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Given integer polynomials P(z) and Q(x), we investigate the sequence of
numerators of the rational numbers P(n)/Q(n),n =0,1,2, ..., and give
conditions for the sequence to be a quasi-polynomial in n.

1. Recall the greatest common divisor (ged) of two integers a and b, not
both zero, is the largest positive integer that divides both a and b. The ged
function has the following property:

d|aandd|b<= d]|gcd(a,bd). (1)

Proposition 1. Let P(x),Q(x) € Z[x] be coprime integer polynomials. Then
the arithmetical function g(n) = ged (P(n), Q(n)) is a purely periodic function,
that is, there exists a positive integer N such that

gln+N)=g(n), nezZ. (2)

Proof. Viewing P(x) and Q(x) as elements of Q[z] we can apply Bézout’s
identity [5] to find rational polynomials A(z), B(z) € Q[z] such that

A@)P(x) + B@)Q@) = 1.
Clearing denominators we obtain integer polynomials A(x) and B(x) and a

positive integer N (equal to the lem of the denominators of A(z) and B(x))
such that

In particular,
A(n)P(n)+ B(n)Q(n) = N, neZ. (3)
From the definition of the greatest common divisor we have that g(n) =
ged (P(n), Q(n)) divides both P(n) and Q(n), and hence from (3) we see that
g(n) divides N for all n. (4)

We shall prove g(n) = g(n + N) for all n € Z by showing that g(n) divides
g(n+ N) and also that g(n+ N) divides g(n) (recall g(n) and g(n+ N) are both
positive integers by definition). Using the binomial expansion we easily see that

P(n+ N) = P(n)+ an integer multiple of N

(5)
Q(n+ N) = Q(n)+ an integer multiple of N.



For integer n, g(n) divides P(n) and Q(n). By (4), g(n) also divides N.
Hence by (5), g(n) divides both P(n 4+ N) and Q(n + N). Then by (1), g(n)
divides g(n + N) = ged(P(n + N),Q(n + N)).

The argument in the other direction is exactly similar: g(n + N) divides
P(n+ N) and Q(n + N) by the definition of the ged function. Again by (4),
g(n+ N) divides N. Hence by (5), g(n + N) divides both P(n) and Q(n).
Therefore by (1), g(n + N) divides g(n) = ged(P(n),Q(n)). B

Renark. The period N of the function g(n) obtained in the Proposition may
not be the least period.

We will be interested in sequences formed from the numerators of the
rational numbers P(n)/Q(n), where P(z) and Q(z) are integral polynomials.
One minor problem is that rational numbers have many representations and
the numerator of a rational number is not unambiguously defined. For

example,

12 —12 6 3 -3

20 -20 10 5 -5
We need to make an unambiguous choice for the numerator of a rational
number a/b. We restrict our attention to the case where b is a positive integer.
Then we have

a = a'ged(a,b), b=1"bged(a,b),

where o' and b’ are coprime integers and ' is necessarily positive since the ged
is a positive function. Clearly, a/b = a’/b'. We define the numerator of the
rational number a/b with b > 0 by

a
numerator(g) =a,

or equivalently,

a a
numerator (g) = m . (6)

Recall [6] an arithmetical function f : N — N is a quasi-polynomial if there
exist polynomials py, ..., pm—1 such that f(n) = p;(n) when n =4 (mod m).
Proposition 2. Let P(z),Q(x) € Z[z] be coprime integer polynomials such

that Q(n) > 0 for n € N. Then the sequence (numemtor(SEZ;)) . of
P(n)

numerators of the rational numbers o) is a quasi-poynomial in n.

Proof. From the definiton of the numerator function in (6) we have

P(n)) _ P()

Q) oy "EN

numerator (



where g(n) = ged(P(n),Q(n)) . By Proposition 1, g(n) is a purely periodic
arithmetical function. Denote the least period of g(n) by m. Then

numerator(ggzg) = p;(n) when n = ¢ (mod m), where p;(n) = I;E?)) is
polynomial in n. Thus the function numerator(%) is a quasi-polynomial in

n. A

2. Example. The simplest case of Proposition 2 is when P(n) and Q(n) are
both linear polynomials in n. Let k& be a positive integer and consider the
family of sequences ay(n) defined by

n
= to , eN,
ax(n) = numerator (n n k) n

which by (6) becomes

L
ged(n,n + k)
_n
ged(n, k)

ar(n) =

Many examples of these sequences are listed in the OEIS: see A026741
(k=2), A051176 (k = 3), A060819 (k = 4), A060791 (k =5), A060789
(k =6), A106608 through A106612 (k =7,...,11), A051724 (k = 12) and
A106614 through A106621 (k = 13,...,20). Proposition 2 tells us that each of
these sequences is a quasi-polynomial in 7.

We mention two other general properties of the sequence ax(n).

A) For a fixed positive integer k, the sequence ax(n), n =1,2,3,..., is a strong
divisibility sequence [2], that is,

ged(ag(n), ax(m)) = ax(ged(n,m)) for all n,m > 1. (8)

In particular, each sequence ay(n) is a divisibility sequence, that is, if n
divides m then ay(n) divides ax(m).

Proof. We require the following three properties of the greatest common
divisor function ged(a,b) and the least common multiple function lem(a, b) [3]:

(i) If m is a nonnegative integer then
mged(a,b) = ged(ma, mb). (9)

(ii) The greatest common divisor function and the least common multiple
function are related by

ged(a,b)lem(a,b) = |ab]. (10)



(iii) The distributivity law
lem(a, ged(b,¢)) = ged(lem(a,d),lem(a, ¢)). (11)

Suppose a, b, ¢ are positive integers. We can use (10) to remove the lcm
functions in (11) to give

aged(b, ¢) — e ab ac
ged(a,ged(b,c) & ged(a,b)’ ged(a,c) )

Using (9) we can remove the common factor of a from the right and left-hand
sides to arrive at the identity

ged(b, ¢) — eed b c
ged(a,ged(b,c)) & ged(a,b)’ ged(a,c) )
Now set a = k, b = n and ¢ = m to give
ged(n, m) — eed n m
ged(ged(n,m), k) & ged(n, k) ged(m, k) )

By (7), this is equivalent to
ak (ged(n,m)) = ged(ag(n), ag(m)).

Thus the sequence ai(n) is a strong divisibility sequence as claimed. B

B) We show that the ordinary generating function of the sequence ax(n) is the
rational function

> aulma” =3 vl g (12)

d\2’
Ak 1—ad)

where ¢(n) is the multiplicative arithmetical function defined on prime powers
by ¥(p*) = 1 — p. Thus ¥ (n) = H (1 — p). The particular case of the

prime p|n
generating function (12) when k = p, a prime, was noted by Hanna in
A106608. Indeed, it was Hanna’s observation that suggested the general form
of the generating function given above. The first few values of the function
¥ (n) are tabled below.

n |[1[2[3[4[5][6]7][8[9]10] 11 |12
o) |11 |2 [-1|4[2[6|-1|=2]4]-10] 2

See OEIS sequence A023900.

It is not difficult to show that the function ¥ (n) as defined above is the
Dirichlet inverse of Euler’s totient function ¢(n) (sequence A000010). In order
to prove the generating function (12) we need the following property of the
function ¥ (n).



Proposition 3.
Z¢(d) _ 1
d n’
d|n

Proof. The Dirichlet generating function for the Euler totient function ¢(n) is
¢(s —1)/¢(s). Thus the Dirichlet generating function for the Dirichlet inverse
function ¢ (n) is simply the reciprocal function ((s)/{(s — 1). Hence
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which leads to

YA - X

1
Comparing the coefficients of N™° on both sides of this identity gives the
result. W

We are now in a position to prove the rational generating function for the
sequence ay(n) stated in (12). We have

d oo
€T n
Yo d)——5 = Y b)) na™
dlk (1 —azd) d|k n=1
The coefficient of 2% in the series on the right-hand side is given by
N
> )
d |k,
d| N
By (1), this is equal to
¥(d) N s
N Z T = m, by PrOpOSltlon 3,

d|ged(N,k)
= ax(N), by (7),

and this is the coefficient of 2%V in the series on the left-hand side of (12). This
completes the proof of the identity (12). H



The previous results can be easily extended to the sequences

agm (n') = numerator(w> , m=1,23, ...
By (7), we have
m _ nm
agm (n™) = ged(n™, k™)
— \ged(n, k)
= ag(n)™.

By a similar calculation to the above case when m = 1, the ordinary
generating function can be shown to be the rational function

> — Ay (22
S )™ = 3 gl ) (13)
n=1 dlk (1—=z7)
where ,,(n) is the multiplicative function defined by
bum) = I a-p™.
prime p|n

and where A,,(x) is the m-th Eulerian polynomial (see A008292 and also
A123125). ¢,,(n) is the Dirichlet inverse of the Jordan totient function J,,(n)
[4]. Tt has the property

dm nm

d|n

For 12(n) and ¥s(n) see A046970 and A063453.

The result (13) can be extended to negative values of m. For example, when

m = —1 we obtain the generating function for the reciprocals of ax(n):
= o(d) ( 1 >
> = > el =)
“— ax(n) T d 11—z

where ¢(n) denotes the Euler totient function.
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