Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
A320934
Number of chiral pairs of color patterns (set partitions) for a row of length n using 4 or fewer colors (subsets).
3
0, 0, 1, 4, 20, 80, 336, 1344, 5440, 21760, 87296, 349184, 1397760, 5591040, 22368256, 89473024, 357908480, 1431633920, 5726601216, 22906404864, 91625881600, 366503526400, 1466015154176, 5864060616704, 23456246661120, 93824986644480, 375299963355136, 1501199853420544, 6004799480791040
OFFSET
1,4
COMMENTS
Two color patterns are equivalent if the colors are permuted.
A chiral row is not equivalent to its reverse.
There are nonrecursive formulas, generating functions, and computer programs for A124303 and A305750, which can be used in conjunction with the first formula.
FORMULA
a(n) = (A124303(n) - A305750(n))/2.
a(n) = A124303(n) - A056323(n).
a(n) = A056323(n) - A305750(n).
a(n) = A122746(n-2) + A320526(n) + A320527(n).
a(n) = Sum_{j=1..k} (S2(n,j) - Ach(n,j)) / 2, where k=4 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(2*m) = (16^m - 4*4^m)/48.
a(2*m-1) = (16^m - 4*4^m)/192.
a(n) = (4^n - 4^floor(n/2+1))/48.
G.f.: x^2/((-1 + 4*x)*(-1 + 4*x^2)). - Stefano Spezia, Oct 29 2018
a(n) = 2^n*(2^n - (-1)^n - 3)/48. - Bruno Berselli, Oct 31 2018
EXAMPLE
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
MATHEMATICA
Table[(4^n - 4^Floor[n/2+1])/48, {n, 40}] (* or *)
LinearRecurrence[{4, 4, -16}, {0, 0, 1}, 40] (* or *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)
k=4; Table[Sum[StirlingS2[n, j]-Ach[n, j], {j, k}]/2, {n, 40}]
CoefficientList[Series[x^2/((-1 + 4 x) (-1 + 4 x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
CROSSREFS
Column 4 of A320751.
Cf. A124303 (oriented), A056323 (unoriented), A305750 (achiral).
Sequence in context: A255050 A371408 A292540 * A344063 A055296 A140532
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 27 2018
STATUS
approved