1, 2, 3, ... .

By (7), we have

akm (nm) =
nm

gcd(nm, km)

=

(
n

gcd(n, k)

)m

= ak(n)
m.

By a similar calculation to the above case when m = 1, the ordinary
generating function can be shown to be the rational function

∞∑
n=1

(ak(n))
m
xn =

∑
d|k

ψm(d)
Am

(
xd
)

(1− xd)m+1 , (13)

where ψm(n) is the multiplicative function de�ned by

ψm(n) =
∏

prime p|n

(1− pm),

and where Am(x) is the m-th Eulerian polynomial (see A008292 and also
A123125). ψm(n) is the Dirichlet inverse of the Jordan totient function Jm(n)
[4]. It has the property ∑

d|n

ψm(d)

dm
=

1

nm
. (14)

For ψ2(n) and ψ3(n) see A046970 and A063453.

The result (13) can be extended to negative values of m. For example, when
m = −1 we obtain the generating function for the reciprocals of ak(n):

∞∑
n=1

xn

ak(n)
=

∑
d|k

φ(d)

d
log

(
1

1− xd

)
,

where φ(n) denotes the Euler totient function.
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